Cosmic evolution of stellar quenching by AGN feedback : clues from the Horizon-AGN simulation

Beckmann, R. S., Devriendt, J.E.G., Slyz, A., Peirani, S., Richardson, M. L. A., Dubois, Y., Pichon, C., Chisari, N. E., Kaviraj, S., Laigle, C. and Volonteri, M. (2017) Cosmic evolution of stellar quenching by AGN feedback : clues from the Horizon-AGN simulation. Monthly Notices of the Royal Astronomical Society (MNRAS), 472 (1). pp. 949-965. ISSN 0035-8711
Copy

The observed massive end of the galaxy stellar mass function is steeper than its predicted dark matter halo counterpart in the standard $\Lambda $CDM paradigm. In this paper, we investigate the impact of active galactic nuclei (AGN) feedback on star formation in massive galaxies. We isolate the impact of AGNs by comparing two simulations from the HORIZON suite, which are identical except that one also includes super massive black holes (SMBH), and related feedback models. This allows us to cross-identify individual galaxies between simulations and quantify the effect of AGN feedback on their properties, including stellar mass and gas outflows. We find that massive galaxies ($ \rm M_{*} \geq 10^{11} M_\odot $) are quenched by AGN feedback to the extent that their stellar masses decrease by up to 80% at $z=0$. SMBHs affect their host halo through a combination of outflows that reduce their baryonic mass, particularly for galaxies in the mass range $ \rm 10^9 M_\odot \leq M_{*} \leq 10^{11} M_\odot $, and a disruption of central gas inflows, which limits in-situ star formation. As a result, net gas inflows onto massive galaxies, $ \rm M_{*} \geq 10^{11} M_\odot $, drop by up to 70%. We measure a redshift evolution in the stellar mass ratio of twin galaxies with and without AGN feedback, with galaxies of a given stellar mass showing stronger signs of quenching earlier on. This evolution is driven by a progressive flattening of the $\rm M_{\rm SMBH}-M_* $ relation with redshift, particularly for galaxies with $\rm M_{*} \leq 10^{10} M_\odot $. $\rm M_{\rm SMBH}/M_*$ ratios decrease over time, as falling average gas densities in galaxies curb SMBH growth.

visibility_off grid_on

grid_on
1701.07838v2
subject
Submitted Version
lock
Restricted to Repository staff only

Request Copy
picture_as_pdf

Published Version


Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads