
Software Defect Prediction Using Static Code Metrics
Underestimates Defect-Proneness

David Gray, David Bowes, Neil Davey, Yi Sun and Bruce Christianson

Abstract— Many studies have been carried out to predict the
presence of software code defects using static code metrics.
Such studies typically report how a classifier performs with
real world data, but usually no analysis of the predictions is
carried out. An analysis of this kind may be worthwhile as it
can illuminate the motivation behind the predictions and the
severity of the misclassifications. This investigation involves a
manual analysis of the predictions made by Support Vector
Machine classifiers using data from the NASA Metrics Data
Program repository. The findings show that the predictions
are generally well motivated and that the classifiers were, on
average, more ‘confident’ in the predictions they made which
were correct.

I. INTRODUCTION

A growing number of studies have been carried out on
the subject of automated software defect prediction

using static code metrics ([1], [2], [3], [4] and [5] for
example). Such studies are motivated by the tremendous cost
of software defects (see [6]) and typically involve observing
the performance achieved by classifiers in labelling software
modules (functions, procedures or methods) as being either
defective or otherwise. Although such a binary labelling
toward module defectiveness is clearly a simplification of the
real world, it is hoped that such a classification system could
be an effective aid at determining which modules require
further attention during testing. An accurate software defect
prediction system would thus result in higher quality, more
dependable software that could be produced more swiftly
than was previously possible.

The predictions that are made in typical defect prediction
studies are usually assessed using confusion matrix related
performance measures, such as recall and precision. Rarely
in the research literature are these predictions mapped back
to the original corresponding modules for further analysis.
An examination of this kind may be worthwhile as it can
illuminate the motivation behind the predictions and the
severity of the misclassifications. For example, a module
that is incorrectly predicted as defective (a false positive)
which consists of 1000 lines of code (LOC) may be a far
more logical (and forgivable) mistake for a classifier to
make than a false positive which consists of 5 LOC. The
former misclassification may even be desirable, as a module
with highly defect-prone characteristics should probably be
subjected to some kind of further inspection in the interests
of code quality.

All authors are with the Computer Science Department at the University
of Hertfordshire, UK. Respective email addresses are: {d.gray, d.h.bowes,
n.davey, y.2.sun, b.christianson}@herts.ac.uk

In this study a defect prediction experiment was carried
out to allow a manual analysis of the classifications made
in terms of each module’s: original metrics, corresponding
classification result (one of either: true positive, true negative,
false positive or false negative) and corresponding decision
value; a value output by the classifier which can be inter-
preted as its certainty of prediction for that particular module.
The experiment carried out involved assessing the perfor-
mance of Support Vector Machine (SVM) classifiers against
the same data with which they were trained. The purpose of
this was to gain insight into how the classifiers were sepa-
rating the training data, and to see whether this separation
appeared consistent with current software engineering beliefs
(i.e. that larger, more complex modules are more likely to
be defective). Additionally it was interesting to examine the
modules that were misclassified in the experiment, to try
and see why the classifiers associated these modules with
the opposing class.

The data used in this study was taken from the NASA
Metrics Data Program (MDP) repository1, which currently
contains 13 data sets intended for software metrics research.
Each of these data sets contains the static code metrics and
corresponding fault data for each comprising module. One
of the data sets (namely, PC2) was the main focus of this
study as it contained the fewest modules (post data pre-
processing) and was therefore the least labour intensive to
manually examine. The remaining 12 data sets were all used
in the experiment but were not subjected to the same level
of scrutiny.

Initial analysis of data set PC2 involved the collection and
examination of basic statistics for each of the metrics in each
class (the class labels were: {defective, non-defective}) to
observe the distribution of values amongst classes. Principal
Components Analysis was then used as a data visualisation
tool to see how the classes were distributed within the
feature space, and if any patterns emerged. This enabled
the detection of outliers; data points which substantially
differ from the rest of their class. These outliers were later
cross-examined to see how they correlated with the SVMs
predictions.

