The morphological mix of dwarf galaxies in the nearby Universe

Lazar, Ilin, Kaviraj, Sugata, Watkins, Aaron E., Martin, Garreth, Bichang'a, Brian and Jackson, Ryan A. (2024) The morphological mix of dwarf galaxies in the nearby Universe. Monthly Notices of the Royal Astronomical Society (MNRAS), 529 (1): stae510. 499–518. ISSN 0035-8711
Copy

We use a complete, unbiased sample of 257 dwarf (10 8 M < M < 10 9.5 M) galaxies at z < 0.08, in the COSMOS field, to study the morphological mix of the dwarf population in low-density environments. Visual inspection of extremely deep optical images and their unsharp-masked counterparts reveals three principal dwarf morphological classes. 43 per cent and 45 per cent of dwarfs exhibit the traditional ‘early-type’ (elliptical/S0) and ‘late-type’ (spiral) morphologies, respectively. However, 10 per cent populate a ‘featureless’ class, that lacks both the central light concentration seen in early-types and any spiral structure – this class is missing in the massive-galaxy regime. 14 per cent, 27 per cent, and 19 per cent of early-type, late-type, and featureless dwarfs respectively show evidence for interactions, which drive around 20 per cent of the overall star formation activity in the dwarf population. Compared to their massive counterparts, dwarf early-types show a much lower incidence of interactions, are significantly less concentrated and share similar rest-frame colours as dwarf late-types. This suggests that the formation histories of dwarf and massive early-types are different, with dwarf early-types being shaped less by interactions and more by secular processes. The lack of large groups or clusters in COSMOS at z < 0.08, and the fact that our dwarf morphological classes show similar local density, suggests that featureless dwarfs in low-density environments are created via internal baryonic feedback, rather than by environmental processes. Finally, while interacting dwarfs can be identified using the asymmetry parameter, it is challenging to cleanly separate early and late-type dwarfs using traditional morphological parameters, such as ‘CAS’, M 20, and the Gini coefficient (unlike in the massive-galaxy regime).

visibility_off picture_as_pdf

picture_as_pdf
2402.12440v2.pdf
subject
Submitted Version
lock
Restricted to Repository staff only
Available under Creative Commons: BY 4.0

Request Copy
picture_as_pdf

Published Version


Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads