Double Fourier Integral Analysis based Convolutional Neural Network Regression for High-Frequency Energy Disaggregation
Non-Intrusive Load Monitoring aims to extract the energy consumption of individual electrical appliances through disaggregation of the total power load measured by a single smart-meter. In this article we introduce Double Fourier Integral Analysis in the Non-Intrusive Load Monitoring task in order to provide more distinct feature descriptions compared to current or voltage spectrograms. Specifically, the high-frequency aggregated current and voltage signals are transformed into two-dimensional unit cells as calculated by Double Fourier Integral Analysis and used as input to a Convolutional Neural Network for regression. The performance of the proposed methodology was evaluated in the publicly available U.K.-DALE dataset. The proposed approach improves the estimation accuracy by 7.2% when compared to the baseline energy disaggregation setup using current and voltage spectrograms.
Item Type | Article |
---|---|
Date Deposited | 14 Nov 2024 10:37 |
Last Modified | 14 Nov 2024 10:37 |