Galaxy Evolution in a z~3 Protocluster
Environment is known to have a significant impact on the evolution of galaxies. This is most evident in the local Universe, where the oldest and most massive galaxies are found at the of massive galaxy clusters. Current theory predicts that galaxies will form earlier and evolve more rapidly in the densest regions of the Universe. What is not clear is how rapidly the of environment start to have an impact on galaxies, at what stage can we detect physical differences between galaxies in dense regions and those in the field? By the time galaxies are assembled in virialised clusters the effects are clear, but at higher redshift (z > 2), in the progenitors of clusters (protoclusters) the effects are harder to detect. In this thesis I study the impact of environment in a z =3.1 protocluster in the SSA22 field. I consider the fraction of mergers in the protocluster, comparing it to the fraction of mergers in field at a similar redshift. My classification is based on the morphology of Lyman break (LBGs), using HST ACS/F814W imaging, which probes the rest frame UV. I find a marginal enhancement of the merger fraction, 48±10 per cent for LBGs in the protocluster compared 30±6 per cent in the field, suggesting that galaxy-galaxy mergers are one of the key driving accelerated star formation and AGN growth in protocluster environments. Having considered the fraction of mergers in the protocluster I then turn my attention to the physical properties of LBGs. I use multiwavelength data and spectral energy distribution fitting to determine the mass of LBGs in the protocluster and in the field. I find no statistical evidence for an enhancement of mass in the protocluster, suggesting that the protocluster environment has not impacted the average mass of LBGs at this redshift. It is possible that the protocluster LBG population may become more massive than LBGs in the field at lower redshift, or the galaxies may cease to be detectable by the Lyman break method before a mass difference between the protocluster galaxies and field is observable. Finally I consider the Lyman-α blobs (LABs) within the protocluster. These are large (∼10- 100kpc) scale regions of diffuse Lyman-α emission, thought to be associated with overdense regions. 35 LABs have been detected in the SSA22 protocluster, indicating the presence of large clouds of gas in the circumgalactic medium. A debate has arisen regarding the powering mechanism of the LABs, particularly between star forming processes (e.g. Lyman-α escaping from a star forming galaxy or photoionizing radiation escaping from a star forming galaxy or active galactic nuclei) and a cold accretion model. The latter involves gas gravitationally cooling as it falls into the centre of a dark matter halo to feed a central galaxy. Some of this energy heats the cold gas, which then emits Lyman-α as it cools. The cold gas accretion theory gained popularity because some LABs appear not to contain a luminous galaxy or AGN which could explain the observed emission. One suggestion is that the central galaxy could be hidden by dust and that this could explain the lack of a detection in UV or optical. I therefore use SCUBA2 850μm imaging to search for submm sources (dusty star forming galaxies) in the LABs. I detect submm sources in only two of the LABs at 3.5σ , however, stacking all the LABs gives an average flux density of S850 = 0.6±0.2mJy. This suggests that on average the LABs do contain a submm source which could be a dusty galaxy. However, stacking the LABs by size indicates that only the largest third (area > 1800kpc^2) have a mean detection, at 4.5σ, with S850 = 1.4±0.3mJy, suggesting that different mechanisms may dominate the larger and smaller LAB populations. I explore two possible mechanisms for powering the LABs, cold accretion and central star forming galaxies. I find that central star formation is more likely to be the dominant source of emission, with cold accretion playing a secondary role.
Item Type | Thesis (Doctoral) |
---|---|
Uncontrolled Keywords | galaxies; high redshift; protocluster; galaxy evolution; Lyman-alpha blobs |
Date Deposited | 14 Nov 2024 10:14 |
Last Modified | 14 Nov 2024 10:14 |
-
picture_as_pdf - 12232487 Hine Nancy final version of submission.pdf