Weighted competing risks quantile regression models and variable selection

Li, Erqian, Pan, Jianxin, Tang, Man Lai, Yu, Keming, Wolfgang Karl, Hardle, Dai, Xiaowen and Tian, Maozai (2023) Weighted competing risks quantile regression models and variable selection. ISSN 2227-7390
Copy

The proportional subdistribution hazards (PSH) model is popularly used to deal with competing risks data. Censored quantile regression provides an important supplement as well as variable selection methods due to large numbers of irrelevant covariates in practice. In this paper, we study variable selection procedures based on penalized weighted quantile regression for competing risks models, which is conveniently applied by researchers. Asymptotic properties of the proposed estimators, including consistency and asymptotic normality of non-penalized estimator and consistency of variable selection, are established. Monte Carlo simulation studies are conducted, showing that the proposed methods are considerably stable and efficient. Real data about bone marrow transplant (BMT) are also analyzed to illustrate the application of the proposed procedure.

picture_as_pdf

picture_as_pdf
mathematics-11-01295_2_.pdf
Available under Creative Commons: 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads