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Extreme weather conditions increase the frequency of regular maintenance on

heritage buildings and cause erosion of traditional materials. Developments in

bio-enhanced self-repair materials provide an opportunity to improve building

performance and reduce the frequency of costly maintenance schedules. The

microbial sequestration of carbon by bacteria, encapsulated and layered into

several limewash coats, facilitates capturing atmospheric carbon and reduces

carbon-generating maintenance regimes. The use of hydrogels, alginates and

biofilm derived biopolymers as novel bacterial encapsulation and nutrient

delivery vehicles is discussed and the opportunity to develop self-healing

sacrificial limewash as a future research project. Microbial enhanced carbon-

fixing limewash may also offer a broader application to improve the

performance of sustainable materials such as hemp-lime bio-composites as

a fast-forward projection of problems and solutions with these materials in the

future.
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1 Introduction

The goal of this review is to improve the long-term CO2 performance of lime

substrates by applying a bioactive-carbonating limewash to protect the renders on

heritage building which are at-risk from the effects of climate change. The objective is

to propose a biological approach to extend limewash performance on building exteriors

which are subjected to weather erosion and because of this approach improve long-term

capture of atmospheric CO2.

Extreme weather patterns generate global droughts, floods, wind-driven rain, changes

in pH and biological attack (Table 1) which threaten heritage building longevity. Climate

change is challenging existing conservation policy for listed heritage buildings such as

potential conflicts with zero carbon programmes and insulation retrofits (Brimblecombe,

Grossi and Harris, 2011).

This study examines the effect climate change will have on heritage buildings

particularly those buildings on at-risk registers and in private

ownership. Maintenance and upgrade programme costs for listed buildings are rising

rapidly, driven by limited artisan skills, traditional material shortages and increasing
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supplemental costs, such as building scaffolding and complying

with health and safety regulations. A comparison of 30 listed

churches in England revealed a range of expenditure for average

cost of repairs in the region of £100–250 k while the speed of

deterioration is so rapid such expenditure is insufficient to

maintain building stability (Historic England, 2019). Without

substantial changes to conservation policies, extreme weather

events will ultimately result in a decline in built heritage assets.

The development of more robust self-healing biomaterials such

as bio-limewash, will help to address maintenance costs while

improving the sequestering of atmospheric CO2 and extending

the longevity of heritage assets.

2 Background

Aware of the challenge, the United Kingdom government,

directed by the 2008 Climate Change Act, publishes a climate

change risk assessment (CCRA) every 5 years (UK Government,

2008). Legislation directed toward moderating greenhouse gases

and their contribution toward solar heat reflection, is under

development. The CCRA3 Risk Independent Assessment 2021, is

a result of more than 3 years of work based on the latest scientific

evidence from over 450 experts on weather-related hazards

informing the CCRA3 Government Report. The

CCRA3 Report has published several themed factsheets

including how cultural heritage has been assessed and the

types of action necessary to adapt to climate change risk.

Pre-1919 homes constitute approximately 20% of the total

housing stock across the United Kingdom. Unlisted pre-1919

buildings more readily accommodate a retrofit intervention to

reduce the carbon footprint (Hamot and George, 2021). In

contrast, listed properties as defined in Planning Legislation

(HM Government, 1997) are governed by less-agile heritage

policies restraining the adoption of zero carbon emission goals

and adaptive strategies to climate change.

Biodesigned applications offer a sustainable approach to

address this challenge by enhancing traditional construction

materials. This paper considers how lime render can be

modified to extend built heritage lifespan and performance,

reduce maintenance costs and lower CO2 emissions. This

review examines current microbe cementitious carbonation

technologies and explores options to enhance the sacrificial

role of limewash to slow down the speed of climate

accelerated lime render deterioration.

Lime was originally selected on availability, aesthetic

qualities, and a proven track record of preserving buildings

(Carran et al., 2012). The microscopic structure of lime

facilitates moisture permeability and when saturated forms a

watertight outer skin limiting the accumulation of trapped water.

Ecologically sustainable, lime slowly absorbs CO2 hardening

while it carbonates. It has a lower embodied energy than concrete

and the potential to embed atmospheric carbon for the lifetime of

the building.

The increase in anthropogenic airborne pollutants and

extreme weather erosion undermine the long-term longevity

TABLE 1 Environmental factors influenced by climate change and their impact on lime-based products.

Factors
influenced by
climate change

Challenge to lime-based
products

References

Temperature In 2021 the maximum temperature reached 32.2°C compared to the average hottest
day during the period 1961—1990 of 31.4°C. In 2022, the maximum temperature was
40.3°C recorded at Coningsby, Lincolnshire and a new provisional temperature for
Scotland was set at 38.7°C. Compared to extensive studies on the impact of higher
temperatures on cement-based products, there is limited research on the impact on
heritage materials such as lime other the effects of fire. Temperatures below 5°C and
higher than 18°C restrict natural carbonation taking place

(RMetS, 2022) (Doleželová et al., 2018; Pachta,
Triantafyllaki and Stefanidou, 2018)

Sea level From the early 1900s sea levels have risen around the United Kingdom by 16.5 cm and
the increase in levels is accelerating. In addition to coastal erosion, the frequent storm
surges result in the generation of wind-driven salt-saturated rain. The Roman architect
Vitruvius in his work De Architectura developed a salt-resistant lime mix to withstand
the eroding effect of sea water by adding finely ground natural mineral marble powder
in a ratio of 1 part lime to three parts pozzolan (volcanic ash). The growth of salt
crystals within the lime reduces the tensile strength of the render. Pozzolans may
effectively lower salt erosion but similarly reduce the tensile strength of the lime

Morgan, (1960)

Changes in pH The increased absorption of CO2. acidifies the ocean and ocean spray, while acid rain
forms due to the sulphur dioxide and nitrogen oxide released from power stations and
volcanoes. An increase in volcanic activity results from climate change as ice-loss
reduces the pressure on the land mantle enabling volcanic venting

Tuffen, (2007)

Biological attack An increase and extension of wet/dry weather cycles encourages fractures in the lime
allowing moisture penetration. Microorganism and their biofilms retain moisture
resulting enlarging the cracks and furthering erosion opening the lime to further
invasion

Viles, (2002)
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of lime-based products. The physical degradation of lime render

and mortar arises from the chemical removal of the calcium ions

by dissolved atmospheric acidic gases and by chemical

substitution with sulphates and chlorides. As erosion occurs,

spaces form in the lime providing damp niches for chemotrophs

which produce toxic compounds of ammonia and nitrite salts

and as they die form a nutrient base for other organisms.

Traditionally, limewash is applied to extend the life of the

underlying render and mortar by providing a sacrificial

surface which is more easily repaired under a regular

maintenance schedule, protecting the building, and reducing

ongoing costs. Extreme weather events result in more intense

wind-driven rain, halving the lifespan of the limewash layer.

Doubling the frequency of the maintenance schedule is likely to

be cost prohibitive and raise the carbon footprint of the building.

A bio-enhanced limewash layer can reduce underlying lime

render damage and can also provide a protective layer to a

wider range of materials such as hemp-lime.

Hemp-lime can reduce or eliminate carbon emissions from

conventional construction processes which can shorten the time

taken to achieve net zero targets (Bharadwaj, Jankovic and Carta,

2021). As hemp-lime bio-composite material comes with

negative embodied emissions of -108 kg CO2/m
3 (Bevan and

Woolley, 2008) resulting from sequestration of carbon dioxide in

the hemp plant during its growth, the use of this material leads to

a significant reduction in embodied emissions. Building

performance improvements resulting from hemp-lime bio-

composites are stable internal air temperatures and relative

humidity. The inclusion of hemp-lime into historic building

repairs is of growing interest for low energy consumption and

occupant health in housing (Eberlin and Jankovic, 2014), as well

as in non-residential projects where stable temperatures and

relative humidity help with the preservation of museum

artefacts (Leskard, 2022) or pharmaceutical products (Couch,

Perry and Wilkes, 2014).

3 Literature review

Carbonates in varying forms of limestone account for nearly

42% of the total carbon on the planet, a significant portion of

which is biogenic in origin (Zhu and Dittrich, 2016). Carbon

sequestration by microbial CO2 fixation is now recognised as an

emerging and promising technology (Rossi et al., 2015).

Photosynthetic microbes, such as cyanobacteria and

microalgae, contribute to capturing CO2 (Kumar et al., 2011).

In addition to the environmental benefits, the commercial

opportunities of exploiting environmentally beneficial

microbial products are significant. Microbial biologics in

2015 were valued at US$ 277 billion, estimated to reach US$

400 billion by 2025 (Grand View Research, 2017). Microbials

contribute toward generated lime-concrete CO2 micro-

encapsulating pastes (Wang and Soens, 2014), biopolymers

(Moradali and Rehm, 2020), biocides and biosurfactants

(Fidanza and Caneva, 2019; Płaza and Achal, 2020), biofilm

generated bioelectricity (Nealson, 2017), biofuels (Kumar et al.,

2018) and brownfield site bioremediation (Megharaj and Naidu,

2017). The economic value of the carbon-fixing global market in

the future is likely to be significantly greater than past estimates.

3.1 Lime render and weather erosion

Lime is produced from burning calcium-based rocks at a

temperature of 900°C forming unstable calcium oxide (CaO)

(Figure 1). Calcium oxide is “slaked” or hydrated with water, to

form lime putty, or dampened aggregate to form “hot-lime.” The

addition of water to calcium oxide is violently exothermic

producing thixotropic wet hydrate, traditionally preferred by

artisans. Hydrated lime undergoes induration from

atmospheric carbon dioxide at a temperature above 5°C and

with a residual moisture level. The carbonation process absorbing

atmospheric CO2 occurs at 5 mm per month from the outer skin

working inwards (Young, 2008).

It is the outer stone or render that is under threat from

climate change (Table 1) causing extended drought and flood

cycles, rain acidity (H2SO3, HNO3) resulting in changes in pH,

increasing temperature, biological attack, and storm force winds

(Sabbioni, Brimblecombe and Lefevre, 2008). Wind driven rain

and rainwater salination in coastal areas drive salts which

accumulate in weathered microcracks. During periods of

drought, salt crystallisation exerts significant pressure within

the spaces in the lime resulting in material failure.

By the 19th century use of lime mortar declined as Portland

cement, an easy to use, fast curing and high compression strength

material, became widely used. Cement has two drawbacks, it can

fracture and become brittle, and it is a major contributor to

atmospheric CO2 (Blankendaal, Schuur and Voordijk, 2014).

Researchers are exploring ways to lower these CO2 emissions due

to the extensive use of concrete in construction, though the costs

remain prohibitive (Scrivener, John and Gartner, 2018).

Lime in comparison is a time-consuming material as the

application requires a build of several layers which is dependent

on weather conditions and availability of competent skills.

Inappropriate conservation treatments such as epoxy resins

and Ba(OH)2 solution are environmentally toxic and hamper

moisture permeability which causes irreversible damage to the

microstructure of the lime (Rodriguez-Navarro et al., 2003).

Additives such as sealants and pozzolans attempt to enhance

the adherence, waterproofing and antiseptic properties of the

lime. Over the centuries the application of lime on buildings have

included additives such as marine salt (1811), skimmed milk

(1881), warm slaughterhouse blood mixed with stale beer (1883),

flour (1887), sugar (1890), and molasses (1913) (Taliaferro,

2015). Artisans believed the addition of blood improved

binding strength, weather resistance and carbonation. This
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may be a result of blood protein hydrolysis within the alkaline

environment (Fangquiang et al., 2015).

Concrete despite the ease of application and high

compressive strength, is subject to cracking. Increased

brittleness generates microcracks allowing water and

pollutants to entry undermining long-term structural integrity.

Thermal expansion between different component materials

reduces material strength which over time leads to

environmental pollution (de Muynck et al., 2008).

Early attempts to incorporate microbial repair mechanisms

to strengthen concrete, involved casting the concrete with

Bacillus spores and calcium lactate (C6H10CaO2) as a nutrient

embedded in clay pellets. As cracks form, water splits the pellets

resuscitating the dormant bacteria. The bacteria then form

calcium carbonate (CaCO3) deposits, sealing the cracks

(Jonkers, 2007; Wiktor and Jonkers, 2011). During this

microbial repair process, the compressive strength of the

concrete was noticeably improved (Bang et al., 2010).

However, anaerobes such as ureolytic bacteria generate eco-

toxic by-products such as ammonia while precipitating

calcium carbonate through biomineralisation, thereby

contributing to toxic run-off. In contrast, autophototrophic

bacteria fix atmospheric carbon forming strong calcite layers

within the cracks and avoid the production of toxic by-products

(Zhu and Dittrich, 2016).

3.2 Mechanisms of bacterial precipitation
of calcium carbonate

Microbial precipitation results from metabolic activities

which are either heterotrophic (e.g., urea hydrolysis) or

autotrophic. The negatively charged outer cell membrane

binds divalent cations such as Ca2+, resulting in the organism

forming a crystal nucleation site. As urea hydrolyses into CO2

and ammonia, bio-deposition increases both the surrounding

pH and resulting carbonate concentration (Chahal, Rajor and

Sidique, 2011). Active microbial CaCO3 precipitation accelerates

with cell metabolism at a faster rate than passive chemical

precipitation (Stocks-Fischer, Galinat and Bang, 1999)

demonstrated by improvements in CO2 sequestration in

Chlorella sp. and Spirulina platensis up to 46% (Ramanan

et al., 2010).

Three autotrophic metabolic pathways are involved in bacterial

calcium carbonate formation (Castanier et al., 1999), non-

methylotrophic methanogenesis, anoxygenic photosynthesis and

oxygenic photosynthesis (Figure 2). All three pathways use CO2

as a carbon source and in the presence of calcium ions, produce a

precipitation of calcium carbonate.

Photosynthesis is the principal contributor to the production

of carbonate rocks (Altermann et al., 2006) such as cyanobacteria

formation of stromatolitic carbonate speleothems in the photic

zone of carbonate caves (Léveillé, et al., 2007). Photosynthesis

leads to calcite precipitation by conducting an HCO3
−/OH−

exchange across the cell membrane increasing the pH around

the cells. By diffusion or via a symporter, CO2 enters the cell wall

(Espie and Kandasamy, 1992), the CO2 is then synthesised into

organic matter while bicarbonate is converted to CO2 and OH−,

the latter released out of the cell increasing the pH of the external

environment. Cyanobacteria are the only organism that utilise

H2O as an electron donor during photosynthesis and the degree

of light intensity is critical for this photosynthetic pathway

(Kumar et al., 2011). Low intensity light limits the biomass

productivity whereas high intensity can cause photo-

inhibition. (Rubio Camacho et al., 2003).

When microbial carbonate is formed, the carbonate adheres

to the original material while retaining moisture permeability

(Rodriguez-Navarro et al., 2003). Importantly, microbial CaCO3

deposition conforms to conservation standards and does not

alter the appearance of the stone (Jroundi et al., 2010).

FIGURE 1
The lime cycle.
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FIGURE 2
Comparison between autotrophic and heterotrophic bacterial production of CaCO3. A redox generated high environmental pH is common
across metabolic pathways. Autotrophic bacteria: Aerobiosis (Dupraz and Visscher, 2005), Anaerobiosis (Baumgartner et al., 2006; Reeburgh, 2007),
Heterotrophic bacteria: Active Precipitation (Stocks-Fischer, Galinat and Bang, 1999), Passive precipitation (sulphur cycle) (Baumgartner et al., 2006;
Braissant et al., 2007), (nitrogen cycle pathways) (Lee, 2003; Rodriguez-Navarro et al., 2003; Kavazanjian and Karatas, 2008; González-Muñoz
et al., 2010; Jroundi et al., 2010; Achal and Mukherjee, 2015; Erşan, de Belie and Boon, 2015; Wei et al., 2015).

TABLE 2 Comparison of three methods employed to inoculate cement paste with bacteria.

Direct application Immobilisation Encapsulation

Advantages Simplest and cheapest method. Bacteria or
spores are added on-site and the bacteria
containing material is directly applied to the
surface (Khaliq and Ehsan, 2016)

Enables the cells to tolerate the alkaline conditions
of the cement paste and survive the mixing process.
Immobilisation in sepiolite a hydrous magnesium
silicate increases the viability of bacterial cells and
extends the calcite precipitation fracture healing
process (Bang, Galinat and Ramakrishnan, 2001;
Seifan et al., 2018; Sandalci, Tezer and Basaran
Bundur, 2021)

The encapsulate protects the bacterial cells or
spores against the harsh alkaline environment and
reduces damage from mixing and application.
Encapsulation enables the introduction of
nutrients into the capsule to extend bacterial
performance (Oyen, 2014;Wang and Soens., 2014)

Disadvantages The harsh alkaline environment and limited
availability of nutrients results in a high cell
mortality and extensive physical damage to any
live cells (Jadhav et al., 2018)

Additional cost and off-site preparation of bacteria
and immobilisation material. Antimicrobial
qualities of immobilisation materials may reduce
bacterial performance (Shaheen, Khushnood and
Ud Din, 2018)

The discarded capsules may reduce the integrity of
the concrete matrix undermining the benefits of
the calcite precipitation. Thick capsule walls may
impede cell resuscitation preventing the cells from
entering the microfractures
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3.3 Methods for bacterial inclusion into a
cementitious matrix

Bacterial inclusion into a cement or lime material follows

three widely used methods, direct application, immobilisation,

and encapsulation (Table 2) (Griño, Daly and Ongpeng, 2020).

The simplest method directly applies live bacterial cells or spores

with or without supporting nutrients to the concrete mix. Any

micro spaces in the concrete fill with calcite precipitate,

improving the overall compression strength (Ghosh et al.,

2005). Due to the high alkaline environment, researchers have

used alkaliphilic or alkali-tolerant strains that are capable of

spore formation such as Bacillus sphaericus, a ureolytic, alkali-

tolerant spore forming microbe. However, unprotected cells

cannot endure the harsh environmental conditions and may

not survive long enough to provide sufficient calcite repair

(Wang and Soens, 2014; Li et al., 2019).

To improve live cell viability and precipitation, bacterial cells

can be immobilised within a protective material. Bacteria

immobilised within graphite nano-platelets and light weight

aggregates can extend calcite precipitation up to 28 days

(Khaliq and Ehsan, 2016). Other protective materials include

limestone powder (Shaheen, Khushnood and UdDin, 2018), iron

oxide nanoparticles (Seifan et al., 2018), polyurethane (Bang,

Galinat and Ramakrishnan, 2001) and sepiolite (Sandalci, Tezer

and Basaran Bundur, 2021) which, subject to availability of

nutrients, can extend viability for up to a year. A third

method for inclusion into a cement or lime paste is to

encapsulate the bacteria or spores within a biodegradable

capsule providing a mechanical buffer during application and

enclosed nutrients to extend cell viability.

3.3.1 Bacterial encapsulation
Encapsulation reduces the risk of physical or chemical

damage to cells or spores prior to release into the

cementitious matrix. The design of the capsule material must

ensure encapsulation does not hinder carbonate precipitation,

access to water, deteriorate the lime or cement matrix chemical

profile nor reduce compression strength. Successful cell

encapsulation becomes a function of surface texture, shell

thickness and diameter (Joseph et al., 2010). Changes to the

wet/dry curing environments can also influence the self-healing

response of encapsulated cells (Wang et al., 2012). Microbial

immobilisation using encapsulation is a more robust approach

compared to solid or fluid microbe inclusion. For the process of

encapsulation to be economic, consideration must include

consistent evidence of microbial survival, longevity in

transportation and ease of usage at the site of application.

3.3.2 Cell encapsulation technologies
The food, medical and environmental sectors utilise

encapsulation for the introduction of targeted microbial cells

as a means of extending the life and effectiveness of the microbes

beneficial metabolic processes, with each technology adapted to

its specific application (Table 3).

Bashan et al. (2002) inoculated soil using microbeads

produced by a low-pressure spray of suspended bacterial

culture in a highly nutrient liquid base mixed into an alginate

solution. The resulting suspension expressed as small diameter

droplets, which when sprayed through a calcium chloride

solution hardened to form 100–200 μm containing colony

forming units. The microbeads produced were viable and

when added to wet or dry mediums could resist a standard

TABLE 3 Applications utilising bacterial inclusion and encapsulation techniques employed.

Encapsulation application Encapsulation technique References

Food bio-products (Such as protection from oxidation,
adverse chemical reactions, evaporation)

Spray drying, spray cooling, extrusion, co-crystallisation,
coacervation

(da Silva et al., 2014; Poornima and Sinthya, 2017; Abd
El Kader and Abu Hashish, 2020)

Phase change materials (PCMs)—organic, inorganic,
eutectic (Protection from flammability, PCM agent
separation, thermal instability)

Emulsions, electroplating, solvent evaporation,
precipitation

(Milián et al., 2017; Gao et al., 2022)

In-situ biodegradation and bioremediation (Cell
immobilisation for use in contamination sites)

Spray-drying, extrusion, freeze drying, electrospinning,
coacervation, liposomes, ionic gelation, molecular
inclusion

(Sarma, Pakshirajan and Mahanty, 2011; San Keskin
et al., 2018; Bamidele and Emmambux, 2020; Guo
et al., 2020; Valdivia-Rivera et al., 2021)

Drug delivery (Colon-targeted antitumour drugs—acid
tolerant pectin polymers to release active drugs at site)

Hydrogels, pellets, microspheres, microsponges Khotimchenko, (2020)

Enhanced construction materials (Concrete-
strengthening enhancements)

Polymeric microcapsules incorporating chemical healing
agents prepared by an oil-in-water dispersion
mechanism based on an emulsion polymerisation
technique. Sonification using a hydrophobic solution to
generate microcapsules. Polymer encapsulation of
bacterial spores Bacillus sphaericus using a melamine-
based microcapsule system. Spores embedded in nutrient
enriched hydrogels mixed directly into the mortar.
Porous expanded recycled glass granules hold the spores
and nutrients and trigger as the crack forms, promoting
substrate repair

(Asua, 2002; Feng et al., 2008; Blaiszik et al., 2009;
Wiktor and Jonkers, 2011; Wang et al., 2014;
Souradeep and Kua, 2016; Zhang et al., 2021)
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freeze-drying procedure. Within 15-days within a moist

environment the microbeads successfully biodegraded within

the medium.

This example illustrates just one of the methods used to

immobilise and encapsulate at the micro level, others include

flocculation, adsorption to surfaces, covalent bonding to a carrier,

intercellular cross-linking, polymer-gel encapsulation, and

matrix entrapment (Cassidy, Lee and Trevors, 1996). Each of

these technologies require the selection of a polymer which will

perform appropriately for the chosen application. There are a

wide range of synthetic and natural polymers available. Natural

biopolymers are more likely to be compatibility with

environmentally sustainable goals than synthetics and better

equipped to provide a supportive environment for microbial

growth when used as the encapsulating medium.

3.4 Encapsulation polymers

3.4.1 Algal polysaccharides
Alginate and κ-carrageenan are two natural polymers, the

guluronic acid in alginates for example, will readily form cross-

linked polymer networks when exposed to Ca2+ ions. Alginates

are linear polymers of β (1,4)—D-mannuronic acid and a (1,4)-

L-guluronic acid monomers which are found in nature in varying

configurations and displaying a wide range of properties (da Silva

et al., 2014; Dhamecha et al., 2019). The cross-linked matrix

encloses spaces which can entrap, protect, and immobilise cells.

Calcium alginate has a thick, large pore alginate matrix ideal for

bacterial occupation (Voo et al., 2016). Bacteria held within

calcium alginate beads consistently generate calcite

precipitation when compared to control groups (Soysal et al.,

2020). As calcium alginate beads biodegrade, they provide

sufficient time for a steady supply of nutrients and calcium

ions for ongoing microbial carbonate precipitation.

Microorganisms are encapsulated into the alginate using the

traditional syringe method to produce the alginate beads which

form in the range of 0.5–3.5 mm diameter (Lancy and Tuovinen,

1984). More advanced techniques can reduce the size of the beads

down to 120 μm (Musgrave et al., 1983).

Algal polysaccharide beads increase the surface for cell

attachment for encapsulated microorganisms allowing for a

substantial increase in cellular metabolism. Alginate

encapsulated Saccharomyces cerevisiae cells produced 80%

more ethanol when compared to planktonic cells (Galazzo

and Bailey, 1990).

Carrageenan produced by red algae such as Chondrus crispus

offer a varied structural diversity composed of linear chains of

β(1,3)-D-galactose and α(1–4)-D-galactose units which form a

robust encapsulation gel (Perrechil et al., 2020). The

encapsulation gel can be formed by extruding carrageenan

and cell suspensions at a temperature of 42°C into a cold

solution of potassium chloride. The risk of denaturing several

of the temperature sensitive proteins within the cells can be

mitigated through the addition of lotus bean or carob bean gum.

This technique has been used for the large-scale production of

encapsulated microorganisms for the treatment of contaminated

soil sites (Hulst et al., 1985). Manufacturing techniques can

generate industrial production capability of encapsulated

alginate more than 24 lhr−1 using resonance nozzles, rotating

disk atomisers, low pressure ultrasonic nozzles and parallel plate

electrostatic droplet generators (Ogbonna et al., 1989; Stormo

and Crawford, 1992). The alginate and carrageenan compounds

improve encapsulation by providing chemical and mechanical

stability, ensuring a more effective release of the capsule contents

and protect the cells if exposed to freeze/thaw cycles (Poncelet

et al., 1994; Malhotra and Basir, 2020; Sarıyer et al., 2020).

3.4.2 Pectin
Like alginate, pectin is an anionic polysaccharide derived

from plant cell walls and is composed of long sequenced partially

methyl-esterified (1–4)-linked a D-galactosyluronic acid which

forms a natural hydrogel with the addition of Ca2+ divalent ions

(Yang, Mu and Ma, 2018). A simple hydrogel encapsulation

technique incorporates the cell suspension with CaCO3 and

sodium alginate, which can be either extruded or applied as

an emulsion (Liu, Xie and Nie, 2020). The thick stable wall of the

pectin capsule exerts a controlled release and reducing the stress

on the capsule contents.

3.4.3 Hydrogels
Initial encapsulation methods utilised a porous aggregate to

encase the bacterial spores and nutrients (Jonkers, 2007).

Hydrogels are a broader range of compounds which include

alginate and pectin, and similarly consist of a hydrophilic gel of

cross-linked polymer chains in which bacteria or spores are held

and from which water is dispersed. Several hydrogels including

calcium alginate provide a non-toxic, renewable natural source

with properties such as a well-structured matrix and large pores,

ideal for encapsulating bacterial cells (Voo et al., 2016). Hydrogel

encapsulation mimics an intracellular environment by holding

over 90% water (Oyen, 2014). The slow release of water held in

the hydrogel matrix extends a protection to the cells from

physical and chemical damage and provides water to facilitate

metabolic CaCO3 precipitation (Wang and Snoeck, 2014).

3.4.4 Bacterially generated
biopolymers—Biofilms

A challenge for biopolymer immobilisation technology is

their relatively low mechanical strength. Instability in the

protective capsule will result in untimely release of bacteria

and premature cell death. This can be addressed by reducing

the size of the capsule to nano or micro encapsulation which

demonstrates improved cell survival rates and cell lifespan

(Jampílek and Králová, 2017; Prasad, Bhattacharyya and

Nguyen, 2017).
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A key advantage provided by bacterial biopolymers is a

three-dimensional space which can accommodate the

microorganism. Bacteria produce four primary polymer

classes, polysaccharides, polyesters, polyamides and

inorganic polyanhydrides each expressing diverse

properties. Microbial extracellular polymeric substance

(EPS) or exopolymers, produced as a survival mechanism

by bacterial cells, adhere to both hydrophobic and

hydrophilic surfaces assisting in the formation of three-

dimensional bacterial biofilm architectures (Decho and

Gutierrez, 2017). As bacterial cells produce the biofilm it

provides a highly effective barrier to toxic molecules. The

barrier raises the minimum inhibitory concentration of

cytotoxins compared to that needed to destroy planktonic

cells. Biofilm biopolymers are more resistance to mechanical

stress by utilising electrostatic and hydrophobic forces,

offering structural protection to resist deforming forces

(Billings et al., 2015).

3.5 Biopolymer enhancements

3.5.1 Additives
Introducing organic or inorganic additives to

biopolymers during the encapsulation process can further

enhance the physical properties for polymer encapsulation

(Table 4). Additives are application specific, but if

incompatible with the polymer may impede the

encapsulation process (Viveganandan and Jauhri, 2000; Liu

et al., 2015). The addition of the additive can enhance bio-

carbonation and is an area for future research to advance

encapsulation technologies. The addition of lectins

-carbohydrate-binding proteins—to biofilm derived

biopolymers improve the linkages between the bacterial

cells and the exopolysaccharides in the capsule wall and

improve the encapsulation success rate (Table 4).

3.5.2 Microfibres
The addition of microfibres together with the encapsulated

bacteria to the lime medium can further advance the bio-

carbonation process. The coupling effect between the added fibres

loaded with encapsulated bacteria into the three-dimensional matrix

of the fibre and the addition of calcium lactate as a precursor improves

the efficiency and extends the bio-carbonation period (Luo, Qian and

Li, 2015; Su et al., 2021). Environmentally compatible fibres such as

cellulose also encourage the bacterial cells to produce EPS possibly by

causing genomic or proteomic changes to the cells (Gupta, Kua and

Tan Cynthia, 2017; Singh and Gupta, 2020).

3.5.3 Bacterial selection
The highest bio-carbonation efficiency can be determined by

the encapsulation of the most appropriate non-pathogenic

bacteria. Within a recent comprehensive review into the

performance of several Bacillus sp. incorporated into concrete

mixes, Bacillus halodurans demonstrated the highest efficiency in

spore formation, survival, and calcium carbonate formation (Sri

Durga et al., 2021).

4 Designing a limewash
encapsulation technology

Souradeep and Kua, (2016) identified an eight-factor checklist

to evaluate the effectiveness of a self-healing system in concrete

substrates. Six of these factors can be adapted to evaluate the

selection of an effective system for use in limewash encapsulation.

1. The capsule wall must be sufficiently robust to protect the

capsule contents during mixing and sufficiently thin to trigger

a timely release of the bacterial healing agent.

2. A uniform density of the capsules contained throughout the

limewash will allow a consistent bacterial release across the

application area.

TABLE 4 Introduction of additives to biopolymers for capsule performance improvement.

Additive Encapsulation advantages References

Clay minerals • Improved capsule wall thickness, • Extended bacterial survival
rate • Reduced UV damage • Controlled cell release

(Zohar-Perez et al., 2003; Liffourrena and Lucchesi, 2018)

Skimmed Milk • Increases cell count • Faster release of cells from the capsule (Yu et al., 2001; Bashan et al., 2002; Power et al., 2011)

Starch (alginate) • Improves capsule matrix strength reducing physical stress •
Reduces exposure to UV radiation

(Dunkle and Shasha, 1989; Jankowski, Zielinska and
Wysakowska, 1997; Kim et al., 2005; Qi and Tester, 2019)

Chitin and chitosan • Bioactive oligosaccharides improve resistance to pathogens and
overall antimicrobial properties of the capsule

(Estevinho et al., 2013; Berger et al., 2014; Muxika et al., 2017;
Nah and Jeong, 2021)

Humic acid • Improved cell survival Rekha et al. (2007)

Sugars • Protection from osmotic pressures • Improved resistance to
desiccation

(Morgan et al., 2006; Schoebitz, López and Roldán, 2013; San
Keskin et al., 2018)

Proteins (hydrolysates, gelatine,
albumin, elastin, casein, biofilm lectins)

• Enhance nutrient uptake by encapsulated cells • Bio-stimulants
• Improved encapsulation rates • Improved linkage between
microorganisms and exopolysaccharides

(Nesterenko et al., 2013; Elzoghby, Elgohary and Kamel, 2015;
Colla et al., 2017; Casadesús, Polo and Munné-Bosch, 2019;
Vejan et al., 2019; Valdivia-Rivera et al., 2021)
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3. The timing of the release of the healing agent must be

sufficiently responsive to be available when and where the

bio-carbonation is required.

4. As the capsules fracture and empty the bacterial contents, the

capsule fragments must not impair the structural integrity of

the limewash.

5. The release of the capsule contents must both maintain the

viscosity of the limewash to allow for uniform distribution of

the capsules and be sufficiently viscous for the bacteria to be

retained at the point of application.

6. The survival rate of the bacteria directly relates to the stability

and releasing mechanism of the capsule polymer. Spores

provide a more robust bioactive content (available for up

to 6 months) whereas active bacterial cells will respond

immediately on release from the capsule but have a limited

lifespan (Wiktor and Jonkers, 2011).

The merits of developing a bacterial-enabled limewash for

use on lime render and lime composites are promising as a slower

eroding limewash sacrificial layer when exposed to extreme

weather events has environmental and economic benefits.

Based on this review, there are four areas which inform the

design for limewash encapsulation and extend the natural

carbonation process through bio-carbonation.

1. Selection of a micro or nano encapsulation technology of no

more than 100–200 μm to protect the capsule contents from

physical stress.

2. Development of an EPS derived biopolymer able to sustain

living bacterial cells and trigger their timely release during the

limewash application process.

3. Assess which additive, microfibre and bacterial species

combine to maximise bio-carbonation as the limewash

carbonates between applications to the stone or render.

4. Design a density formulation for the bacterial capsules which

allows a uniform bacterial release which does not impair the

characteristics of the limewash.

5 Next steps

Local authorities are bound by statutory obligations within

heritage conservation policy that may limit local authority

discretion to consider innovative alternatives within the consent

process. Conservation principles are also challenged to acknowledge

a key ambition of the United Kingdom Government set out by the

Government Construction Strategy to systematically reduce carbon

emissions. The resulting growing body of environmental legislation

may be an opportunity for the introduction of new technologies and

alternative conservation products to expand the portfolio of traditional

materials needed to address extreme weather events. Any new

conservation product must be subject to rigorous review resulting

in the development of technical and safety data sheets, environmental

product declarations and supported by building application guides.

Biodesigned materials for use within the construction industry

can extend beyond enhanced traditional heritagematerials, such as

lime. This review recommends the advantages of bacterial

encapsulated limewash and seeks to encourage ongoing

investment in microbial self-repair technologies. The

incorporation of microbial materials in building construction is

likely to become a mainstream technology (Heveran et al., 2020).

No less important are the opportunities from this review to

encourage development of alternative construction materials,

such as hemp-lime bio-composites which can be protected by

carbon sequestration layers. By extending the performance of

microbe encapsulated limewash beyond listed buildings,

developing innovative biodesigned active coatings to combat

environmental pollutants and GHGs, could have global

impact, environmentally and economically. The availability of

genome databases and further investigation into secondary

metabolic pathways will lead the way toward transformational

microbial advances for environmental improvements for heritage

buildings and within the wider construction industry.
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