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1 Introduction

Aspects of the Gr(4, n) Grassmannian cluster algebras [1–3] have been found to play several

still rather mysterious roles in the mathematical structure of scattering amplitudes in planar

N = 4 Yang-Mills theory [4, 5]. A simple toy model which serves as a nice playground for

studying features of this cluster structure is the m = 2 version of the theory, where the

momentum twistors describing the kinematic scattering data [6] are restricted to lie in a P1

subspace1 of the usual P3. The associated Gr(2, n) ∼= An−3 cluster algebra2 is completely

understood [1]: its clusters are in one-to-one correspondence with the triangulations of an

n-gon, and the coordinates in each cluster are in one-to-one correspondence with edges

in the corresponding triangulation. The positive geometry [8] associated to these m = 2

amplitudes is the amplituhedron A(2)
n,k, which is an interesting object on its own, and its

many interesting features were studied e.g. in [9–12].

In this paper we explore the conjecture [13, 14] that the poles of every rational Yangian

invariant are given by cluster coordinates in a common cluster, a property referred to as

cluster adjacency following [15]. The full N = 4 Yang-Mills theory has a whole zoo of

n-particle NkMHV Yangian invariants (see Chapter 12 of [16] for a discussion of their

classification), and evidence supporting this conjecture is so far restricted to relatively small

n and k. In contrast, in the m = 2 toy model, by using the amplituhedron formulation of

scattering amplitudes [17], we are able to write down an explicit formula for all Yangian

invariants for any n and k. Each NkMHV invariant is labelled by a collection of k non-

intersecting triangles inside an n-gon, with denominator factors corresponding precisely to

edges of the triangles. Consequently, the result manifestly satisfies cluster adjacency with

respect to the Gr(2, n) cluster algebra.

1Note that this is quite different from restricting to two space-time dimensions.
2This algebra has also been found to govern the structure of N = 4 Yang-Mills amplitudes in the

multi-Regge limit [7].
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Figure 1. Triangle T
(8)
124.

2 Classification of Yangian Invariants for m = 2

Yangian invariants are basic building blocks for many amplitude-related quantities of in-

terest (see for example [16, 18–25]). The classification of N = 4 Yang-Mills invariants (i.e.,

m = 4) is discussed in section 12 of [16]. In this section we discuss the classification of the

analogous set of Yangian invariants for m = 2. We will see that they can all be associated

to the so-called generalised triangles, which are the building blocks for triangulations of the

amplituhedron space A(2)
n,k. Then the Yangian invariants can be extracted from canonical

differential forms with logarithmic singularities on all boundaries of generalised triangles.

For k = 1 there is a unique type of Yangian invariants of the form (2.3) which trivially cor-

responds to a triangle in P2 [26]. For k = 2 there are two types of Yangian invariants, (2.8)

and (2.9), which we will see correspond respectively to two non-intersecting triangles or

to two triangles glued along an edge to form a quadrilateral. A general configuration of

k non-intersecting triangles corresponds to the general NkMHV Yangian invariant shown

in (2.10).

2.1 Review

We recall that the (tree-level) amplituhedron A(m)
n,k is defined [17] as the image of the

positive Grassmannian G+(k, n) under the linear map

C ∈ G+(k, n) → Y = C · ZT ∈ G(k, k +m) , (2.1)

for generic positive matrix Z ∈M+(k+m,n). If C is a positroid cell in G+(k, n), Z(C) is its

image under the amplituhedron map, and ΩC is the unique canonical differential form [8]

on G(k, k + m) with logarithmic singularities (only) on the boundaries of Z(C). Then

ΩC provides the Yangian invariant associated to C defined directly in the amplituhedron

space, as explained in [25]. Alternatively, Yangian invariants can be represented as certain

residues, or contour integrals, of the top form on Gr+(k, n) [18, 19]. The connection

between these two ways of representing Yangian invariants is laid out in section 7 of [17].

For our purposes, the significant advantage of using the amplituhedron construction is that

it enables us to write down the completely general formula for ΩC , given below in (2.10).

In the remainder of this paper we specialise to m = 2. The Yangian invariants consid-

ered in this paper correspond to 2k-dimensional positroid cells in G+(k, n) whose images

under the amplituhedron map are also 2k-dimensional. We refer to the images of such

– 2 –
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positroid cells as generalised triangles, and will denote them as T (n). We will see that

all Yangian invariants associated to generalised triangles can be labelled by collections of

triangles in an n-gon. In the following we use T
(n)
abc to denote the triangle with vertices

{a, b, c} inside a convex n-gon (see for example figure 1). We say that two triangles are

non-intersecting if their interiors are disjoint, but we allow non-intersecting triangles to

share an edge or a vertex.

2.2 k = 1

For k = 1 we consider the most general 2-dimensional cell in G+(1, n), which can be

parametrised by a positive matrix3 of the form

Cabc =
( a b c

0 . . . ? . . . ? . . . ? . . . 0
)
, (2.2)

whose only non-zero entries are located in columns {a, b, c}. The image of such a cell

through (2.1) is an actual triangle with vertices Za, Zb, Zc in P2. The corresponding Yangian

invariant is [17]

Ωabc =
〈abc〉2

〈Y ab〉〈Y bc〉〈Y ca〉
, (2.3)

and Ωabc 〈Y d2Y 〉 is the canonical form with logarithmic singularities only along the three

edges of the triangle, i.e. where one of the brackets 〈Y ab〉, 〈Y bc〉, or 〈Y ca〉 vanishes. We

introduced the following bracket notation

〈a1a2 . . . ak+2〉 = εA1A2...Ak+2
ZA1
a1 Z

A2
a2 . . . Z

Ak+2
ak+2 . (2.4)

2.3 k = 2

For k = 2 we consider four-dimensional cells in G+(2, n). There are three different types

of such cells, corresponding to matrix representatives that can be brought, using an appro-

priate GL(2) transformation, to one of the following three forms:

Ca1,b1,c1;a2,b2,c2 =

( a1 b1 c1 a2 b2 c2

0 . . . ? . . . ? . . . ? . . . 0 . . . 0 . . . 0 . . . 0

0 . . . 0 . . . 0 . . . 0 . . . ? . . . ? . . . ? . . . 0

)
, (2.5)

Ca1,b1,c1,d1;a2,b2 =

( a1 b1 c1 d1 a2 b2

0 . . . ? . . . ? . . . ? . . . ? . . . 0 . . . 0 . . . 0

0 . . . 0 . . . 0 . . . 0 . . . 0 . . . ? . . . ? . . . 0

)
, (2.6)

Ca1,b1,c1,d1,e1;a2 =

( a1 b1 c1 d1 e1 a2

0 . . . ? . . . ? . . . ? . . . ? . . . ? . . . 0 . . . 0

0 . . . 0 . . . 0 . . . 0 . . . 0 . . . 0 . . . ? . . . 0

)
. (2.7)

3Throughout the following we employ the unfortunately common abuse of notation by writing positive

instead of non-negative.
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(a) (b)

Figure 2. Labels for the k = 2 generalised triangles: (a) T (n)
a1,b1,c1;a2,b2,c2

, (b) T (n)
a1,b1,c1,d1

.

In boundary cases some indices could be repeated (for example c1 could equal a2 in

the first matrix). Although each type of cell is four-dimensional in G+(2, n), only the first

has a four-dimensional image in G(2, 4); it is easy to check that cells of the second or third

type have images of dimension three or two, respectively. Therefore, we are interested only

in cells parametrised by matrices with three non-zero entries in columns {a1, b1, c1} in the

first row and three non-zero entries in columns {a2, b2, c2} in the second row. We naturally

label such a cell by a pair of triangles T
(n)
a1b1c1

and T
(n)
a2b2c2

inside an n-gon. The triangles

must be non-intersecting, since otherwise the matrix Ca1,b1,c1;a2,b2,c2 would not be positive.

There are two types of generalised triangles parametrised by Ca1,b1,c1;a2,b2,c2 , depending

on the choice of indices. If the index sets {a1, b1, c1} and {a2, b2, c2} have at most one

element in common, then the two triangles T
(n)
a1b1c1

and T
(n)
a2b2c2

intersect at most at a single

point. This type of configuration is shown in the left panel of figure 2. Note that the

image of this cell in G(2, 4), which we denote by T (n)
a1,b1,c1;a2b2c2

, has six codimension-one

boundaries, regardless of whether or not the triangles share a vertex.

On the other hand, the two triangles could share an edge, say a2 = b1, b2 = c1, and

d2 = d1, such that they form a quadrilateral with vertices {a1, b1, c1, d1}, as shown in the

right panel of figure 2. The image of this cell, which we denote by T (n)
a1,b1;c1,d1

, only has four

codimension-one boundaries in G(2, 4). Note that there are two ways to form the same

quadrilateral by joining triangles, namely T
(n)
a1b1c1

∪ T (n)
a1c1d1

or T
(n)
a1b1d1

∪ T (n)
b1c1d1

. Employing

a GL(2) transformation, one can show that the two corresponding matrices Ca1b1c1;a1c1d1
and Ca1b1d1;b1c1d1 parametrise the same cell in G+(2, n). The fact that both the cell and its

image are independent of the triangulation will become important in the following when

we describe our labelling of general generalised triangles.

As a concrete example, we provide the complete list of labels for generalised triangles

for k = 2, n = 5 in figure 3.

The Yangian invariants associated to the six- and four-boundary types of generalised

triangles are respectively

Ωa1b1c1;a2b2c2 =
〈Y (a1b1c1) ∩ (a2b2c2)〉2

〈Y a1b1〉〈Y b1c1〉〈Y c1a1〉〈Y a2b2〉〈Y b2c2〉〈Y c2a2〉
, (2.8)

Ωa1b1c1d1 =
〈a1b1c1d1〉2

〈Y a1b1〉〈Y b1c1〉〈Y c1d1〉〈Y d1a1〉
, (2.9)

where we define 〈Y (a1b1c1) ∩ (a2b2c2)〉 = 〈Y1a1b1c1〉〈Y2a2b2c2〉 − 〈Y2a1b1c1〉〈Y1a2b2c2〉.

– 4 –
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Figure 3. The 10 generalised triangles for n = 5, k = 2, together with the permutations that label

the corresponding positroid cells in the notation of [16].

To summarise, the generalised triangles for k = 2 are in one-to-one correspondence with

pairs of non-intersecting triangles T
(n)
a1b1c1

and T
(n)
a2b2c2

that share at most a vertex, together

with quadrilaterals {a1, b1, c1, d1} inside an n-gon. Furthermore, boundaries of generalised

triangles, and hence singularities of respective Yangian invariants, are in correspondence

with edges of these configurations. Therefore, the set of singularities of Yangian invariants

for k = 2 correspond to a set of non-intersecting diagonals (and possible external edges) of

an n-gon.

2.4 General k

For general k there exists a natural generalisation of the labelling we encountered for

k = 1, 2. Generalised triangles are images of 2k-dimensional positroid cells inside G+(k, n)

which can be parametrised by a matrix Ca1b1c1;...;akbkck whose αth row has non-zero entries

only in columns {aα, bα, cα}, with α = 1, . . . , k. To this set of indices we associate the

union of the k non-intersecting triangles T
(n)
a1b1c1

, . . . , T
(n)
akbkck

inside an n-gon. If no pair of

triangles share a common edge then we denote the generalised triangle associated to this

configuration by T (n)
a1b1c1;...;akbkck

. If two triangles share a common edge then we combine

them to form a quadrilateral. If there are more triangles sharing common edges then we

remove all shared edges to further combine them into higher polygon inside the n-gon.

Therefore, generalised triangles of the m = 2 amplituhedron are in one-to-one correspon-

dence with sets of non-intersecting polygons inside an n-gon, with no pair of polygons

sharing more than a single vertex. We have checked this statement up to high values of n

and k using the positroid package [27] and we conjecture it is always true. Interestingly,

we find that the intersection number (see [16, 27]) is Γ = 1 in each case. This contrasts

with the situation for m = 4 Yangian invariants, where it is not uncommon to have Γ > 1.

Now it is possible to introduce a generalisation of the formulas (2.3), (2.8) and (2.9)

for all Yangian invariants at general k. Let s be the total number of polygons, and for

j = 1, . . . , s let pj be the number of edges of the jth polygon. We denote the jth polygon by

– 5 –
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P
(n)
aj1,...,ajpj

, where aj1, aj2, . . . ajpj are its vertices. Since the total number of triangles has to

be k and the jth polygon contains pj−2 triangles, we must have
∑s

j=1(pj−2) = k. Then the

Yangian invariant associated to the collection of polygons {P (n)
a11,...,a1p1

, . . . , P
(n)
as1,...,asps} is

Ωa11,...,a1p1 ;...;as1,...,asps
=

〈Y (a11 . . . a1p1) ∩ . . . ∩ (as1 . . . asps)〉2

(〈Y a11a12〉 . . . 〈Y a1p1a11〉) . . . (〈Y as1as2〉 . . . 〈Y aspsas1〉)
, (2.10)

where we have defined

〈Y (a11 . . . a1p1) ∩ . . . ∩ (as1 . . . asps)〉

= εα1
1...α

s
ps−2
〈Y ⊥α1

1...α
1
p1−2

a11 . . . a1p1〉 . . . 〈Y ⊥αs
1...α

s
ps−2

as1 . . . asps〉 , (2.11)

and Y ⊥α1...αr
parametrises the orthogonal complement of a collection of Y ’s,

Y ⊥α1...αr
= εα1...αk

Yαr+1 ∧ . . . ∧ Yαk
. (2.12)

We note that if pj = 3 for all j = 1, . . . , s, i.e. all polygons are triangles, then (2.10)

agrees with [8].4 Moreover, the formula (2.10) nicely encodes the geometry of the set of

polygons of our labels. The building blocks of the numerator are s brackets, one for each

polygon, with the jth bracket containing all the vertices of the jth polygon. Meanwhile

the denominator has exactly s factors, and the jth factor is a product of brackets of the

type 〈Y ab〉 over all edges {a, b} of the jth polygon. When the ith and jth polygon share an

edge {a, b}, so that they combine to form a (pi + pj − 2)-gon, then formula (2.10) nicely

rearranges to give the Yangian invariant associated with the same set of polygons, but with

the ith and jth polygon replaced by the merged (pi + pj − 2)-gon. In particular, it can be

shown that the numerator factorises and one gets an overall factor of 〈Y ab〉2, which cancels

the singularities associated with the shared edge {a, b} from the denominator, as expected.

To summarise, we see that in general, all singularities of a given Yangian invariant cor-

respond to a subset of non-intersecting diagonals inside of an n-gon (and possibly external

edges). In the appendix we provide an explicit enumeration of the number of n-particle

NkMHV Yangian invariants for m = 2.

3 An−3 cluster adjacency

Tree-level cluster adjacency in N = 4 Yang-Mills theory is the conjectured [13] property

that every (rational) Yangian invariant has poles given by some collection of A-coordinates

of the Gr(4, n) cluster algebra that can be found together in common cluster. So far,

evidence supporting this conjecture is restricted to relatively small n and k. In [13] several

examples were checked by explicitly identifying a suitable cluster for several relatively

simple Yangian invariants. Later in [14] a computationally efficient method (first explained

in [28]) for testing whether two cluster coordinates belong in a common cluster was used

to provide further evidence for this conjecture for various somewhat higher n and k.

4Notice a typo in the numerator of formula (7.52) in [8]: the power should be 2 instead of k.

– 6 –



J
H
E
P
1
0
(
2
0
1
9
)
1
5
8

The natural generalisation of the cluster adjacency conjecture for general m would posit

that the poles of every Yangian invariant are given by some subset of the A-coordinates of

some cluster of the Gr(m,n) algebra. For m = 2 this is the same as the classic An−3 algebra,

whose structure is completely understood [1]. This algebra has 1
n−1
(
2n−4
n−2

)
clusters, each

containing 2n−3 A-coordinates. These numbers are respectively the number of distinct

triangulations of an n-gon, and the number of edges (including external edges) in any

such triangulation. If we label the vertices of a regular n-gon by homogeneous coordinates

z1, . . . , zn of n points in P1 and let 〈a b〉 = εAB z
A
a z

B
b , as usual, then the coordinates

are enumerated as follows. Each cluster contains the n coordinates 〈1 2〉, 〈2 3〉, . . . , 〈n 1〉
corresponding to the external edges, together with precisely n−3 additional 〈a b〉’s that

correspond to the internal edges of the triangulation.

In light of this discussion it is now essentially obvious that every Yangian invariant

in the m = 2 version of N = 4 Yang-Mills theory, whose generic form is shown in (2.10),

satisfies cluster adjacency. In order to make this statement manifest, one follows the

prescription for extracting scattering amplitudes from amplituhedron differential forms

discussed in [17]. It states that in order to project our results from the amplituhedron

space parametrised by Za’s to the m = 2 “momentum twistor” space parametrised by za’s

we need to set

Y =

(
02×k
1k×k

)
. (3.1)

Therefore, as far as the denominator of (2.10) is concerned, poles of amplituhedron Yangian

invariants at 〈Y ab〉 = 0 translate directly into poles of momentum twistor Yangian invari-

ants at 〈a b〉 = 0, making the cluster adjacency manifest. The numerator of each Yangian

invariant will in general be a rather non-trivial polynomial in the za’s and their Grassmann

partners, but these are not relevant in the analysis of poles of a single Yangian invariant.

The numerators only come into play when we combine different Yangian invariants into

amplitudes, where they ensure the cancellation of spurious poles. In particular, the poles

of a full tree-level amplitude are encoded by boundaries of the special form 〈Y a a+1〉 = 0,

so in this sense full tree amplitudes could themselves be said to satisfy cluster adjacency

(indeed an even stronger form of it, involving only external edges of the associated n-gon).

The fact that the connection between cluster adjacency and Yangian invariants is strik-

ingly simple for m = 2 provides some circumstantial evidence in support of our hope that

the same will be true for the apparently much more non-trivial case of m = 4 (or perhaps

even for general m). It also gives support to the suggestion made in [14] that the connection

between cluster adjacency and Yangian invariants might admit a mathematical explanation

that is independent of the physics of scattering amplitudes. In this paper, we see evidence

that this connection most likely originates from the geometry of the amplituhedron.

If there is to be, one day, an analytic proof of the tree-level cluster adjacency conjecture,

it is natural to speculate that it may hinge on the fact that it is known [22] that every

positive Yangian invariant can be written as Grassmannian integral [29] (more specifically,

over the momentum twistor Grassmannian [18, 19]) over a contour associated to a positroid

cell. Here, then, we have access to relatively simple situations in which both the integrand

– 7 –
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k

n
3 4 5 6 7 8 9 10

0 1 1 1 1 1 1 1 1

1 1 4 10 20 35 56 84 120

2 0 1 10 48 161 434 1008 2100

3 0 0 1 20 161 824 3186 10152

4 0 0 0 1 35 434 3186 16840

5 0 0 0 0 1 56 1008 10152

6 0 0 0 0 0 1 84 2100

7 0 0 0 0 0 0 1 120

8 0 0 0 0 0 0 0 1

Total 2 6 22 90 394 1806 8558 41586

Table 1. The number of generalised triangles for n < 11.

(the natural top form on Gr(k, n)) and the integral (the resulting Yangian invariant) are

both rational functions. It would be extremely exciting to learn what property of the former

is responsible, after integration, for cluster adjacency of the latter. This could help point

the way towards answering the long-standing, but much more complicated, question of how

the cluster structure of integrands [16] in SYM theory is related, upon integration, to the

cluster structure of the resulting polylogarithmic functions that appear in amplitudes.
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A Number of generalised triangles

We have tabulated the number of generalised triangles for n < 11 In table 1. Reading

down the columns gives 1, 1, 1, 1, 4, 1, 1, 10, 10, 1, 1, 20, 48, 20, 1, 1, 35, 161, 161, 35, . . . which

is sequence A175124 in [30]. It is generated by the coefficients of the inverse series

of x(1−pqx2)
(1+px)(1+qx) . The sequence of the total number of generalised triangles for given n:

2, 6, 22, 90, 394, . . ., is known as the sequence of large Schröder numbers. Interestingly,

the definition of Schröder numbers as the number of all configurations of non-intersecting

triangles in an n-gon, seems to be absent in the literature.
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[13] J. Drummond, J. Foster and Ö. Gürdoğan, Cluster adjacency beyond MHV, JHEP 03 (2019)

086 [arXiv:1810.08149] [INSPIRE].

[14] J. Mago, A. Schreiber, M. Spradlin and A. Volovich, Yangian invariants and cluster

adjacency in N = 4 Yang-Mills, arXiv:1906.10682 [INSPIRE].
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