The findings from this study are that the predictions
for the modules comprising data set PC2 were generally
well motivated; they seemed logical given current software
engineering beliefs. Also, each of the classifiers for all 13
NASA MDP data sets had higher average decision values for
the defective predictions they made which were correct (the

1http://mdp.ivv.nasa.gov/

true positives) than were incorrect (the false positives). This
information could be exploited in a real world defect predic-
tion system where the predicted modules could be inspected
in decreasing order of their decision values. The findings
in this study indicate that defect prediction systems may be
doing far better at predicting module defect-proneness than
they are at predicting actual defectiveness. This highlights
one of the fundamental issues with current defect prediction
experiments - the assumption that all modules predicted as
having defect-prone characteristics are in fact defective.

The rest of this paper is presented as follows: Section
II begins with a brief introduction to static code metrics,
followed by a description of the data used in this study
and then an overview of our chosen classification method,
Support Vector Machines. Section III describes the data pre-
processing carried out and the experimental design. The
findings are shown in Section IV in two parts, firstly the
initial data analysis is presented and then the classification
analysis. The conclusions are given in Section V.

II. BACKGROUND

A. Static Code Metrics

Static code metrics are measurements of software features
that may potentially relate to defect-proneness, and thus
to quality. Examples of such features and how they are
often measured include: size, via LOC counts; readability,
via operand and operator counts (as proposed by [7]) and
complexity, via linearly independent path counts (also known
as the cyclomatic complexity [8]).

Consider the C program shown in Figure 1. Here there is
a single function called main. The number of lines of code
this function contains (from opening to closing bracket) is
11, the number of arguments it takes is 2, the number of
linearly independent paths through the function is 3. These
are just a few examples of the many metrics that can be
statically computed from source code.

#include <stdio.h>

int main(int argc, char* argv[])
{
int return_code = 0;
if (argc < 2) {

printf("No Arguments Given\n");
return_code = -1;

}
int x;
for(x = 1; x < argc; x++)

printf("’%s’\n", argv[x]);
return return_code;
}

Fig. 1. An example C program.

Because static code metrics are calculated through the
parsing of source code, their collection can be automated.
Thus it is computationally feasible to calculate the metrics
of entire software systems, irrespective of their size. Som-
merville points out that such collections of metrics can be
used in the following contexts [9]:

• To make general predictions about a system as a
whole. For example, has a system reached a required
quality threshold?

• To identify anomalous components. Of all the modules
within a software system, which ones exhibit character-
istics that deviate from the overall average? Modules
thus highlighted can then be used as pointers to where
developers should be focusing their efforts. This is
common practice amongst several large US government
contractors [2].

B. Data

The data used in this study was obtained from the NASA
MDP repository. This repository currently contains 13 data
sets intended for software metrics research. All 13 of these
data sets were used in this study: brief details of them are
shown in Table I. Each of the MDP data sets represents a
NASA software system/subsystem and contains the static
code metrics and corresponding fault data for each com-
prising module. Note that “module” can refer to a function,
procedure or method. Between 23 to 42 metrics and a unique
module identifier comprise each data set, a subset of the
metrics are shown in Table II.

All non-fault related metrics within each of the data sets
were generated using McCabeIQ 7.1; a commercial tool for
the automated collection of static code metrics. The error
count metric was calculated by the number of error reports
issued for each module via a bug tracking system. It is
unclear precisely how the error reports were mapped back
to the software modules, however the MDP homepage states

Name Language Total
KLOC

No. of
Modules

% Defective
Modules

CM1 C 20 505 10

JM1 C 315 10878 19

KC1 C++ 43 2107 15
KC3 Java 18 458 9
KC4 Perl 25 125 49

MC1 C & C++ 63 9466 0.7
MC2 C 6 161 32

MW1 C 8 403 8

PC1

C

40 1107 7
PC2 26 5589 0.4
PC3 40 1563 10
PC4 36 1458 12
PC5 C++ 164 17186 3

TABLE I
BRIEF DETAILS OF THE 13 NASA MDP DATA SETS. NOTE THAT KLOC

REFERS TO THOUSAND LINES OF CODE.

Metric Name Metric Definition

Cyclomatic Complexity # of linearly independant paths (see [8])
Essential Complexity Related to the # of unstructured constructs

No. Operators # of operators (‘==’, ‘!=’, keywords, etc)
No. Operands # of operands (variables, literals, etc)

No. Unique Operators # of unique operators
No. Unique Operands # of unique operands

LOC Blank # of blank lines
LOC Comments # of lines containing only comments
LOC Executable # of lines containing only executable code

LOC Code & Comments # of code and comments on the same line

TABLE II
A SMALL SUBSET OF THE METRICS CONTAINED WITHIN EACH OF THE

NASA MDP DATA SETS.

that “if a module is changed due to an error report (as
opposed to a change request), then it receives a one up
count”.

The NASA MDP data has been used extensively by the
software engineering research community. There are cur-
rently more than 20 published studies that have used data
which first originated from this repository. The motivation
for using these data sets is often due to the difficulty in
obtaining real world fault data. Using the NASA MDP data
can be problematic however as access to the original source
code is not possible, making the validation of data integrity
difficult. This is especially problematic as the NASA MDP
data sets appear to have quality issues with regard to their
accuracy (briefly described in Section III-A). These issues
may not have been taken into account during previous fault
prediction studies based on this data.

C. Support Vector Machines

Support Vector Machines (SVMs) are a set of closely
related and highly sophisticated machine learning algorithms
that can be used for both classification and regression [10].
Their high level of sophistication made them the classifica-
tion method of choice for this study, although they have been
used previously within the software engineering community
(see [1], [3] and [5]).

SVMs are maximum-margin classifiers, they construct a
separating hyperplane between two classes subject to zero
or more slack variables. The hyperplane is constructed such
that the distance between the classes is maximised. This is
intended to lower the generalisation error when the classifier
is tested. Note that SVMs can also be used to classify any
number of classes via recursive application.

Although originally only suitable for linear classification
problems, SVMs can now also be used successfully for non-
linear classification by replacing each dot product with a
kernel function. A kernel function is used to implicitly map
the data points into a higher-dimensional feature space, and
to take the inner-product in that feature space. The benefit of
using a kernel function is that the data is more likely to be
linearly separable in the higher feature space. Importantly,
the actual explicit mapping to the higher-dimensional space
is never needed.

There are a number of different kinds of kernel functions
(any continuous symmetric positive semi-definite function
will suffice) including: linear, polynomial, Gaussian and
sigmoidal. Each has varying characteristics and is suitable
for different problem domains. The one used here is the
Gaussian radial basis function (RBF), as it can handle non-
linear problems and requires fewer hyperparameters than
the remaining aforementioned non-linear kernels [11]. In
fact, this kernel implicitly maps the data into an infinite
dimensional feature space whereby any finite data set will
be linearly separable.

When SVMs are used with a Gaussian RBF kernel there
are two user-specified hyperparameters, C and γ. C is the
error cost hyperparameter - a variable that determines the
trade-off between minimising the training error and maximis-
ing the margin. γ is a kernel hyperparameter and controls
the width (or radius) of the Gaussian RBF. The performance
of SVMs is largely dependant on these hyperparameters,
and the optimal values; the pair of values which yield best
performance while avoiding both underfitting and overfitting,
should ideally be determined for each training set via a
systematic search.

The biggest potential drawback of SVMs is that their
classification models are black box, making it very difficult
to work out precisely why the classifier makes the predictions
it does. This is very different to white box classification
algorithms such as Bayesian networks and decision trees,
where the classification model is easy to interpret.

Although SVMs are black box algorithms, classification
analysis can still be carried out upon them by analysing their
performance on individual instances. This involves mapping
the predictions made back to each instance. An analysis can
then take place according to each instance’s: original module
metrics, achieved classification result, and corresponding
decision value. The decision value is a real number output by
the SVM which corresponds to the instance’s distance from
the separating hyperplane in the feature space. The decision
value can be interpreted as the SVM’s certainty of prediction
for a particular instance.

As this studies main focus is on classification analysis
rather than classification performance, it was decided to
classify the training data rather than having some form
of tester set. The instances misclassified in the experiment
would thus be outliers, as they were not placed with their
corresponding class post hyperparameter optimisation. These
instances occur mainly because of the SVM’s cost hyperpa-
rameter, as they are deemed too costly to place on the correct
side of the decision hyperplane. Thus it is of interest to see
why these instances are more similar to those in the opposing
class. For an investigation into the performance of SVMs for
software defect prediction see [1].

III. METHOD

A. Data Pre-processing
1) Initial Data Set Modifications: Each of the data sets

had their module identifier and error density attributes re-
moved, as well as all attributes with zero variance. The

error count attribute was then converted into a binary target
attribute for each instance by assigning all values greater than
zero to defective, non-defective otherwise. Note that this is
the same as was carried out in [1], [2], [3] and [5].

2) Removing Repeated and Inconsistent Instances: In-
stances appearing more than once in a data set are known as
repeated (or redundant) instances. Inconsistent instances are
similar to repeated instances, however the class labels differ.
So in this domain inconsistent instances would occur where
identical metrics were used to describe (for example) two
different modules, of which one had been reported as faulty
and the other had not.

The effect of being trained using data containing repeated
and/or inconsistent instances is classification algorithm de-
pendant. SVMs for example can be affected by repeated
data points because the cost value for those data points
may be being over-represented. More importantly however
(and independent of classification algorithm) is that when
dividing a data set into training and testing sets, a data set
containing repeated data points may end up with instances
common to both sets. This can lead to a classifier achieving
unrealistically high performance.

Analysis of the MDP data sets showed that some of them
(namely MC1, PC2 and PC5) contained an overwhelmingly
high number of repeating instances (79%, 75% and 89%
respectively). Although no explanation has yet been found for
these high numbers of repeated instances, it appears highly
unlikely that this is a true representation of the software,
i.e. that 75% of the modules within a system/subsystem
could possibly have the same number of: lines, operands,
operators, unique operands, unique operators, linearly in-
dependent paths, etc. Although in this experiment the data
is never divided into training and testing sets, it was still
decided to remove these instances in order to defend against
the potential SVM difficulties previously described. The
pre-processing stage involved the removal of all repeated
instances so they were only represented once, and then the
complete removal of all inconsistent pairs.

3) Missing Values: Missing values are those that are
unintentionally or otherwise absent for a particular attribute
in a particular instance of a data set. The only missing
values within the data sets used in this study were within
the decision density attribute of data sets CM1, KC3, MC2,
MW1, PC1, PC2 and PC3. Decision density is calculated as:
condition count ÷ decision count and each instance with a
missing value had a value for both of these attributes of zero,
therefore all missing decision density values were replaced
with zero.

4) Balancing the Data: All the data sets used within this
study with the exception of KC4 contain a much larger
amount of one class (namely, non-defective) than they do the
other (see Table I). When such imbalanced data is used with
a machine learning algorithm the classifier will typically be
expected to overpredict the majority class. This is because the
classifier will have seen more examples of this class during
training.

There are various techniques that can be used to deal

with imbalanced data (see [12] and [13]). The approach
taken here is very simple however and involves randomly
undersampling the majority class until it becomes equal in
size to that of the minority class. The number of instances
that were removed during this undersampling process varied
amongst the data sets, however for data set PC2 it was
a total of 97%. Removing such a large proportion of the
data does threaten the validity of this study as the instances
randomly chosen to remain in the non-defective class may
not be representative of that class. To defend against this
problem the experiment was repeated several times with
different versions of the balanced data sets. The result of
this showed that although the predictive accuracy changed for
each different sample of the data, the concluding statements
that are made in Section 5 remained unchallenged.

5) Normalisation: All values within the data sets used in
this study are numeric. To prevent attributes with a large
range dominating the classification model, all values were
normalised between -1 and 1.

B. Experimental Design
Section II-C described how SVMs require the selection

of optimal hyperparameter values in order to balance the
trade-off between underfitting and overfitting. The two hy-
perparameters required in this study (C and γ) were chosen
for each data set using a grid search; a process that uses n-
fold (here n = 5) stratified cross-validation and a wide range
of possible hyperparameter values in a systematic fashion
(see [11] for more details). The pair of values that yields the
highest average accuracy across all 5-folds is taken as the
optimal hyperparameters and used when generating the final
model for classification.

After the optimal hyperparameters had been found for each
data set, an SVM was trained and classified using that same
data. This enabled the production of 13 spreadsheets (one
for each data set) containing the original module metrics for
each instance as well as the following additional columns:

• Classification Result: Either a true positive (TP), false
positive (FP), true negative (TN) or false negative (FN).

• Decision Value: As described in Section II-C. Negative
values are instances predicted as non-defective while
positive values are instances predicted as defective.

For each spreadsheet the rows were ranked by their
decision value. The averages for each of the original metrics
were then calculated for the instances predicted as defective
and the instances predicted as non-defective. The average
decision values were also computed, but this time for each
of the TP, TN, FP and FN instances respectively. For data set
PC2, a thorough manual examination of each of the rows in
the spreadsheet was carried out. For all other data sets, the
decision value averages were examined to see if any patterns
emerged.

IV. FINDINGS

A. Raw Data Analysis
After pre-processing, the raw statistics for data set PC2

were examined (see Fig. 2). This process revealed that the

Fig. 2. A box plot showing basic statistics for data set PC2. Boxes on the
left in each column are the defective instances while boxes on the right are
the non-defective instances.

Fig. 3. Principal Components Analysis on data set PC2. Crosses represent
modules labelled as defective while circles represent modules labelled as
non-defective. Observe the extreme outliers belonging to the defective class
in the bottom right corner.

modules labelled as defective have higher average values
across all 36 attributes other than: cyclomatic density, design
density, maintenance severity, Halstead level and normalised
cyclomatic complexity. However, the only attributes which
were statistically significant (to .95 confidence) between the
two classes were: design density, branch count and percent
comments. Definitions of these metrics can be found at the
NASA MDP website. These findings show that the data is
highly intermingled between classes.

Principal Components Analysis (PCA) is a popular dimen-
sionality reduction / data visualisation tool which transforms
data into a lower dimensional space whilst maximising the
variance. For data set PC2, 36 features were mapped down
to 2 whilst keeping 65% of the variance. The plot generated
from this process is shown in Fig. 3 and clearly shows
that the data is highly intermingled, but has two extreme
outliers amongst the defective instances (bottom right cor-
ner). Locating these two instances revealed that they were
the two largest modules (in terms of LOC total) within the
data set and that they also had the two highest no. unique
operands, no. unique operators and cyclomatic complexity
attribute values (amongst others).

B. Classification Analysis

The classification result and corresponding decision value
for each of the 42 instances which comprise data set PC2 are
shown in Fig. 4. Examination of these values revealed that
the SVM had a higher average confidence in the instances
predicted as defective which were correct (the TPs with an
average decision value of 0.86) than were incorrect (the FPs
with an average of 0.60). The average decision value for
the instances predicted as non-defective were very similar,
but the incorrectly classified modules (the FNs) were being
predicted with slightly more confidence (an average of -0.88
as opposed to -0.81).

Examining the averages computed for the remaining 12
data sets showed the SVMs again had more confidence in the
TPs than the FPs, by an average of 49%. Unlike data set PC2
however, the remaining data sets also had more confidence
in the TNs than the FNs, by an average of 51%.

Table III contains a subset of the metrics for PC2 which
comprise the modules that are labelled in Fig. 4, as well as
their corresponding classification result and decision value.
Note that data set PC2 contains 36 of these metrics but only
4 are shown here due to space limitations. Module 1 (as
labelled in Fig. 4) is the module that is furthest from the
decision hyperplane. The high level of confidence associated
with this defective prediction does seem logical however,
due to there being 76 unique operands and 15 linearly
independent paths within only 68 LOC. Modules 2 and 3
are the outliers identified during PCA (see Section IV-A).
These modules were predicted with above average decision
values (for the TPs), which is reassuring as they appear to
be very large and may benefit from decomposing. It may be
surprising that these modules were not predicted with the two
highest decision values, however this shows that the SVM
in this case is not being dominated entirely by size related
metrics. This is reassuring as it suggests there is worth in
the other metrics.

At first sight when looking at the FPs it appears that
module 4 is on the wrong side of the separating hyperplane as
it is only comprised of 10 LOC. This looks suspicious as the
classifier has so much confidence in the prediction. On closer
inspection however this module had an essential complexity
value (which relates to the number of unstructured constructs
within a module) of 3; and in the 42 instances passed to
the classifier 78% of modules with an essential complexity
greater than 1 were defective. Unstructured constructs have
been known to be problematic with regard to code quality
for over 40 years [14], and the SVM predicted that 89%
of modules with an essential complexity greater than 1
(the metrics minimum) were defective. Module 5 is the
module that is closest to the separating hyperplane, it was
predicted as defective but only by a very small margin. This
classification appears more immediately understandable than
module 4, as although the module contains only 7 LOC it
contains 16 unique operands.

-1

-0.5

 0

 0.5

 1

 1.5

D
e

c
is

io
n

 V
a

lu
e

TP

TN

FP

FN

1

2

3

4

5

6

7

8

9

Fig. 4. The decision value and classification result for each of the 42 modules in data set PC2.

Module
ID No.

LOC
Total v(G) No. Unique

Operands
No. Unique
Operators

Prediction
Result

Decision
Value

1 68 15 76 16 TP 1.67

2 316 54 111 37 TP 1.31

3 294 84 94 88 TP 1.00

4 10 3 9 11 FP 1.13

5 7 2 16 9 FP 0.03

6 2 1 5 9 TN -1.00

7 3 2 2 8 TN -0.08

8 2 1 5 8 FN -1.00

9 6 1 5 5 FN -0.75

TABLE III
A SUBSET OF THE METRICS FOR THE MODULES LABELLED IN FIG. 4. NOTE THAT V(G) IS MCCABE’S CYCLOMATIC COMPLEXITY [8].

All of the modules predicted as non-defective (6 to 9)
contain very low values for the four metrics shown in Table
III, and (from what can be deduced from the metrics) appear
very small and simple. This highlights the difficulty of this
classification domain. None of the four modules had defect-
prone characteristics, yet two of them did indeed turn out
to be defective. This is problematic when data mining with
static code metrics as they can provide only a limited insight
into software defect-proneness, not actual defectiveness. It
is a fair assumption that the majority of defective modules
within a software system will exhibit defect-prone character-
istics however, be them difficult to define precisely and pro-
gramming language specific. This is the primary reason that
software defect prediction is worthy of the growing research
surrounding it. The findings in this study seem to suggest a
limiting factor in the performance achievable by such defect
prediction systems however. This limitation appears to be in
the proportion of defective modules containing defect-prone
characteristics.

