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ABSTRACT: New psychoactive substances (NPS) are a group of
compounds that mimic the effects of illicit substances. A range of NPS
have been shown to interact with the three main classes of monoamine
transporters (DAT, NET, and SERT) to differing extents, but it is unclear
why these differences arise. To aid in understanding the differences in
affinity between the classes of monoamine transporters, several in silico
experiments were conducted. Docking experiments showed there was no
direct correlation between a range of scoring functions and experimental
activity, but Spearman ranking analysis showed a significant correlation (α
= 0.1) for DAT, with the affinity ΔG (0.42), αHB (0.40), GoldScore
(0.40), and PLP (0.41) scoring functions, and for DAT (0.38) and SERT
(0.40) using a consensus scoring approach. Qualitative structure−activity
relationship (QSAR) experiments resulted in the generation of robust and
predictive three-descriptor models for SERT (r2 = 0.87, q2 = 0.8, and test
set r2 = 0.74) and DAT (r2 = 0.68, q2 = 0.51, test set r2 = 0.63). Both QSAR models described similar characteristics for binding, i.e.,
rigid hydrophobic molecules with a biogenic amine moiety, and were not sufficient to facilitate a deeper understanding of differences
in affinity between the monoamine transporters. This contextualizes the observed promiscuity for NPS between the isoforms and
highlights the difficulty in the design and development of compounds that are isoform-selective.

■ INTRODUCTION
Monoamine transporters (MATs) are a group of trans-
membrane proteins involved in regulating the concentrations
of extracellular monoamine neurotransmitters, i.e., dopamine,
norepinephrine, and serotonin, and as such play critical roles in
the reuptake of monoamine neurotransmitters and the
homeostatic regulation of presynaptic function. In terms of
structure, MATs are a polytopic family of proteins in which each
isoform consists of 12 transmembrane domains. The isoforms
demonstrate a significant degree of homology, with areas of
greatest similarity between the isoforms evident in the
transmembrane domains. This high degree of conservation
between the classes of MATs is lower at the N and C termini of
the proteins.

The blockade of the reuptake of neurotransmitters by MATs
in conjunction with the blockade of neurotransmitter receptors
such as histamine H1, muscarinic acetylcholine, and α1
adrenergic receptors and the inhibition of the mitochondrial
enzyme monoamine oxidase are all of interest in the develop-
ment of antidepressant therapies.1 There are three main classes
for MATs: DAT, which is responsible for the regulation of
dopamine; NET, which regulates norepinephrine; and SERT,
which controls the levels of serotonin.2−6 The reuptake of
dopamine in DAT is achieved by the sequential binding and
cotransport of two Na+ ions and one Cl− ion, whereas NET and
SERT uptakes of noradrenaline and serotonin, respectively,

involve the sequential binding and cotransport of a single Na+

ion and a single Cl− ion. Regulation of transporter activity at the
post-translational level in all MATs is achieved through
modifications like phosphorylation and N-linked glycosylation.

An appropriate balance of neurotransmitters is vital for
normal brain function, as evidenced using MAT gene knockout
studies in mice. As such, the role that the MATs play in the
regulation of neurotransmitters is of critical importance. This
means that many MAT genes have received attention for their
role in the development and progression of psychiatric and
neurological disorders. In addition, the identification of DAT as
the neurological receptor for cocaine has provided insight into
the mechanisms of addictive processes. Unsurprisingly, this
means that DAT, NET, and SERT are established targets for
substances that influence neurological function, including
stimulants, neurotoxins, antidepressant medications, and
emergent new psychoactive substances, or legal highs.
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New psychoactive substances (NPS) are a collection of
substances that impact neurological function similar to unlawful
substances such as cocaine.7 Hence, given the similarities in
chemical structure between known psychoactive compounds
and many NPS, it is unsurprising that NPS will demonstrate
affinity with the three classes of MAT7−13 and, due to the high
degree of similarity, that ligand promiscuity is observed in the
binding of NPS to DAT, NET, and SERT.4,14−16 A lot of
research has been conducted in an attempt to develop
pharmaceutical agents that target a single MAT class, such as
selective serotonin reuptake inhibitors (SSRIs).14,16−21

It is of interest to explore molecular interactions between
MATs and NPS. Such experiments have the potential to offer
insight into how selectivity between the MATs could be
obtained, which could then be exploited in the design of
therapeutic agents. Such understanding of potential protein−
ligand interactions can be achieved using a computational
structure-based approach, e.g., molecular docking.

However, powerful, structure-based approaches are not
without their limitations and where possible should be
supplemented with indirect (or ligand-based) studies.22,23

Ligand-based approaches can be used to identify patterns in
databases of biologically active compounds critical to imparting
biological activity. If the databases are sufficiently large and there
is a high level of confidence in the accuracy of the experimental
activities reported for the compounds, it may even be possible to
generate a predictive model of potential biological activity from
the physicochemical descriptors identified as being crucial to
conveying biological activity.22,24 Quantitative structure−
activity relationship (QSAR) modeling is a technique routinely
used to achieve this.25

The construction of robust and predictive QSAR models is
reliant on high-quality experimental data. It is preferable that
“self-consistent” data, i.e. data collected using the same assay
under the same conditions (potentially in the same research
group), are used in the construction, validation, and testing of
these models. Using self-consistent data reduces the likelihood
of introducing errors due to variations between laboratories. To
this end, a self-consistent data set that established pKi values for
a range of psychoactive substances across the three MATs26 was
used as the basis for these studies

This research seeks to answer the following question: can in
silico methodologies be used to provide insight into why
observed differences in experimental activity arise between the
MAT isoforms for a series of psychoactive compounds? This
study had multiple aims. The first was to establish if MAT
homology models and experimental crystal structures could be
used in conjunction with molecular docking methodologies and
a database of known active compounds to demonstrate why
differences in affinity between different NPS arise for DAT,
NET, and SERT. This would facilitate the understanding of
what gives rise to differences in biological activity between the
MATs and what, if any, differences are observed when using
high-quality comparative models compared to experimental
structures. The secondary objective was to build robust and
predictive QSAR models for each of the MAT classes to
complement the docking studies and identify the physicochem-
ical properties responsible for imparting the selectivity in NPS
for one class of MAT over another.

■ METHODS
Identification and Validation of Protein Structures.

Comparative models of DAT (Q01959), NET (P23975), and

SERT (P31645) were downloaded (https://swissmodel.expasy.
o r g / r e p o s i t o r y ? q u e r y = S o d i u m -
dependent+noradrenaline+transporter), and structures were
validated using Rampage,27 ERRAT,28 and Verify3D29

(https://saves.mbi.ucla.edu/)
Amino acid residues that violated at least one of the validation

methodologies were documented. As all models were derived
from the same template (PDB accession code 4M48),
benchmark values for each of the tests were generated for this
structure to ensure that models were not overfitted.

Data Set for New Psychoactive Substances. The data set
used in these investigations was detailed by Iversen and co-
workers26 and contained 31 NPS with pKi values for each of the
MATs under consideration (Tables S1 and S2).

Docking Studies. Putative Binding Site Identification.
Binding sites for DAT, NET, and SERT were identified using
SiteFinder in MOE30 using a minimum site size of three amino
acid residues, the default probe radii (1.4 and 1.8 Å), and the
default connection distance (2.5 Å). Sites were manually
adjusted to incorporate any residues highlighted in the literature
as essential to NPS binding that were not captured by the
SiteFinder tool.

Docking Using MOE. “Quick Prep” was used to prepare
protein structures The protonation states of the NPS were
established at pH 7. Docking studies were conducted with both
the MMFF94 and AMBER10: EHT force fields using the GWI/
WSA and dG scoring functions. A maximum of 30 poses were
generated for each ligand. Early termination of the run was
permitted when the all-atom RMSD between three top-ranked
poses was 3.0 Å or less.

Docking Using GOLD. Binding sites were generated by
identifying the Cartesian coordinates of the conserved aspartate
residue in the MAT isoforms and selecting all residues within a
15 Å radius. GoldScore31 and ChemScore32 were used as scoring
functions, and the default settings from the genetic algorithm
were used to carry out the dockings.

Consensus Scoring. Rescoring of the docked poses using was
carried out using pairwise linear potential (PLP), Poisson−
Boltzmann (PB), and molecular mechanics (MM) scoring
functions33−35 in the Galaxy/Ballaxy36 software. A Spearman’s
rank value based on the consensus score for each of the MAT
isoforms and the experimental activity of the NPS was then
calculated.

Data Set Preparation for QSAR Models. Two data sets5,26

containing molecules with experimentally determined activities
for the three MATs were identified. Thirty-one compounds,
including NPS and other psychoactive substances, were used to
construct QSAR models (see the Supporting Information).

Identification of Test and Training Sets. The appropriate
construction and evaluation of QSAR models are reliant on
training and test sets that are representative of the data set as a
whole.37

Training sets were compiled using Tanimoto coefficients
(Tc) for each MAT. A similarity coefficient matrix was produced
using the open-access software OpenBabel38 and pairwise Tc
values calculated for all molecules. The average Tc across the
data set for every molecule was then obtained. Any compounds
with a mean Tc of less than 0.2 were removed, as they were
structurally distinct in comparison to the other molecules in the
data set.

The compounds that remained were sorted according to their
pKi value into groups spanning one log unit of activity (i.e., 4−5,
5−6, 6−7, etc.). The molecules in each group with the greatest
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and smallest pKi values were assigned to the training set. Of the
remaining compounds in each group, the one with the greatest
average Tc (i.e., the one most like the other molecules) was
placed in the test set. Further assignment of molecules was
carried out so that approximately 80% of the data set constituted
the training set and 20% of the data constituted the test set.

Following the establishment of the test and training sets, the
relative distributions of the Tc and pKi values were interrogated
to ensure that both were representative of the data set as a whole.
The Shapiro-Wilks test39 was then used to identify whether data
sets were normally distributed..

Descriptor Selection for QSAR Models. Using MOE, 435
physicochemical descriptors were generated for each com-
pound. These were scaled relative to the maximum reported
value in the data set. Scaled values were correlated to the
compound pKi values for each of the MATs.

Correlation coefficient (r2) with absolute values greater than
0.7 were identified, and the descriptors with the highest absolute
correlation values were used to build QSAR models.

Pairs of cross-correlated descriptors with an absolute value
above 0.7 were identified. The descriptor in each pair least-
correlated with biological activity was removed from the study.

Building and Evaluating QSAR Models. QSAR models for
each MAT isoform were built using QuaSAR in MOE.

The quality of each model was assessed using the correlation
coefficient (r2 value) between the experimental and predicted
activity and a cross-validated correlation coefficient (q2 value)

Iterative removal of the descriptors shown to contribute least
to explaining the variance in experimental activity was carried
out until the r2 and q2 values were similar in value and the model
had the best r2 values possible with the fewest descriptors.

