Populations of solutions to cyclotomic Bethe equations

Varchenko, Alexander and Young, Charles A. S. (2015) Populations of solutions to cyclotomic Bethe equations. ISSN 1815-0659
Copy

We study solutions of the Bethe Ansatz equations for the cyclotomic Gaudin model of arXiv:1409.6937. We give two interpretations of such solutions: as critical points of a cyclotomic master function, and as critical points with cyclotomic symmetry of a certain "extended" master function. In finite types, this yields a correspondence between the Bethe eigenvectors and eigenvalues of the cyclotomic Gaudin model and those of an "extended" non-cyclotomic Gaudin model. We proceed to define populations of solutions to the cyclotomic Bethe equations, in the sense of arXiv:math/0209017, for diagram automorphisms of Kac-Moody Lie algebras. In the case of type A with the diagram automorphism, we associate to each population a vector space of quasi-polynomials with specified ramification conditions. This vector space is equipped with a Z_2-gradation and a non-degenerate bilinear form which is (skew-)symmetric on the even (resp. odd) graded subspace. We show that the population of cyclotomic critical points is isomorphic to the variety of isotropic full flags in this space.

picture_as_pdf

picture_as_pdf
1505.07582v1
Available under Creative Commons: 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads