Cluster Adjacency for m=2 Yangian Invariants
Lukowski, Tomasz, Parisi, Matteo, Spradlin, Marcus and Volovich, Anastasia
(2019)
Cluster Adjacency for m=2 Yangian Invariants.
Journal of High Energy Physics (JHEP), 2019 (10): 158.
ISSN 1126-6708
We classify the rational Yangian invariants of the $m=2$ toy model of $\mathcal{N}=4$ Yang-Mills theory in terms of generalised triangles inside the amplituhedron $\mathcal{A}_{n,k}^{(2)}$. We enumerate and provide an explicit formula for all invariants for any number of particles $n$ and any helicity degree $k$. Each invariant manifestly satisfies cluster adjacency with respect to the $Gr(2,n)$ cluster algebra.
Item Type | Article |
---|---|
Additional information | 11 pages, 3 figures |
Keywords | hep-th, scattering amplitudes, supersymmetric gauge theory, nuclear and high energy physics |
Date Deposited | 15 May 2025 14:11 |
Last Modified | 31 May 2025 00:22 |