Instance Weighted Clustering: Local Outlier Factor and K-Means
Moggridge, Paul, Helian, Na, Sun, Yi, Lilley, Mariana and Veneziano, Vito
(2020)
Instance Weighted Clustering: Local Outlier Factor and K-Means.
In:
Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference : Proceedings of the EANN 2020.
Proceedings of the International Neural Networks Society
.
Springer Nature, pp. 435-446.
ISBN 9783030487904
Clustering is an established unsupervised learning method. Substantial research has been carried out in the area of feature weighting, as well instance selection for clustering. Some work has paid attention to instance weighted clustering algorithms using various instance weighting metrics based on distance information, geometric information and entropy information. However, little research has made use of instance density information to weight instances. In this paper we use density to define instance weights. We propose two novel instance weighted clustering algorithms based on Local Outlier Factor and compare them against plain k-means and traditional instance selection.
Item Type | Book Section |
---|---|
Additional information | © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/978-3-030-48791-1_34. |
Date Deposited | 15 May 2025 16:45 |
Last Modified | 01 Jun 2025 23:08 |
Explore Further
-
picture_as_pdf - loiwreport2_final_submission.pdf
-
subject - Submitted Version
-
copyright - Available under Unspecified
Share this file
Downloads