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Double Fourier Integral Analysis based
Convolutional Neural Network Regression for

High-Frequency Energy Disaggregation
Pascal A. Schirmer and Iosif Mporas

Abstract—Non-Intrusive Load Monitoring aims to extract the
energy consumption of individual electrical appliances through
disaggregation of the total power load measured by a single
smart-meter. In this article we introduce Double Fourier Integral
Analysis in the Non-Intrusive Load Monitoring task in order to
provide more distinct feature descriptions compared to current or
voltage spectrograms. Specifically, the high-frequency aggregated
current and voltage signals are transformed into two-dimensional
unit cells as calculated by Double Fourier Integral Analysis and
used as input to a Convolutional Neural Network for regression.
The performance of the proposed methodology was evaluated in
the publicly available UK-DALE dataset. The proposed approach
improves the estimation accuracy by 7.2% when compared to the
baseline energy disaggregation setup using current and voltage
spectrograms.

Index Terms—Energy Disaggregation, Non-Intrusive Load
Monitoring (NILM), Spectrogram, Double Fourier Integral Anal-
ysis (DFIA).

I. INTRODUCTION

GLOBAL average temperatures are rising due to the
increasing amount of greenhouse gas emissions causing

natural disasters and having negative impact on nature and
humankind alike. As households are responsible for approx-
imately 40% of the total consumed energy worldwide and
thus for the corresponding CO2 emissions, optimization of
households energy consumption is a very promising direction
in order to reduce total energy consumption [1]. Specifically,
approaches based on energy prediction [2], [3], energy man-
agement [4], local storages [5] as well as detailed optimiza-
tions, e.g. management of high power devices [6], have been
proposed to address this issue. Moreover, studies estimate that
5%-20% of households’ consumed energy could be saved by
changing consumers’ behaviour and improving the existing
poor operational strategies [7], [8]. To address these challenges
detailed analysis of energy consumption on device level is
necessary [9].

The analysis of energy on device level is performed through
energy disaggregation, i.e. the extraction of energy consump-
tion on appliance level based on one or multiple energy
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consumption measurement sensors called smart-meters [10].
When using only one sensor at the main inlet of a house-
hold, thus measuring only the aggregated consumption, the
energy disaggregation task is referred to as Non-Intrusive-
Load-Monitoring (NILM) [11], in contrast to Intrusive-Load-
Monitoring (ILM) where multiple sensors are used, usually
one per device. The goal of NILM is to estimate the energy
consumption of each device using only the measured aggre-
gated signal, thus NILM is considered a source separation
problem.

Several NILM methodologies have been proposed in the
literature, briefly been classified in approaches with or with-
out source separation algorithms. Methods without source
separation are using machine learning algorithms for regres-
sion like Convolutional Neural Networks (CNNs) [12], [13],
Recurrent Neural Networks (RNNs) [14], Long Short Time
Memory (LSTM) [15], [16], as well as Hidden Markov
Models (HMMs) and their variants [17], [18]. Combinations of
machine learning algorithms for fusion of information [19] and
modelling of temporal dynamics [20] have also been proposed.
As regards methods using source separation algorithms they
are based on non-negative matrix/tensor factorization [21]–
[23], integer non-linear programming [24] and sparse-coding
[25], [26] using additional constraints (e.g. sum-to-one or
cross-entropy) on the optimization problem [27], [28]. Fur-
thermore, approaches based on pattern matching and graph
signal processing have also been proven to work well [29],
[30]. Considering features, most of the NILM methods use
only active power [31], others also use reactive power, raw
current/voltage and their harmonics [32], [33], while some
methods calculate new features for the NILM task, e.g. based
on fractional calculus [14]. Additionally methods for reduction
of feature dimensionality have been presented [34].

Most of the proposed NILM methods use Low Frequency
measurements (LF), which are in the range of one up to ten
samples per second, in order to meet the limitations of the
usually low-cost hardware (CPU and RAM) of smart-meters,
as well as the limitations of the communication channel
bandwidth for the transmission of the acquired samples [35].
In the last two decades LF NILM methodologies’ performance
has been improved significantly especially for devices with
steady-state behaviour, i.e. devices with discrete operational
states and time invariant signatures (e.g. fridges), in low
‘noise’ conditions, i.e. identifying high power devices from the
aggregated signal with relatively low energy consumption from
background/unknown loads [35], [36]. The main drawback of
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LF NILM methods is that they are not capable of accurately
capturing the power consumption signature characteristics of
non-steady state devices as well as devices with strong non-
linear behaviour during their start-up (e.g. induction motors).
For these devices High Frequency (HF) analysis is needed
as shown in [37]–[39]. Furthermore, improvements of HF
NILM have been shown for unsupervised and transfer-learning
approaches in [40], [41] and [42], respectively. Moreover,
source separation based NILM using HF data has been shown
to improve energy disaggregation performance as well [21]. In
detail, the approach presented in [21] uses additional smooth-
ness constraints on the matrix factorization problem, while the
approach in [43] combines HF binary matrix factorization with
an additional neural network to improve online estimation of
appliances’ working routines.

HF based NILM methods found in the bibliography are
based either on spectrogram analysis [44], [45] or on current-
voltage trajectories [42], [46]. In detail, selection of odd
harmonic current vectors for identification of variable power
loads and power electronics has been presented in [47], [48].
Furthermore, a frequency invariant transformation for periodic
current signals has been presented in [49] converting uncorre-
lated samples to multiples of the grid frequency. Moreover, the
approach in [50] uses odd current harmonics in combination
with a transient event detection stage and utilizes a bipartite
graph matching problem for disaggregation. Additionally, a
high-frequency spectrogram approach is presented in [44],
which considers next to current spectrograms also voltage
fluctuations. Specifically, the utilization of voltage and current
harmonics has been discussed in [51], while high-frequency
voltage signatures have been utilized in the form of voltage
and current trajectories in [42]. To the best of the authors
knowledge specific consideration of voltage harmonics and
especially odd and even order harmonics has not be carried
out within the context of NILM.

In this article Double Fourier Integral Analysis (DFIA),
which is an established method for analytical transient signal
analysis of power electronics adapted by Bowes and Bird [52],
[53] and was originally developed for communication systems
by Bennet and Black [54], [55], is used for HF NILM. DFIA
was used in order to calculate enhanced frequency represen-
tations including baseband, sideband and carrier harmonics of
current and voltage using two-dimensional Fourier transform,
providing more accurate representation of transient events.
The proposed method was evaluated on the UK-DALE dataset
to disaggregate eight out of 52 electrical appliances, for the
purpose of direct comparison with previous publications. In
detail, the approach in [44] was used as it is a high-frequency
CNN based approach similar to the proposed architecture. Fur-
thermore, four low-frequency architectures have been chosen
for additional comparison, namely [56], [57] in which the UK-
DALE dataset was initially evaluated, the approach in [58]
utilizing a sequence-to-point learning based approach, as well
as the approach in [59] utilizing dictionary learning thus a
source-separation based approach.

The contribution of the paper is twofold. First, DFIA is
adapted to the NILM task in order to provide more distinct HF
features based on the decomposition of harmonics into funda-

mental, base-band, carrier and sideband harmonics considering
both odd and even current and voltage harmonics. Second,
the advantageous performance of using DFIA signatures as
features for the NILM task over using spectrogram based
approaches for NILM is evaluated in terms of performance as
well as robustness against outliers and noise. The remainder of
this paper is organized as follows: In Section II an introduction
to DFIA of energy consumption signals is given. In Section
III the proposed method is presented. In Section IV the
experimental setup is described and in Section V the evaluation
results are presented. Finally, discussion is provided in Section
VI and the article is concluded in Section VII.

II. DOUBLE FOURIER INTEGRAL ANALYSIS OF ENERGY
CONSUMPTION SIGNALS

In order to analyze signals with transient components, e.g.
with frequency content varying in time, signals are segmented
to frames (short-time analysis) and spectrograms are tradition-
ally used for time-frequency representation of each frame. A
frequency-frequency representation using DFIA is introduced
as an alternative to frame spectrograms for HF NILM. The
mathematical formulation of frame spectrograms and DFIA
for energy disaggregation is given below.

A. Spectrogram Analysis

Let iagg(t) be the discrete-time signal after A/D conversion
with sampling period Ts of the aggregated current, continu-
ously measured by a smart meter with t ∈ N0, i.e. starting
at time t = 0. The signal is decomposed into consecutive
segments (frames) of length W samples each, to perform
short-time analysis (successive frames might be overlapping
in time or not). Given an arbitrary frame iτagg of iagg , with
iτagg = [i(t0), i(t0 + 1), ..., i(t0 + W − 1)] and t0 being the
first sample of the τ -th frame, the spectrogram of the frame
is realized as a two-dimensional matrix S:

S(iτagg) = [|̃iτ,1agg|, |̃iτ,2agg|, ..., |̃iτ,λagg|, ..., |̃iτ,Λagg|] (1)

with columns ĩτ,λagg ∈ CN×1 being the N -point Discrete Fourier
Transforms (DFT) of blocks (subframes) of N samples:

ĩτ,λagg =

N−1∑
n=0

iτ,λagg(n) · e−j 2πk
N n (2)

with 0 ≤ k ≤ N − 1, iτ,λagg ∈ RN×1 being the λ-th subframe
and j being the complex operator. For the last subframe λ = Λ
either zero padding is applied to fill in the missing samples up
to N , or these last samples are ignored resulting in one less
subframe. Therefore, the spectrogram of each frame τ of the
aggregated current signal iagg will be S(iτagg) ∈ RN×Λ, which
is a time (Λ columns) vs. frequency (N rows) representation
of the frame iτagg . Similarly, the spectrogram of frame vτagg of
the aggregated voltage signal vagg will be S(vτagg) ∈ RN×Λ.

It is noted that the spectrogram matrices, S(iτagg) and
S(vτagg), generally consist of complex number values (as a
result of DFT), however when applied as input to a classifier
for energy disaggregation usually the magnitude values of the
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spectrogram matrices are used [44]. This is due to the fact
that for electrical signals only the phase-shift between current
an voltage has a physical meaning. In detail, the phase-shift
between the fundamental component of the voltage and the
fundamental component of the current determines the ratio
of active and reactive power. Moreover, the current harmonics
and their phase-shift with respect to the voltage harmonics de-
termine the distortion reactive power [60]. Conversely, phase-
shifts between the fundamental current and its harmonics do
not carry any physical meaning.

B. Double Fourier Integral Analysis

While in spectrogram analysis one discrete-time signal is
considered, DFIA assumes two different time-dependent vari-
ables [61]. Let iagg(t) and vagg(t) be the aggregated current
and the aggregated voltage signals, continuously measured by
a smart meter, as described in Section II-A. The two signals are
periodic towards the period of the power line frequency fel =
ωel/2π with wel being the circular frequency of the grid and
are time-aligned (time synchronous acquisition and in parallel
A/D conversion), thus when each signal is segmented to frames
of length W samples for any arbitrary frame iτagg of iagg , with
iτagg = [i(t0), i(t0 +1), ..., i(t0 +W−1)], there is also a frame
vτagg of vagg , with vτagg = [v(t0), v(t0 +1), ..., v(t0 +W −1)],
with t0 being the first sample of iagg and vagg respectively. In
DFIA an output function f(·) is defined [24] by the cyclically
varying signals iτagg and vτagg , i.e. f(vτagg, i

τ
agg), which in our

case is the instantaneous power pτx,y = iτagg(x) · vτagg(y) with
1 ≤ x, y ≤ W and P τ ∈ RW×W being the instantaneous
power 2-d representation on a V-I plane for the τ -th frame as
illustrated in Fig. 1.
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Fig. 1. Instantaneous power 2-d representation for one subframe (one
electrical cycle) of aggregated current and voltage.

As shown in Fig. 1 each V-I instantaneous power frame, P τ ,
contains the current and voltage trajectories in x/y directions.
From Fourier series theory [61] any time varying periodic
function of two variables, i.e. f(iagg, vagg), can be written

as a sum of harmonic components, as introduced as part of
the DFIA in communication systems [54] as well as in power
electronics [53]. In this article, the description from [62] is
used, i.e.

f(iagg, vagg) =
A00

2︸︷︷︸
DC-Offset

(3)

+

∞∑
l=1

[A0l · cos(liagg) +B0l · sin(liagg)]︸ ︷︷ ︸
fundamental component & baseband harmonics

+

∞∑
k=1

[Ak0 · cos(kvagg) +Bk0 · sin(kiagg)]︸ ︷︷ ︸
carrier harmonics

+

∞∑
k=1

∞∑
l=−∞

[Aklcos(kvagg + liagg) +Bklsin(kvagg + liagg)]︸ ︷︷ ︸
sideband harmonics

where k is the index variable for the voltage and l is the
index variable for the current. As can be seen Eq. 3 can
be decomposed into four terms: DC-component, fundamental
component and baseband harmonics, carrier harmonics and
sideband harmonics. The DC-component describes the trans-
ferred DC power (k, l = 0). The fundamental component and
baseband harmonics are the AC power (l = 1) and the low
frequency current harmonics (l > 1). The carrier harmonics
(in our case voltage is considered as a carrier, as it is fixed by
the grid, similar as a modulation wave) for voltage distortions
(k ≥1). The sideband harmonics, which are ensembles of sums
and differences of current and voltage waveforms, and can be
found at frequencies f = fel · k + fel · l.

The overall harmonic current and voltage fingerprint of a
frame P τ is described by the coefficients Akl and Bkl, in con-
trast to the spectrograms S(iτagg) and S(vτagg), which contain
only fundamental components and baseband harmonics of the
current or the voltage signal only. For the purpose of energy
disaggregation, the double Fourier transform is calculated for
each frame P τ , i.e.

F τk,l = Ak,l+jBk,l =
1

W 2

W∑
x=1

W∑
y=0

px,y ·e−j2π( kW x+ l
W y) (4)

with 1 ≤ k < K and 1 ≤ l < L being index variables. The
magnitude and/or phase of each unit cell F τ ∈ CW×W are
then used as input to a machine learning model for classifica-
tion or regression. The coefficients Ak,l and Bk,l represent the
magnitude of the harmonics. The two-dimensional magnitudes
Hk,l and phase angles Φk,l of the harmonic components can
then be written using the coefficients Ak,l and jBk,l:

Hk,l = abs(Fk,l) = |Ak,l + jBk,l| =
√
A2
k,l +B2

k,l (5)

Φk,l = arctan2(
Ak,l
Bk,l

) (6)
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Fig. 2. Proposed high frequency CNN architecture utilizing double Fourier integral analysis, with one CNN model trained for each device m.

with H ∈ RW×W and Φ ∈ RW×W .
The DFIA magnitude of the two-dimensional instantaneous

power representation of Fig. 1 is illustrated in Fig. 2.
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Fig. 3. DFIA magnitude with the y-axis being the voltage direction and the
x-axis being the current direction

Specifically, the current/voltage harmonics (baseband/carrier
harmonics) can be found along the x/y-axis with the funda-
mental component at k, l = 1 and fel=50 Hz and the DC
component at k, l = 0 and fel=0 Hz, while odd order har-
monics can be found in both current and voltage direction for
k, l = {3, 5, 7, ...} thus fk,l = {150Hz, 250Hz, 350Hz, ...}.
Furthermore, it can be seen that harmonics are decaying
significantly faster in voltage direction (y-axis) than in current
direction (x-axis), accurately capturing the time-domain be-
haviour as illustrated in Fig. 1. Moreover, sideband harmonics
can be seen, especially in the current direction, appearing at
f = fel · k + fel · l, e.g. for k = 1 and l = {1, 3, 5, ...} at
f1,l = {100Hz, 200Hz, 300Hz, ...}.

III. NILM USING DOUBLE FOURIER INTEGRAL ANALYSIS

In the NILM task the energy consumption measurements
of one sensor are disaggregated on device level, within time
windows (frames). Specifically, for a set of M devices, con-
sisting of M − 1 known devices and one ghost device (sum
of all unknown devices), each consuming power pm, with
1 ≤ m ≤ M , the aggregated power pagg measured by the
sensor will be:

pagg = f(p1, p2, ..., pM−1, g) =

M−1∑
m=1

pm + g =

M∑
m=1

pm (7)

where g = pM is a ‘ghost’ power consumption (noise)
usually consumed by one or more unknown devices with f(·)
being the aggregation function. In NILM the goal is to find
estimations, p̂m and ĝ = p̂M , of the power consumption of
each device m using a disaggregation function f−1(·), i.e.

P̂ = {p̂1, p̂2, ..., p̂M−1, ĝ} = f−1(pagg) (8)

where P̂ is a set of all predicted appliances, i.e. P̂ =
{p̂1, p̂2, ..., p̂M−1, ĝ} and P ∈ RM . The baseline approach
in HF NILM [44] and in HF load classification is relying on
classification/regression of frame spectrograms of the current
S(iτagg) and/or the voltage S(vτagg), i.e.

P̂ = {p̂1, p̂2, ..., p̂M−1, ĝ} = r(S(iτagg), S(vτagg)) (9)

where r(·) is a regression model which approximates the
inverse aggregation function f−1(·), i.e. r(·) ≈ f−1(·).
In the proposed approach for each of the M devices one
regression model is trained with the corresponding outputs
being limited up to the overall power, i.e. p̂m < pagg . In the
proposed approach the devices’ power consumption estimation
is performed using the magnitude H and phase angle Φ of the
instantaneous power matrices extracted per frame from the
DFIA as described in Section II-B, i.e.

P̂ = {p̂1, p̂2, ..., p̂M−1, ĝ} = r(H,Φ) (10)

The block diagram of the proposed HF NILM architecture
is illustrated in Fig. 3. In detail, the architecture illustrated
in Fig. 3 consists of pre-processing, framing, extraction of
frames’ instantaneous power matrix and DFIA, concatenation
of magnitude and phase matrices to N × Λ × 2 arrays per
frame, and one CNN regression model for each target device
m to estimate the corresponding power consumption p̂m.

IV. EXPERIMENTAL SETUP

The NLIM architecture based on double Fourier integral
analysis described in Section III was evaluated using the
datasets, features and regression algorithm presented below.
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A. Datasets

Four datasets with HF measurements exist [63]–[66], to
the best of our knowledge, with REDD [63] and UK-DALE
[64] being used in regression based NILM tasks. Previous
approaches on HF NILM have been evaluated on houses 1 and
3 of REDD [63] dataset and houses 1, 2 and 5 of UK-DALE
[64] dataset, as for these houses continuous HF aggregated
measurements have been recorded. As the proposed approach
relies on Fourier analysis, UK-DALE has been selected for its
evaluation, as REDD has HF measurements only from time
intervals in which high amplitude change of line current or
voltage appears. UK-DALE aggregated voltage and current
measurements have been recorded at sampling frequency equal
to 16 kHz, while the corresponding time-aligned signals per
device have been recorded at sampling frequency equal to 1
Hz. House one of the UK-DALE was selected as it contains
significantly more appliances (52 appliances) than the other
houses (∼20 appliances), thus offering realistic conditions of
a household appliances operational routine. For our evaluation
the 1st-7th December 2014 (7 days) of the HF data was
chosen (32 GB compressed stored data size) as it contains
simultaneous activity of up to twelve appliances. In detail, to
efficiently train the proposed high-frequency CNN architecture
for each of the eight devices, six days of the high-frequency
aggregated data (input) were used to train a CNN model for
each devices using its low frequency active power as ground-
truth signal (output). Afterwards, testing was performed on the
remaining day of the data.

In order for an disaggregation approach to be efficient it
should disaggregate a high proportion of the total consumed
energy in the household [63]. Therefore, the five appliances
with the highest energy consumption were chosen for evalu-
ation of disaggregation performance, namely the boiler (BO),
the washing machine (WM), the kitchen lights (KL), the
fridge (FR) and the total lightning circuit (TL). It must be
noted that in the proposed appliance selection lighting has an
disproportional high share of the total energy, which is due to
the selected time period (December). Moreover, to compare
with different previously proposed architecture [44], [56]–[59]
we extended the selected appliances by including another three
devices, namely the dishwasher (DW), the microwave (MW)
and the kettle (KT), thus resulting in eight devices in total.

B. Preprocessing and Parametrization

During pre-processing each of the aggregated voltage and
current signals was frame blocked in frames of W=16000
samples, thus for each frame of 16000 samples of HF data
there is one sample of the ground-truth appliance signals.
Moreover, for calculating the current and voltage spectro-
grams the frames where split into Λ subframes with length
16000Hz

50Hz =320 samples, thus one electrical period, with overlap
between successive subframes equal to 50% (i.e. 180 samples).

For the regression stage a two-dimensional Convolutional
Neural Network (CNN) was used, as in [44]. In detail, the
CNN regression model takes as input the two-dimensional
features as calculated by the spectrogram analysis or DFIA and
learns the free parameters of the network using low-frequency

active power signatures of the appliances (output). One CNN
regression model per device is used. Furthermore, the free
parameters of the CNN, namely the number of filters and the
kernel size for each of the convolutional layers, as well as the
pooling size and the number of neurons in the dense layer were
optimized through grid search on a bootstrap dataset (12h of
operation including on and off periods for each device). The
optimal number of convolutional layers is three, while the grid
search for finding the optimal number of filters and kernel size
is shown in Table I.

TABLE I
PARAMETER OPTIMIZATION OF CNN MODEL IN TERMS OF EACC WITH

DIFFERENT KERNEL SIZE AND NUMBER OF FILTERS.

Kernel
Number of filters

2 4 8 16 32

1 61.3% 79.5% 76.4% 73.9% 73.4%
2 63.6% 70.2% 80.5% 74.0% 79.4%
3 79.8% 76.4% 82.3% 67.3% 77.8%
4 68.1% 67.8% 64.7% 61.1% 76.1%
5 71.0% 61.0% 53.2% 60.4% 63.7%

As illustrated in Table I the optimal number of filters is
eight and the optimal kernel size is three. The optimal CNN
structure used for NILM is tabulated in Table II.

TABLE II
OPTIMAL HF CNN STRUCTURE FOR NILM

Nr. Layer Nr. Layer

1 Input 9 BatchNormalization
2 Conv2d(8,3,’same’,1) 10 Relu
3 BatchNormalization 11 Maxpool(4)
4 Relu 12 Flatten
5 Conv2d(8,3,’same’,1) 13 Dense(256)
6 BatchNormalization 14 Relu
7 Relu 15 Dense(1)
8 Conv2d(8,3,’same’,1) 16 Linear activation

The pool size of the maxpool layer and the number of
neurons in the dense layer were optimized after grid search
on the same bootstrap dataset as for the parametrization of
the convolutional layers and were found to be four for the
max-pooling layer and 256 neurons for the dense layer. All
convolutional layers have the same padding and stride sizes
all equal to one.

C. Experimental Protocols

Six experimental protocols were designed, three with re-
spect to the use of current and voltage spectrograms (baseline
approach) and three based on the proposed DFIA. To assure
fair comparison between the approaches the dimensionality of
DFIA based magnitude and phase being originally W ×W
was resized in order to match the dimensionality of the
corresponding spectrograms N ×Λ. In detail, to keep the best
feature representation during the size reduction of the two-
dimensional signatures the number of voltage harmonics (Λ)
was stronger reduced than the number of current harmonics
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(N ). This is due to the fact, that the voltage flucation is usually
significantly smaller than the current fluctuation and thus
carries less information [44]. The six protocols are tabulated
in Table III.

TABLE III
SIX EVALUATED EXPERIMENTAL PROTOCOLS INCLUDING THEIR

FEATURES AND DIMENSIONALITY

Protocol Features Dimensionality

I Current Spectrogram Ĩagg ∈ RN×Λ

V Voltages Spectrogram Ṽagg ∈ RN×Λ

V-I Current/Voltage Spectrogram Ṽ Iagg ∈ R2×N×Λ

DFH Magnitudes DFIA DFH ∈ RN×Λ

DFΦ Phases of DFIA DFΦ ∈ RN×Λ

DFH−Φ Magnitudes/Phases DFIA DFH−φ ∈ R2×N×Λ

V. EXPERIMENTAL RESULTS

The DFIA approach presented in Section III was evaluated
according to the experimental setup described in Section
IV. The performance was evaluated in terms of estimation
accuracy on device level (EmACC) and on average (EACC), as
proposed in [63], taking into account the estimated power p̂m
where T is the total number of disaggregated frames and m
is the device number respectively.

EACC = 1−
∑M
m=1

∑T
τ=1 |p̂τm − pτm|

2
∑M
m=1

∑T
τ=1 |pτm|

(11)

EmACC = 1−
∑T
τ=1 |p̂τm − pτm|
2
∑T
τ=1 |pτm|

(12)

Additionally, to EACC evaluation results have been pre-
sented in terms of Mean Absolute Error (MAE) as defined in
Eq. 13.

MAE =
1

T

T∑
τ=1

|p̂τm − pτm| (13)

The experimental results for the eight evaluated appliances
and the six experimental protocols are tabulated in Table IV
for EACC values and in Table V for MAE values respectively.

TABLE IV
ENERGY DISAGGREGATION PERFORMANCE IN TERMS OF EACC FOR

DIFFERENT APPLIANCES USING DIFFERENT EXPERIMENTAL PROTOCOLS

App I V V-I DFH DFΦ DFH−Φ

BO 80.6% 71.9% 84.9% 88.1% 88.0% 88.9%
WM 77.8% 65.2% 74.6% 77.9% 76.7% 79.2%
KL 64.6% 63.1% 65.0% 81.5% 81.1% 81.7%
FR 86.3% 72.4% 85.6% 88.5% 88.9% 91.2%
TL 78.1% 62.9% 79.5% 85.0% 84.8% 87.5%
DW 67.0% 62.5% 70.0% 71.4% 66.7% 75.8%
MW 65.7% 59.0% 70.2% 71.4% 70.5% 73.9%
KT 81.7% 60.9% 83.5% 86.1% 76.8% 92.5%

AVG 76.2% 65.2% 77.3% 82.0% 80.3% 84.5%

TABLE V
ENERGY DISAGGREGATION PERFORMANCE IN TERMS OF MAE FOR

DIFFERENT APPLIANCES USING DIFFERENT EXPERIMENTAL PROTOCOLS

App I V V-I DFH DFΦ DFH−Φ

BO 11.86 17.18 9.23 7.28 7.34 6.79
WM 16.87 26.44 19.30 16.79 17.70 15.80
KL 21.60 22.51 21.35 11.29 11.53 11.16
FR 11.43 23.03 12.01 9.59 9.26 7.34
TL 21.76 36.87 20.37 14.91 15.11 12.42
DW 18.80 21.36 17.09 16.29 18.97 13.78
MW 16.02 19.15 13.92 13.36 13.78 12.19
KT 9.58 20.48 8.64 7.28 12.15 3.93

Avg 15.99 23.38 15.24 12.10 13.23 10.43

As can be seen in Table IV and Table V the proposed
DFIA (column ‘DFH−Φ’) outperforms the spectrogram-based
approaches (‘I’, ‘V’ and ‘V-I’) in all experimental protocols
for all appliances and for both performance metrices. Specifi-
cally, for spectrogram-based approaches’ average performance
(calculated across the eight appliances) varies between 65.2-
77.3% (15.24-23.38) depending on if voltage spectrograms,
current spectrograms or their combination are utilized as
input to the CNN. In detail, voltage spectrograms perform
significantly worse comparing to current spectrograms for both
EACC and MAE values. This is due to the fact that the grid
voltage intrinsically does not carry much information as it
is only influenced through coupling effects during the time
of large current draw [44]. Combining current and voltage
spectrograms has led to a performance improvement of +1.1%
(EACC) and +4.7% (MAE) when being compared to using
current spectrograms only. Furthermore, the DFIA approach
(‘DFH−Φ’) improved NILM accuracy comparing to ‘V-I’
spectrograms from +3.7% (BO) up to +16.7% (KL) and the
average improvement was +7.2% when considering EACC
values, which is owed to its improved representation of devices
through their harmonic spectrum. Moreover, when considering
MAE values the improvement was found to be +26.4% (BO)
up to +47.7% (KL), while the average improvement was
+31.6%. It is worth mentioning that both the magnitude DFIA
(‘DFH ’) and the phase DFIA (‘DFΦ’) setups when used
separately also significantly outperform all spectrogram-based
NILMs across all evaluated devices and for both performance
metrices.

In a further step the proposed architecture was compared to
several low-frequency and high frequency approaches from the
literature that also use the UK-DALE dataset. Specifically, for
comparison with high frequency approaches paper [44] was
chosen, as it presents the evaluation of high frequency current
and voltage spectrograms as well as their concatenation, which
was adopted as baseline approach in this paper. As regards
low frequency approaches, top-performing papers [56]–[58]
were chosen, which are based on neural network architectures
with convolutional filters as in the proposed approach, utilizing
dAE in [56], seq2point/seq2seq learning in [58] and biLSTM
in [57]. Furthermore, paper [59] was selected for additional
comparison with approaches using source separation algo-
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Fig. 4. Examples of current spectrograms (i), DFIA magnitudes (ii) and current harmonics (iii) of four devices (TL, FR, MW and WM), with harmonics
calculated from spectrogram (red) and from DFIA (blue). Specifically, the first even order harmonic is illustrated and denoted with a), b), c) and d).

rithms. As in these works different evaluation metrics and data
splits have been used, the results from Table IV and Table V
have been recalculated in terms of F1-score (F1) and Mean
Absolute Error (MAE).

F1 = 2 · TP

2 · TP + FN + FP
(14)

where TP, FN and FP are the True Positives, False Negatives
and False Positives for each identified turned on appliance
combination. For the estimation of the average MAE values
in the ’AVG’ column of Table V, the mean value of all
appliances, i.e. MAE = 1

M

∑M
m=1

1
T

∑T
τ=1 |p̂τm − pτm|, was

used similarly to the literature [44], [67]. Furthermore, some
of the previous works do not use all appliances listed in Table
IV, thus comparison is provided for the reduced set of five
mutual appliances (WM, DW, FR, MW, KT). Moreover, exact
comparison is not possible as these articles are using different
training and testing datasets. The results in terms of F1-score
and MAE are tabulated in Tables VI and VII, respectively.

TABLE VI
ENERGY DISAGGREGATION PERFORMANCE COMPARISON IN TERMS OF F1

IN (%) FOR DIFFERENT ARCHITECTURES

App
LF architectures HF architectures

[57] [56] [58] [59] [44] V-I DFH−Φ

WM 49.0 96.0 - 84.4 80.0 90.4 95.9
DW 72.0 79.6 - - 96.0 96.2 98.1
FR 81.0 87.9 - 76.3 96.0 95.1 97.6
MW 62.0 70.5 - - 94.0 94.7 98.9
KT 71.0 78.3 - 94.6 97.0 97.8 99.6

AVG 67.0 82.5 - 85.1 92.6 94.8 98.0

TABLE VII
ENERGY DISAGGREGATION PERFORMANCE COMPARISON IN TERMS OF

MAE IN (WATTS) FOR DIFFERENT ARCHITECTURES

App
LF architectures HF architectures

[57] [56] [58] [59] [44] V-I DFH−Φ

WM 11.0 - 12.7 - 1.4 3.4 2.2
DW 30.0 - 27.7 - 5.8 4.7 1.6
FR 18.0 - 20.8 - 5.9 8.5 2.6
MW 6.0 - 8.7 - 0.9 6.2 3.5
KT 7.0 - 7.4 - 3.9 4.1 2.9

AVG 14.4 - 15.5 - 3.6 5.4 2.6

As can be seen in Tables VI and VII the LF architectures
generally perform worse than the HF ones. Specifically, the
approach in [56] utilizing dAEs with performance equal to
82.5% in terms of F1-score is outperformed by more than
10% by approaches based on HF like [44]. Similarly, biLSTM
proposed in [57] having the best performance among the LF
architectures when using MAE as performance metric is sig-
nificantly outperformed by [44] using concatenated CNNs. The
proposed DFIA approach further improves the performance,
significantly outperforming LF architectures and improving the
performance of the concatenated CNN architecture of [44] by
5.4% for F1-scores (98.0%) and reducing the MAE by 1.0.

VI. DISCUSSION

Further to the experimental results presented in Section V
analysis of the underlying advantages of the proposed DFIA
compared to spectrograms was performed. The characteristic
device signatures represented by DFIA for four appliances are
presented in Subsection VI-A, three case studies of energy
disaggregation performance are analyzed in Subsection VI-B
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Fig. 5. Examples of active power estimation (blue line) of five devices for one hour for (a) spectrogram-based analysis and (b) double Fourier integral analysis

and computational processing execution time measurements
are provided in Subsection VI-C.

A. Spectrogram vs. DFIA Signatures

As shown in Eq. 3 except the fundamental component
and baseband harmonics (i.e. the current harmonics) and
the carrier harmonics (i.e. voltage harmonics) which exist in
the corresponding spectrograms, the additional information
that DFIA offers is the sideband harmonics. In Fig. 4 the
magnitudes of the spectrograms and DFIAs as well as the
current harmonics of four devices are shown.

As shown in Fig. 4, the DFIA magnitude of each device
has a pattern which visually is more distinctive than the
corresponding one of the current spectrogram (e.g. FR and
WM spectrograms are quite similar). In detail, this has resulted
to 7.2% of average improvement in NILM accuracy as shown
in Table IV. Calculating the corresponding current harmonics,
it can be seen that the spectrogram-based harmonics include
only the odd ones (i.e. 1st, 3rd, 5th, etc.), as found in the
current signal. Conversely the DFIA-based approach considers
interaction of current and voltage giving a complete represen-
tation of the spectral content of the device with frequencies to
be found at f = felk + fell with 1 ≤ k < K and 1 ≤ l < L
being index variables of voltage and current as described in
Eq. 3. In this context especially the presence of the even order
harmonics in the FFT signals have to be pointed out, which are
only captured by DFIA and not by the spectrogram analysis.

B. Energy Disaggregation Case Studies

To compare and contrast the spectrogram-based analysis
with the proposed DFIA method in terms of their ability

to detect transient and steady-state patterns in appliances’
signatures, detailed examination of estimation signals was
performed. In Fig. 5 examples of the active power estimation
of five devices for a time window of one hour for the baseline
spectrogram-based analysis (V-I) and for the proposed DFIA
(DFH−Φ) are illustrated in blue, while the ground truth active
power of each device is shown in gray. In the same figure, three
characteristic cases, denoted as ‘(i)’ in DW ‘(ii)’ in MW and
‘(iii)’ in FR, are shown in bounding boxes and are analyzed
below.

In specific, the first case denoted as ‘(i)’ in DW device is
a small drop (signal trough) with duration of approximately
2 minutes and trough depth of 0.02 (normalized). As can
be seen, the spectrogram-based approach cannot track this
small trough in contrast to DFIA which detects it. The second
case denoted as ‘(ii)’ in the MW device is a very short-
duration peak in the active power (in the order of 46s seconds
with amplitude increase of 0.35 (normalized)), which is not
detected by the spectrogram-based method and maybe can
be assigned to other appliances with longer working routines
and the same/similar active power amplitude, like the WM
in the example shown in Fig. 5. Both examples ‘(i)’ and
‘(ii)’ demonstrate the advantage of the proposed DFIA in
detecting narrow crests and troughs in the signal, which in
general cannot be detected by the spectrogram-based method.
The third case denoted as ‘(iii)’ in the FR device is a signal
decay pattern which was not estimated accurately from the
spectrogram-based method but instead estimates a divergent
amplitude waveform, in contrast to DFIA which models this
decay pattern relatively well. To further analyse this behaviour,
we ‘zoomed in’ the normalized transient period (i.e. the start-
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up of FR device) shown in the bounding box of Fig. 6a and
the corresponding high-frequency transient normalized current
at the same time interval (transient period) shown in Fig. 6b.
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As shown in Fig. 6b, in the transient current of the fridge
three regions of interest have been identified, namely region
‘I’ which corresponds to the beginning of the transient period,
region ‘II’ which contains a trough distortion (maybe caused
by the switching of another appliance) and region ‘III’ which is
the decay of the fridge’s transient period. To investigate how
DFIA and spectrogram-based methods capture these micro-
events the corresponding current harmonics were calculated
in each case. For visualization purposes 6 harmonics above
the fundamental frequency, evenly spaced up to the maximum
frequency, are chosen. Specifically, the current spectrogram
is shown in Fig. 6c and from the corresponding current
harmonics of it, as shown in Fig. 6d, it is observed that while
most harmonics decrease in time starting from a peak some of
them present a peak delay which is most probably responsible
for the inability of the regression estimation in Fig. 5a-FR
to follow the decay. In contrast to current spectrogram, in
DFIA the current harmonics (estimated for voltage frequency
k=fel with fel=50 Hz) that correspond to the trough distortion
(II) have magnitude much lower than the rest harmonics thus
practically not causing significant errors in device’s power

consumption estimation in Fig. 5b-FR.

C. Realtime Capability
The proposed architecture clearly aims to improve the

performance of the NILM architecture, but as high-frequency
approaches are computational expensive real-time capability
must be considered. Therefore, we calculated the execution
time per sample for V-I spectrograms and DFH−Φ on an
Intel i7 7700k CPU with 64GB RAM using two Nvidia GTX
1080Ti in SLI mode. The Average Execution Time (AET) per
sample, when using GPU calculations, is compared to the HF
approach of [44], which was calculated on the same GPU
hardware and Tensorflow. The results are shown in Table VIII.

TABLE VIII
COMPARISON OF AVERAGE EXECUTION TIME (AET) FOR
DISAGGREGATING ONE SAMPLE OF AGGREGATED DATA.

Approach V-I DFH−Φ [44]

AET (ms) 18 221 69

As illustrated in Table VIII the average execution time of
the proposed DFIA approach is approximately 3 times larger
than the AET of [44]. However, considering its real-time
capability the proposed approach is still significantly lower
than real-time with one sample (1 second due to device signals
being monitored at 1 Hz) of the ground-truth signal being
disaggregated in 221ms.

VII. CONCLUSION

In this paper the use of double Fourier integral analy-
sis for high frequency energy disaggregation was proposed.
Specifically, raw aggregated current and voltage waveforms
are transformed to their two-dimensional frequency represen-
tation and used to train a Convolutional Neural Network for
regression. The proposed methodology was evaluated on the
UK-DALE database improving performance by 7.2% when
compared to current and voltage spectrograms, and 5.4% when
compared to previously published CNN-based architectures.
Detailed analysis of the energy disaggregation performance of
devices like washing machine, microwave, lights and fridge
showed the advantageous ability of double Fourier integral
based representation to capture signature patterns with very
short duration as well as to contain all current and voltage
harmonics including sideband harmonics, influenced by inter-
action of current and voltage. Based on the promising results
of the DFIA the following three topics should be investigated
in future research. First, investigation of the transferability
capability is needed, in order to examine if DFIA can be
used in the case of pre-training device models. Second, even
though the full sampling resolution of 16 kHz was used in the
proposed approach an investigation on the effect of different
sampling rates will reveal the minimum needed sampling
frequency to retain high NILM accuracy while reducing stor-
age and computational cost. Third, considering the temporal
characteristics of the NILM problem investigation of a LSTM-
CNN based architecture with additional optimization of the
subframe-length might be beneficial for capturing temporal
information (high-frequency ground-truth data).
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