The models that retured the greatest r2 values with the fewest
descriptors for each of the MAT isoforms (DAT, NET, and
SERT) were then applied to predict the pKi values of the
molecules in the test sets using r2 as a metric to evaluate the
model quality.

The extreme studentized deviate test was used on the test-set-
predicted values for each model to detect outliers.

■ RESULTS
Comparative Model Validation. The overall quality of the

three comparative models, the template, and the subsequently
crystal structures was analyzed using three independent but
complementary protein validation tests: Ramachandran (RC)
plot,27 Verify3D29 analysis, and ERRAT.28 These results are
summarized in Table 1.

Overall, the analysis shows that all structures are suitable for
use in docking studies.

Ramachandran plots showed no violations of stereochemical
quality in the MAT binding cavities, so an incorrect protein fold
is unlikely to corrupt the findings of docking experiments. The
small number of violations in the comparative models were
restricted to loop regions This is expected, as many reported
errors in comparative models result from inaccuracies in mobile
loop structures.40 Verify3D results show structures with a high
proportion of residues in favorable amino acid environments
(e.g., hydrophobic residues in hydrophobic environments and
hydrophilic residues in hydrophilic environments), and the
ERRAT results confirm that the electronic environment of the
amino acid residues, as determined by nonbonding distances
between C, O, and N atoms in the structure, are generally good.

The template structure 4M48 and the experimental crystal
structures (4XP9 and 5I6X) outperformed all the comparative

models in each of the tests. This indicates that the models were
not overfitted; hence, the consideration of how the models
perform in docking studies compared to the crystal structures is
meaningful.

Docking Studies. Putative Binding Site Identification.
Putative binding cavities were identified for the MAT
comparative models (Figure 1). To ensure the incorporation

of residues known to be implicated in biological response, the
composition of each site was conducted by cross-referencing
with the literature.7,41,42 These sites were shown to be druggable
via their respective propensity for ligand binding (PLB) scores
and volumes (DAT, 3.8 and 270 Å3; NET, 4.25 and 341 Å3; and
SERT, 3.5 and 249 Å3)

Docking of Native Substrates. Norepinephrine, serotonin,
and dopamine were docked into the comparative MAT models
(Table 2).

Table 1. Protein Validation Results for Comparative Models
and Crystal Structures

structure

Ramachandran, percentage
of residues in the favored or

allowed region (%)

Verify3D, residues
with a mean value

greater than 0.2 (%)

ERRAT,
quality

factor (%)

4XP9
(DAT)

100 91.78 92.16

5I6X
(hSERT)

100 99.53 87.67

4M48 100 94.42 93.51
DAT

model
Q01959

100 89.67 88.36

NET
model
P23975

99.7 89.24 85.77

SERT
model
P31645

99.8 84.17 89.45

Figure 1. Overlaid putative binding sites of the DAT (green), NET
(white), and SERT (magenta) MAT homology models illustrating the
similarities in the size and shape of the putative binding cavities.

Table 2. Baseline S-Score Values for the Docking of Native
Substrates into the MAT Comparative Models

dopamine norepinephrine serotonin

DAT (Q01959) −4.6682 −4.7047 −4.7057
NET (P23975) −4.7191 −4.9835 −5.4317
SERT (P31645) −5.0198 −4.9049 −5.3776
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These docking studies identify a number of amino acids
previously established as key with regard to the formation of
protein−ligand interactions in DAT.20,43 A number of drugs,
e.g., citalopram have been shown to form hydrogen bonds with
Asp79 and Asp 476 in DAT.44,45 These interactions were
replicated in the docking studies with dopamine.

The docking of norepinephrine in the NET model reproduces
the experimental observations of Schlesinger and co-workers,21

who highlighted Asp75, Phe72, Tyr152, and Phe317 as being
important to protein−ligand binding.

The docking of serotonin in the SERT model also shows
reproduces experimental observations, including key interac-
tions with Asp 98 and Tyr 95.46 The X-ray crystal structures of
human SERT bound to paroxetine (45) and several cocrystal-
lized dDAT structures45 are available in the public domain. The
human SERT structure (PDB accession code 5I6X) showed a
binding pocket containing Ile172, Tyr176, Phe335, and Ser438
along with potential hydrogen-bonding interactions between
paroxetine and both Tyr95 and Asp98, as predicted by the
docking studies with the SERT model.

These findings together offer reassurance that the models are
appropriate for use in docking studies. However, it should be
noted that the selectivity of MATs for their preferred transporter
was not clear from the S values returned. Even at this early stage,
this speaks to the challenges associated with the promiscuity of
the MATs and production of a model that can distinguish
between them.

Docking of the Iversen Data set. Thirty-one NPS described
by Iversen and co-workers were docked into the MAT models
using two independent docking algorithms, namely, MOE and
GOLD.48

The dDAT crystal structure complexed with D-amphetamine
(PDB accession code 4XP9),45 was selected from the 4X series
to use in the docking studies as it had the highest resolution
(2.80 Å). Similarly, the human SERT crystal structure
complexed with s-citalopram (5I6X) was used as it had the
highest resolution (3.14 Å).45

Results (Table 3) showed no direct correlation between the S
value, GoldScore, ChemScore, and the pKi (r2 ranging from
0.000 to 0.152). This observation is not novel. It is well-

documented that protein−ligand interactions are complex; thus,
the ability of a single scoring function to correctly account for
the inherent complexity in protein−ligand interaction that gives
rise to the experimental pKi is necessarily limited.49 As such,
Spearman’s rank was used to determine if there were
correlations between the relative ranking of the experimental
activities and the scoring function values.

Consensus scoring, an established technique for improving
the degree of correlation between scoring function predictions
and experimental values,50,51 was carried out. It is predicated on
reducing the bias in any individual scoring function by
combining and contrasting the results obtained from comple-
mentary but independent algorithms.

Scoring functions from MOE (London ΔG, affinity ΔG, ASE,
and αHB), GOLD (GoldScore and ChemScore), and Ballaxy35

(MM, PLP, and PB) were used to identify the average consensus
rankings for each of the 21 NPS in the docking experiments.

Consensus rankings were used as inputs in a Spearman
ranking analysis. In such an analysis, a statistically significant
result is demonstrated when a threshold value (determined by
the size of the data set) is exceeded. The values reported do not
correspond to correlation coefficients. This approach showed
statistically significant correlations at 90% confidence between
ranked experimental activity and consensus rankings for DAT
and SERT. No statistically significant correlation was observed
for NET (Table 3)

Docking studies with the experimental structures showed
improvement over the comparative models in terms of the
Spearman’s correlation coefficient for DAT (from 0.38 to 0.42),
but both experiments showed identical levels of confidence in
the rankings (90%). The Spearman’s correlation coefficient for
SERT also increased (from 0.30 to 0.48), increasing the
confidence level from 90% to 95% as a result (Table 3).

Identification of a Diverse Training Set for QSAR Studies.
The distribution of molecules in the QSAR training sets
according to two different diversity metrics, namely, FPMACCS
and Tanimoto, was investigated using the experimentally
derived pKi for DAT as the discriminant (Figure S1)

The Tanimoto-derived training set is a more complete
representation of the data set, as the distribution of molecules

Table 3. Correlation and Spearman Ranking Analysis Results for ComparativeModels of DAT,NET, and SERT and X-ray Crystal
Structures of DAT and SERT

docking algorithm, forcefield or scoring
function

DAT
(Q01959)

NET
(P23975)

SERT
(P31645)

SERT
(5I6X)

DAT
(4XP9)

correlation coefficients (r2) MOE, AMBER10 0.146 0.017 0.082
MOE, MMFF94x 0.006 0.078 0.033
GOLD, GoldScore 0.021 0.017 0.152
GOLD, ChemScore 0.017 0.000 0.000
MOE, London ΔG 0.38 0.13 0.30

Spearman ranking (ρ) MOE, affinity ΔG 0.42a 0.30 0.28 0.48b 0.42a

MOE, ASE 0.34 0.05 0.13
MOE, αHB 0.40a 0.08 0.28
MOE, E_place 0.22 0.03 −0.03
MOE, E_conf 0.25 −0.02 −0.12
GOLD, GoldScore 0.40a 0.04 0.19
GOLD, ChemScore 0.28 0.19 0.24
Ballaxy, MM −0.22 0.04 0.23
Ballaxy, PB 0.27 0.12 0.11
Ballaxy, PLP 0.41a 0.07 0.23
consensus score 0.38a 0.05 0.40a

aStatistically significant Spearman ranking results at 90% confidence. bStatistically Significant Spearman ranking results at 95% confidence.
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across the one log unit activity range is proportionate to the
distribution across the data set unlike the FPMACCS-derived
training set, which attributes a disproportionate number of
compounds in the pKi 5−6 range to the training sets. Therefore,
test and training sets for all models were established using the
Tanimoto method.

The diverse training and test sets for the MATs identified
using Tanimoto coefficients in conjunction with experimental
activity are summarized in Table 4. pKi values vary for each
compound and MAT isoform. Therefore, the training sets and
test sets for DAT, NET, and SERT are different.

Data Set Preparation. Average pairwise Tanimoto coef-
ficients (Figure S2) were calculated to identify any molecules in
the data set that were significantly different in terms of chemical
structure compared to the data set. This is important because it
is impossible for QSAR models to meaningfully predict the
activities of structurally distinct molecules. the incorporation of
such compounds into the test or training sets could give rise to
insights into the predictivity and robustness of the QSAR. As
such, any molecule with an average Tc value less than 0.2 was
removed from the data set.

One compound, dimethylamylamine (Table S1, compound
9) had a value below this threshold 0.17 (±0.15). It was
removed before the QSAR models were built and tested.

Building and Evaluating QSAR Models. DAT QSAR
model. The incremental iterative approach to descriptor
selection resulted in a model built from three variables (eq 1)
that generated r2 = 0.68 and q2 = 0.51. This suggests that the
model, because of the small number of descriptors used, should
be generalizable and that it is predictive and robust for the
training set.

Prediction of experimental activities in the test set returned r2

= 0.63. This further demonstrates that the model is predictive
but not overfitted.

= × _
+ × _ × _

Kp 5.27760 0.70255 b max1len

0.38911 FASA H 0.29130 opr leadlike
i

(1)

Here b_max1len is the length of the single-bond chain in the
molecule, FASA_H represents the water-accessible surface area
of the molecule, and opr_leadlike is a binary value that
demonstrates whether two or fewer (1) or three or more (0)
of the lead-like criteria in a molecule are violated.

NET QSAR Model. Again, a three-descriptor model (eq 2) was
found to be the best-performing model for the training set (r2 =
0.6). However, the robustness of the model was significantly
poorer when compared to that of the DAT model (q2 = 0.39),
and the predictivity of the model with respect to the test set was
also very poor (r2 = 0.1). This indicates that the generation of a
robust and predictive NET QSAR model was not achieved.

= + × ×

× _ _
+Kp 6.02884 0.40054 PEOE 0.39877 PEOE

0.42037 Q VSA FPNEG
i VSA 0 VSA 3

(2)

Here PEOEVSA‑0 is the van der Waals surface area on the
molecule with partial charges between −0.05 and 0, PEOEVSA+3
is the van der Waal surface area on the molecule with partial
charges between 0.15 and 0.20, and Q_VSA_FPNEG is the
fractional negative polar van der Waals surface area of the
molecule.

SERT QSAR Models. The best-performing SERT QSAR
model was a robust three-descriptor model (eq 3, r2 = 0.87 and T
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q2 = 0.80). This model was also shown to be predictive (test set
r2 = 0.74) without being overfitted.

= × + ×
+ ×

K Ep 3.285274 0.3651 a 0.25467

0.58228 PEOE
i don tor

VSA 0 (3)

Here a_don is the number of hydrogen-bond-acceptor atoms in
the molecule, Etor describes the torsional potential energy of the
molecule, and PEOEVSA‑0 is the van der Waals surface area on
the molecule with partial charges between −0.05 and 0

■ DISCUSSION
Comparative Model and X-ray Crystal Structures

Docking Studies. The availability of comparative models for
all three MAT isoforms, experimental structures for the dDAT
crystal structure complexed with D-amphetamine (PDB
accession code 4XP9, resolution of 2.8 Å),45 and an X-ray
structure for the human serotonin transporter complexed with
the antidepressant s-citalopram (PDB accession code 5I6X,
resolution of 3.15 Å).47 afforded the opportunity to compare
results from the docking experiments with DAT (Q01959) and
SERT (P31645) to those with experimental crystal structures
and examine the limitations of comparative models under these
circumstances.

The 4M4845 template used to construct the DAT (Q01959)
and SERT (P31645) comparative models has amino acid
sequence identities with the MAT isoforms of between 53 and
55%. It is widely accepted that a model with at least 50%
sequence identity to its template can be used meaningfully to
investigate potential protein−ligand interactions.52

When comparing the structures, the overall protein fold and
secondary structures are highly conserved (Figure 2). This

indicates that any selectively that does arise is unlikely to be due
to differences in gross structural differences, which may pose
challenges when attempting to rationalize the selectivity
between the different MATs from the docking studies.

Molecules from the Iversen data set were observed to bind
toward the bottom of the cavities in each of the MAT isoform
models. This is likely driven by the interaction of a conserved
aspartate residue (Asp79 in Q01959, Asp75 in P23975, and
Asp98 in P31645) with an amino functionality on the ligands.
This conserved aspartate residue has been shown to important
in key interactions between the biogenic amines dopamine,
norepinephrine, and serotonin4,17,21,41,45,53−57 in addition to a
large number of known inhibitors of the MAT isoforms.

As a result of the acknowledged lack of correlation between
experimental activity and scoring function values, several
docking studies have used Spearman’s rank to interrogate the
relative rankings of docking poses.58 For this set of experiments
(21 compounds), ρ values above 0.37 and 0.44 are considered
significant at 90% and 95% confidence, respectively.59

Statistical analysis showed no significant correlation for any of
the MATs between the experimental values and any of the
scoring functions at 95% confidence (Table 3). However, there
was significant correlation between experimental activities and
the London ΔG, affinity ΔG, αHB, and GoldScore functions at
90% confidence for dockings in the DAT (Q01959) model.

The obtained results illustrate the inherent challenge
identified because of the similarities between the MATs. To
gain reassurance that the results did not arise because of biases or
limitations in individual scoring functions, high-ranking poses
from the docking experiments were rescored using Ballaxy34

using the MM, PB, and PLP scoring functions.33,34,60 A
Spearman’s ranking analysis incorporating each of the Ballaxy
functions was then conducted.

The results from the rescoring experiment show a significant
relationship at 90% confidence between PLP and experimental
activities for the docking of the data set into the DAT model but
do not improve on the previous results. This suggests that it is
unlikely that a single scoring function is going to be able to
provide insight into selectivity between DAT, NET, and SERT.
Consensus scoring, which looks at average relative rankings
across the scoring functions, did yield statistically significant
results for the DAT and SERT dockings at 90% confidence. This
speaks to the limitations of individual scoring functions in
discrimination at a fine-grained level and the benefits of
consensus scoring in ameliorating bias, which are supported
by previous studies that have shown that using consensus
scoring methodologies improves the correlation for ranked
data.61

Why the consensus approach did not show an improvement
for NET similar to that observed for SERT is unclear. It is
possible that the use of comparative models, as opposed to
experimental structures, could have negatively impacted the
ability of the consensus score methodology to predict the NET
ranked data, but if this was the case similar failings could have
been expected for DAT and SERT given the homologous nature
of the MAT isoforms. Another potential cause could be the
relatively small data set used in the docking study. Many
consensus score studies use between 10054,56 and 1000
ligands.51 This means that the relatively limited variation in
experimentally observed binding values for the 21 ligands in the
Iversen data set may render relative rankings arbitrary and could
explain why docking results are not discriminative. However, if
this were the explanation, it might again be expected that similar
results would be observed for the DAT and SERT docking
studies.

Putting these arguments to one side, given the overall
similarity in shape and size of putative binding cavities, any
differences observed between the MAT models must arise due
to variations in the cavities at the residue level.

Examination of the amino acid sequence alignments of DAT,
NET, and SERT (Figure S3) shows that there is a high level of
conservation across the isoforms in the amino acids near the
conserved aspartate residue. Therefore, the binding site
compositions between the isoforms are expected to be similar.
Analysis of binding site residues at the 1D level shows a high
degree of similarity between the isoforms, e.g., nonidentical but

Figure 2. Superimposed Ca traces of 4M48 (blue), Q01959 (DAT,
green), P23975 (NET, white), and P31645 (SERT, magenta)
illustrating a conserved tertiary structure with variations in loop regions.
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hydrophobic residues. In addition, no differences in amino acid
conformation were observed at the 3D level with respect to
orientation of conserved residues in the MAT homology
models, most likely because they were derived from the same
template.

This similarity between the binding cavities of the MAT
isoforms at the 1D and 3D levels contextualises the difficulties
encountered in developing discriminative docking models. It
also is evidence to suggest that while comparative models are
invaluable for providing testable hypotheses, there may be
limitations when attempting to understanding selectively
between isoforms, particularly where the isoform models are
generated from the same initial templates.

Comparison to X-ray Crystal Structures. The crystal
structure of the human serotonin transport structure 5I6X45 was
validated (Table 1) and used in docking studies. This did not
result in a significant increase in correlation between predicted
and experimental activities when compared to the results from
the SERT (P31645) study. Comparison of the crystal structure
and the model shows a protein backbone RMSD value of 2.65 Å.
However, the major variations between the two structures are
evident in extracellular loop regions, with the relative positions
of secondary structure elements remaining largely conserved.
This helps aid the post hoc rationalization of the lack of
difference in the results of the studies.

However, closer examination of the dockings showed there
was a significant difference in the lowest-energy conformation
for fluoxetine docked into SERT (P31645) compared to the X-
ray crystal structure. The X-ray crystal structure was seemingly
able to accommodate fluoxetine deeper in the binding cavity
than the comparative model.

Interrogation of the structures shows 5I6X has a narrower
entrance to the innermost section of the binding site
(approximately 6 Å in diameter) when compared with P31645
(9.6 Å at the narrowest point and 13.6 Å at the widest point).

The conformations of the binding site residues in P31645 and
the 5I6X also differ. This gives rise to this subtle but significant
alteration in the topology of the binding site (Figure 3).

Spearman rank analysis of the docking studies performed
using the SERT homology model generated a ρ value of 0.30
that was not significant at 90% confidence. However, the studies

with 5I6X generated a ρ value of 0.48, which was significant at
95% confidence. This may be because the narrowing of the
cavity at the deepest part of the binding cavity in the crystal
structure provides an inherent steric constraint for the
placement algorithm that prevents the docking algorithms
from returning favorable scores for molecules positioned toward
the top of the cavity. Hence, differences are easier to detect
because the positions of the docked compounds in the 5I6X
cavity are less variable, meaning that changes in scores are more
attributable to the differences in the structure of the ligands than
the studies carried out in the SERT homology model, which has
a more open cavity and hence fewer inherent constraints.

dDAT crystal structures are also available in the public
domain. Docking studies were conducted using the 4XP9 crystal
structure (2.8 Å resolution) cocrystallized with D-amphet-
amine45 to determine whether similar gains in ρ values for DAT
could be obtained when the crystal structure was used rather
than the homology model. Although ρ values did improve (from
0.38 to 0.42), there was not a significant difference. This was
rationalized post hoc by the fact that superimposition of 4XP9
and the DAT (Q01959) comparative model showed that the
backbones were almost identical (RMSD 0.729 Å) and that the
binding cavities were very similar.

No equivalent NET crystal was available in the public domain
at the time of writing, so no comparable experiment was possible
for this MAT isoform.

Analysis of QSAR Models for the MAT Isoforms.
Relative distributions of experimental pKi values for the
compounds used in this study with reference to the MAT
were analyzed (Figure S4). SERT has the greatest range of
activities (seven log units). The spans of activity values for DAT
and NET are smaller (five log units for both).

Experimental pKi values are normally distributed for DAT and
SERT at 99% confidence. Experimental values for NET are not
normally distributed even at a 90% confidence limit (i.e., the
data are skewed). This may negatively influence the predictivity
of any models generated for NET.

For the DAT QSAR model, activity values in the training and
test sets were normally distributed as per the Shapiro−Wilks
Test (p = 0.902, W = 0.967, H0 is accepted) and the relative
distribution of pKi values in the test and training sets was

Figure 3. (A) Overlaid binding sites of P31645 (green) and 5I6X (magenta) with docked fluoxetine (black ball and stick and cyan ball and stick,
respectively) showing differences in ligand position. (B) Overlaid binding sites of P31645 (orange) and 5I6X (purple) illustrating the variation in side-
chain conformation. Co-complexed s-citalopram (black stick model) from 5I6X is shown for reference.
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reflective of the distribution of experimental activity in the data
set with one exception. Only one compound in the DAT data set
had an experimental activity greater than pKi 8. This means that
the test set did not contain any compounds with a pKi between 8
and 9, whereas the training set did.

Activity values for NET ranged between pKi 4 and 9.
However, these values were not normally distributed even at
90% confidence (p = 0.902, W = 0.876, H0 was rejected).
Twenty-three of the compounds have a pKi value between 5 and
7. One compound has a pKi between 4 and 5, three compounds
have pKi values between 7 and 8, and four compounds have
activity values between 8 and 9. This skew was accounted for in
the generation of the test and training sets for the NET QSAR.
Both training and test sets that mirrored the pKi distribution
across the data set were identified. It was postulated that an
approach of this nature would provide the best opportunity to
generate a QSAR model for NET that was both robust and
predictive despite the inherent limitations of such a skewed data
set.

The activity data for SERT were normally distributed (p =
0.902, W = 0.957, H0 is accepted), spanning from pKi 3 to 10.
The training and test sets generated to construct the QSAR
models were shown to represent the range and distribution of
experimental activities across the whole data set.

Current best practice suggests the maximum number of
descriptors for a QSAR model should not be more than one
descriptor per five compounds This means that the models
constructed for these experiments should comprise no more
than four descriptors.

Relative distributions of experimental activity values appear to
impact on the ability to generate robust and predictive QSAR
models for the MAT isoforms. Where normal distributions in
the overall data set and training and test sets were observed
(DAT and SERT), it was possible to generate models that were
predictive and robust. Where this was not the case (NET), the
predictive ability of the QSAR models was significantly curtailed
and the models were not robust.

Post Hoc Analysis of QSAR Models. DAT. Considering the
DAT QSAR model provides the following insights. Given that
the descriptor values are scaled, the negative coefficients that
preceed the b_max1len and opr_leadlike descriptors indicated
that these were penalty terms.

b_max1len captures the length of the longest single-bond
chain in a molecule as an integer value. Given that this is a
penalty term, longer chain lengths will generate smaller
predicted pKi values, while shorter chain lengths will result in
greater predicted activity values. This could be explained if
entropic arguments are considered. Molecules with shorter
single-bond chain lengths are likely to be more rigid than those
with longer single-bond chain lengths. The shorter-chain-length
molecules will therefore have a smaller entropic penalty to
receptor binding and are predicted by the model to bind more
tightly than larger, more flexible molecules. This term can also be
related back to the three-dimensional structure of the receptor.
Analysis of the Q01959 binding cavity62 shows a narrowing in
the cavity from 10 Å at the mouth to 7 Å at the deepest part of
the pocket where the compounds bind, as shown by empirical
evidence and docking studies. Smaller, less flexible molecules
may be better able to access and interact with the deepest parts
of the cavity, which explains why the b_max1len descriptor is
incorporated into the DAT QSAR model.

The second descriptor, FASA_H, represents the water-
accessible surface area of the hydrophobic atoms in a molecule.

The positive coefficient preceding FASA_H in the model
implies that a larger hydrophobic surface area will result in
higher predicted pKi values.

Several of the amino acid residues comprising the binding site
in DAT are hydrophobic (e.g., L80, A81, V152, F320, and
F326). It follows that interactions with the hydrophobic surface
area of the with hydrophobic atoms in the ligand could be
favorable to protein ligand binding, which gives context as to
why FASA_H is an important factor to explain the difference in
binding affinities for small molecules with DAT.

Energetic arguments would also support the displacement of
labile water molecules from the hydrophobic binding cavity and
their replacement with hydrophobic protein−ligand contacts,
i.e., the greater the water accessible surface area and hence
potential hydrophobic contacts, the higher the pKi. This means
that a hydrophobic compound that can form multiple contact
with the deepest part of the DAT binding cavity, which is also
predominantly hydrophobic, will be predicted to have a higher
pKi than one that only partially fills it, providing context as to
why FASA_H was highlighted as being important in the DAT
QSAR model

A molecule can have one of two values for the final variable in
the DAT QSAR model, i.e., opr_leadlike descriptor: 1, which
indicates fewer than or equal to 2 violations of the Oprea63 lead-
like criteria, and 0, which indicates compounds with three or
more violations. This term is a penalty term in the DAT model,
suggesting that molecules that violate three or more of the Oprea
lead-like criteria are preferred, which counterintuitively implies
that molecules that are not drug-like will preferentially bind
DAT compared to those that are.

All the compounds in the training set, except for GBR 12935,
had an opr_leadlike value of 1. The descriptor is a composite
function, and opr_leadlike values provide no insight into which
of the composite terms were violated. Arguably, this means that
opr_leadlike is most likely a “correction factor” in the DAT
QSAR model. This hypothesis was tested by deleting the
descriptor from the model and regenerating a 2two-descriptor
model using only b_max1len and FASA_H. Results from this
model show values of r2 = 0.67 and q2 = 0.50 for the training set,
which are comparable to those of the three-descriptor model;
however, the r2 value for the test set decreased from 0.63 to 0.35.

The fact that the three-descriptor model outperforms the two-
descriptor model is evidence that opr_leadlike is important for
predictivity as a correction factor. To further probe the
corrective nature of opr_leadlike, a modified two-descriptor
equation was applied (eq 4) to the DAT data set. If opr_leadlike
was genuinely a correction factor, it could be substituted by a
constant value (−0.29310) with little impact on the predictivity
of the model.

= × _
+ × _

Kp 4.9845 0.70255 b max 1len

0.38911 FASA H
i

(4)

Application of eq 4 to the data set leads to predicted pKi values
that are identical to those from the three-descriptor model for
compounds where opr_leadlike is 1 and overprediction for the
handful of molecules where the opr_leadlike value is 0, lending
further credence to the fact that the descriptor indeed functions
as a correction factor and does not have further meaning in terms
of understanding binding to DAT.

NET. Descriptor selection only returned an electronic
descriptor for the NET QSAR model. The best-performing
three -descriptor model that was generated was neither
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predictive (test set r2 = 0.1) nor robust (r2 = 0.6, and q2 = 0.39)
even though time was taken to ensure that both training and test
sets mirrored the data set as a whole and none of variables used
in the construction of the QSAR were cross-correlated.
Therefore, it is unlikely that the model underperforms because
of a lack of due diligence during its construction.

The composition of the data set could explain the under-
performance of the QSAR models. In contrast to the SERT and
DAT data sets, the experimental activity values for NET span a
smaller range. Analysis showed that the data for NET were not
normally distributed. Most of the compounds (23 of 31) have
pKi values between 5 and 7. This clustering of compounds
impacts on how the training set and test sets are constructed. It
becomes inherently more challenging to identify physicochem-
ical properties responsible for variations in activity, which
subsequently impacts how predictive any QSAR model can be.
This limitation was noted when the experiment began, and
mitigations were put in place to ensure the identification of test
and training sets that were representative of the data set. Despite
these measures, it was not possible to generate a predictive and
robust QSAR model for NET. Therefore, it must be concluded
that the small data set and the narrow range of pKi values limit
the ability to generate a robust and predictive model. This is a
known problem in the construction of QSAR models.64

SERT. Of the three MATs, SERT generated the most
predictive QSAR models (r2 = 0.87, and q2 = 0.80). The activity
values in SERT were spread across a wide range, which is ideal
for producing generalizable QSAR models.25

PEOEVSA−0 was shown to be the most important descriptor in
the SERT model. Considering the positive descriptor coefficient
for PEOEVSA−0, this implies that higher affinity will exist in
compounds with neutral or weakly negative values. This suggests
that hydrophobic interactions between the ligand and the
receptor will be important in determining the degree of affinity
with SERT. In this respect, the finding is similar to that for the
DAT model, which placed an emphasis on hydrophobic
interactions to determine receptor−ligand binding.

a_don describes the number of hydrogen-bond-donor atoms
in a compound, excluding atoms that are basic but including
moieties that can function as either an acceptor or a donor.
a_don is a penalty term in the SERT QSAR model by virtue of
the negative coefficient. This means that activity will be higher
when molecules have fewer hydrogen bond donors. As such,
beyond the biogenic amine groups, which are a common feature
of the molecules in the data set, there should ideally be no
further hydrogen-bond donors in the molecule. This aligns with
the relative importance of PEOEVSA−0 in predicting biological
activity in SERT, further supporting that hydrophobic molecule
will bind most strongly.

The final descriptor in the equation is Etor which describes the
torsional potential energy of a molecule. All Etor values are
positive when calculated. Flexible molecules have smaller values,
and more rigid molecules have larger values. Analysis of the
QSAR implies that the binding affinity to SERT will be greater
for rigid molecules than more flexible ones.

This observation is of considerable interest, as it demonstrates
striking similarities between the findings for the DAT and SERT
models. Although the explicit identities of the descriptors are
different between the two models, in both cases the descriptors
are proxies for two overarching features. That is, for binding to
occur to these MATs, molecules need to be hydrophobic
(except for the biogenic amine group) and rigid. These
similarities provide insight into the promiscuity of ligand

binding between the MATs and re-emphasizes the significant
challenge in identifying factors to account for the differences in
binding affinities between the isoforms because of these
similarities.

■ CONCLUSIONS
This study aimed to determine whether in silico structure-based
and ligand-based methodologies could provide insight into
selectivity for the monoamine transporters DAT, NET, and
SERT. Such insight could facilitate the development of MAT-
selective therapeutics such as SSRIs or give insight into
potentially novel chemical scaffolds that, although currently
unexploited, could emerge in the future as NPS.

The overall amino acid sequence between the MATs was
more than 50% identical, which increased to 75% when
comparing the binding sites. This gave early indications that
the structures were highly similar and hence that rationalizing
selectivity at the molecular level could be challenging.

Although a series of independent yet complementary
validation steps showed that the MAT structures were sufficient
for use in docking studies, novel insights that arose as a
consequence of this study include the fact that docking
experiments did not provide insight into the molecular basis
for the difference in activities for the NET comparative model.

The docking experiments carried out on the DAT and SERT
homology models did show correlation between experimental
activity and consensus scores. However, these results did not
provide further insight into how the differences in affinity
between these isoforms for the same molecules had arisen.

Subsequent experiments carried out on the X-ray crystal
structures for DAT and SERT illustrated some of the limitations
of comparative models in docking studies by demonstrating how
small differences can impact on the architecture of putative
binding cavities and influence the results of docking experi-
ments.

Previously undescribed QSAR models that were both robust
and predictive were constructed for DAT and SERT. The SERT
model performed best most, likely because of the diverse range
of experimental pKi values associated with the isoform (range of
7 log units). As a direct consequence of these studies, it was
discovered that it was not possible to identify a robust and
predictive QSAR model for NET, which was likely a
consequence of the skew of the underlying data set, i.e., the
over-representation of compounds with pKi values between 5
and 7.

From both the docking and QSAR studies, it is evident that
can be there are structural similarities in the binding cavities that
may explain both the degree of promiscuity between the
monoamine transporters for the data set investigated and the
similar physicochemical properties shown as important for
binding to DAT and SERT from the QSAR descriptors. The
novel DAT and SERT QSAR models suggest that compounds
should be relatively inflexible and have hydrophobic surface
areas to optimize interaction between the ligand and the binding
sites. These key findings should be considered to contextualize
the considerable challenges in developing both compounds that
are selective for one MAT over another and the computational
models that are able to rationalize these differences.
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