The misclassified instances labelled in Fig. 4 have already
been discussed. The remaining misclassified instances also
all appeared to be well motivated, with the FPs generally
having defect-prone metrics and the FNs not so. This shows
that there is a low severity for the misclassifications in this
data set, i.e. that a further examination of module 4 may in
fact be worthwhile and that modules 8 and 9 would be very
difficult to correctly predict, as they do not possess defect-
prone characteristics.

V. CONCLUSION

In this study SVM classifiers were found to consistently
have more confidence in the defective predictions they made
which were correct than were incorrect, as the average
decision value for the TP predictions was significantly greater
than that of the FP predictions for all 13 of the NASA MDP
data sets. These findings could be exploited in a real world
classification system, where the predicted modules could be
ranked in decreasing order of their decision values. Code
inspections could then be prioritised around this ordering.
Note that taking the decision values into account as well as
the binary classifications also helps to alleviate the concep-
tual problems with using a binary classifier in this problem
domain, where the defectiveness of a module would be more
of a fuzzy value than a binary one.

A more in depth manual examination of the predictions
made for one of the NASA data sets (namely, PC2) showed
that the classifications were generally well motivated; that the
SVM was separating the data according to current software
engineering beliefs. Moreover it appeared that the classifiers
were doing far better at predicting defect-proneness than they
were at predicting actual defectiveness. Because it is easily
possible for a module without defect-prone characteristics
to contain a defect (a programmer typing a ‘==’ instead of
a ‘!=’ in a single line module for example), the proportion
of defective modules containing defect-prone characteristics
may be the biggest limiting factor on the performance of
defect prediction systems.

REFERENCES

[1] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, “Using
the support vector machine as a classification method for software
defect prediction with static code metrics,” in EANN 2009, 2009, pp.
223–234.

[2] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” Software Engineering, IEEE
Transactions on, vol. 33, no. 1, pp. 2–13, Jan. 2007.

[3] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed frame-
work and novel findings,” Software Engineering, IEEE Transactions
on, vol. 34, no. 4, pp. 485–496, 2008.

[4] F. Xing, P. Guo, and M. R. Lyu, “A novel method for early software
quality prediction based on support vector machine,” in ISSRE ’05:
Proceedings of the 16th IEEE International Symposium on Software
Reliability Engineering. Washington, DC, USA: IEEE Computer
Society, 2005, pp. 213–222.

[5] K. O. Elish and M. O. Elish, “Predicting defect-prone software
modules using support vector machines,” J. Syst. Softw., vol. 81, no. 5,
pp. 649–660, 2008.

[6] M. Levinson, “Lets stop wasting $78 billion per year.” CIO Magazine,
2001.

[7] M. H. Halstead, Elements of Software Science (Operating and pro-
gramming systems series). New York, NY, USA: Elsevier Science
Inc., 1977.

[8] T. J. McCabe, “A complexity measure,” in ICSE ’76: Proceedings
of the 2nd international conference on Software engineering. Los
Alamitos, CA, USA: IEEE Computer Society Press, 1976, p. 407.

[9] I. Sommerville, Software Engineering: (8th Edition) (International
Computer Science Series). Addison Wesley, 2006.

[10] B. Schölkopf and A. J. Smola, Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond (Adaptive
Computation and Machine Learning). The MIT Press, 2001.

[11] C. W. Hsu, C. C. Chang, and C. J. Lin, “A practical guide to support
vector classification,” Taipei, Tech. Rep., 2003.

[12] N. V. Chawla, N. Japkowicz, and A. Kolcz, “Special issue on learning
from imbalanced datasets.”

[13] G. Wu and E. Y. Chang, “Class-boundary alignment for imbalanced
dataset learning,” in ICML 2003 Workshop on Learning from Imbal-
anced Data Sets, 2003, pp. 49–56.

[14] E. Dijkstra, “Go to statement considered harmful,” Comm. ACM,
vol. 11, pp. 27–33, 1979.

