Software defect prediction using static code metrics underestimates defect-proneness

Gray, David, Bowes, David, Davey, N., Sun, Yi and Christianson, B. (2010) Software defect prediction using static code metrics underestimates defect-proneness. In: IEEE International Joint Conference on Neural Networks (IJCNN) :. Institute of Electrical and Electronics Engineers (IEEE), pp. 1-7. ISBN 978-1-4244-6916-1
Copy

Many studies have been carried out to predict the presence of software code defects using static code metrics. Such studies typically report how a classifier performs with real world data, but usually no analysis of the predictions is carried out. An analysis of this kind may be worthwhile as it can illuminate the motivation behind the predictions and the severity of the misclassifications. This investigation involves a manual analysis of the predictions made by Support Vector Machine classifiers using data from the NASA Metrics Data Program repository. The findings show that the predictions are generally well motivated and that the classifiers were, on average, more 'confident' in the predictions they made which were correct.


picture_as_pdf
905149.pdf

View Download
visibility_off picture_as_pdf

Published Version
lock

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads