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Abstract

The traditional freight wagons employ I-beam sections as the main load-bearing structures. The primary loads they carry

are vertical (from loading units) and axial (from train traction and buffers). Ease of manufacturing has played an important

role in the selection of the I-beam for this role. However, with lightweighting increasingly becoming an important design

objective, an evaluation needs to be done to assess if there are other existing or new section profiles (geometry) that

would carry the same operational loads but are lighter. This paper presents an evaluation of 24 section profiles for their

ability to take the operational loads of freight wagons. The profiles are divided into two categories, namely ‘conventional

– made by wagon manufacturers (including the I-beam)’ and ‘pre-fabricated’ sections. For ranking purposes, the primary

design objectives or key performance indicators were bending stress, associated deflection and buckling load.

Subsequently, this was treated as a multi-criteria decision-making process. The loading conditions were applied as

prescribed by the EU standard EN 12663-2. To carry out structural analysis, finite element analysis was implemented

using ANSYS software. To determine the validity of the finite element analysis results, correlation analysis was done with

respect to beam theory. Parameters considered were: maximum stress, deflection, second moment of area, thickness,

bending stiffness and flexural rigidity. The paper discusses the impreciseness related to the use of beam theory since the

local stiffness of the beam is neglected leading to an inaccurate estimation of the buckling load and the vertical displace-

ment. Even more complicated can be the estimation of the maximum stress to be used for comparison when features

such as spot welds are present. The nominal stress values computed by means of Navier equation lead to an inaccurate

value of the stress since it neglects the variations in the local stiffness, which can lead to an increase in the bending stress

values. The main objective of the paper is the applicability of particular section profiles to the railway field with the aim of

lightweighting the main structure. Sections commonly adopted in civil applications have also been investigated to under-

stand the stiffness and strength under railway service loads. The common approach reported in literature so far makes

use either of the beam theory or topological finite element approach to determine the optimised shape under the action

of the simplified loading conditions. Although the previous approaches seem to be more general, the assumptions made

affect the optimisation process since the stress state differs from that attained under the actual service load in the real

structure. In this paper, the use of complex shape cross sections and detailed finite element models allows to take

account of the real behaviour in terms of stiffness distribution and local stress effects due to manufacturing features like

welds. The structural assessment carried out with the detailed models also allows for the proper comparison among the

considered sections. Analysis of the results showed that three out of the 24 section profiles have the highest potential to

be fitted as the main load-bearing beams for freight wagons, with the pre-fabricated Z-section being the optimum of the

three.
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Background

Generally speaking, the optimisation of any engineer-
ing component requires investigation of the properties
of the materials and sections .1,2,3 Following the trend
of the past decades in the development of structural
optimisation algorithms for weight and member
sizing, many methods have emerged to achieve these
goals.4 Shape and topology optimisation are con-
cerned with finding the optimal shape and topology
of a structure by the iterative process based on struc-
tural response analysis and sensitivity calculation.5 It
is possible to find in literature very complex
approaches such as the multi-resolution and multi-
scale topology optimisation which make use of wave-
let transforms.6 Other simpler approaches, that have a
wider application, are based on topology optimisation
techniques proposing a unified treatment of several
parameters.7 Due to the complexity of some of these
methods, it has been necessary to develop multi-objec-
tive optimisation computer programs to deal with the
increasing numbers of requirements to be included in
the optimisation process.8

In most cases, either the material properties or the
shape of the sections is given and the optimisation
process deals with the selection of the complementary
parameters that satisfy the objective function.9 The
objective function is usually represented by the mini-
misation or maximisation of a given function and it
depends on several parameters called control vari-
ables. The optimisation process usually requires the
identification of more than one objective function
and that more often they are in conflict with each
other.10 The subsequent multi-objective optimisation
process requires that the best match be found between
the available profiles and the requirements of the
design. The optimum solution is found by means of
the performance index, which is a group of properties
that governs some aspects of the performance of a
component.11 When multiple non-commensurable
and conflicting criteria are present, the selection prob-
lem can be solved by adopting multi-criteria decision-
making (MCDM) methods. The MCDM methods
have the capabilities of assessing the criteria weights
and ranking the alternatives from the best to the
worst.12 In order to rank the different solutions and
choose the best among them, the definition of per-
formance matrices (which can be a combination of
materials properties as well as a combination of per-
formances in different areas such as manufacturability
and costs) is needed. It is clear that for identifying the
best solution, ordering and ranking are necessary.
In particular, the ranking process depends on the
availability of assessment criteria.13

When assessing the feasibility of a certain solution,
it is also important to address the uncertainty related
to the materials’ properties, geometry and loading
conditions of the structure in reality. In this view,
methods such as the robust topology optimisation14

have become increasingly important since in them the

variability of certain parameters is taken into account
to identify the optimum solution. Besides the uncer-
tainty, the suitability of a certain design needs to
include aspects related to the manufacturing pro-
cess.15 More often the best solution is the one for
which the costs can be reduced having at the same
time a structural response which is among those in
accordance with the performance index even if it is
not the best.11 In the last few years, solutions such
as the cold-formed beams have been extensively
used for the application in different areas of civil
building due to the optimal combination of perform-
ance and costs of such kind of structure.16 In particu-
lar, cold-formed steel members have become very
popular in the construction of metal wall and roof
systems in industrial and commercial buildings due
to their high strength-to-weight ratio.17,18 Moreover,
it is possible to reduce the costs related to the manu-
facturing process since they can be used to fit different
designs. However, these beams are prone to local
buckling due to the thin-walled nature of the sections.
The local and global buckling which such kind of sec-
tions can undergo requires a full analysis of the
structural behaviour in order to properly understand
the applicability to various design configurations.19–21

The potential applicability of the aforementioned
ideas can push forward the innovation of the trans-
port systems making them more competitive.
Moreover, the need for innovative high-performance
vehicles for the next generation of freight trains is
inevitable. The process of achieving that is complex
due to the fact that you need to optimise the shape
of the cross section as well as choosing a high-
performance material from among those available,
which are about 160,000.1,22

On the basis of the aforementioned considerations,
the identification of the best solution in terms of the
shape of the cross section for the central beams of a
railway wagon requires the identification of as much
information as it is possible in terms of costs, manu-
facturability and structural response. In this view, the
development of a 3D model of intermodal freight
wagon central beams (with which it is possible to iden-
tify the structural response in terms of bending stiff-
ness and strength as well as local and/or global
buckling) has been implemented. The model and
structural response provide the useful information
needed for the identification of the assessment criteria
and thus the ranking assessment in the multi-objective
scheme adopted in this paper to optimise the central
beam of the wagon.

Introduction

Generally speaking, the freight railway vehicles are
designed in such a manner that significant attention
has been given to lightweighting.1,2,22–24 This has been
driven in the main by the consideration for reduced
emissions and impact on the infrastructure.
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In addition, the potential introduction of mixed run-
ning of freight and passenger vehicles requires that
the former has similar dynamic characteristics as the
latter. This includes high acceleration and deceler-
ation as well as higher top speeds. Such improved
performance could be achieved simply by increasing
the locomotive power. However, this would increase
both emissions and track wear. Lightweighting there-
fore provides a viable means to attain higher dynamic
performance with either the same or reduced locomo-
tive power.

The measures of attaining lightweight constructions
can be separated into three types as listed below.25

The first type of lightweight construction is to
replace materials of high specific weight with lower
density materials without reducing stiffness and dur-
ability. The common lightweight materials are, for
example, metals such as aluminium, magnesium, high
strengthened steels or various types of unreinforced
and reinforced composites. Second, structural light-
weight construction implies that load-carrying elements
and exterior attachments are optimised in their (geo-
metrical) design so as to reduce their weight without
any loss in rigidity or functionality. Another way of
realising lightweight constructions is to optimise the
production process. In the automotive industry, the
reduction of spot welds should reduce the body
weight when replaced by new joining techniques such
as laser welding or manufacturing processes such as
hydroforming.

Using the automotive industry as an example, steel
makes up over 50% of road vehicles.21 Application of
high strength steels (HSSs) as opposed to mild steel has
achieved high mass reduction. With freight wagons
made up of over 90% steel structure, the HSSs present
a great potential for significant lightweighting.

Described in this paper is the research conducted
as part of the EC Framework 7 project called
SPECTRUM.23 The aim of the research was to
develop rail freight services to match seamlessly with

customer supply chains. The project determined how
to effectively integrate low-density, high-value, time-
sensitive freight services with existing passenger ser-
vices without damaging either service type, taking into
consideration the operational, technological and
logistics requirements. The main task was therefore
to design a lightweight intermodal freight wagon,
with respect to the existing over-specified heavier
wagons, in order to achieve higher dynamic perform-
ance. This paper presents the applied research con-
ducted in achieving lightweighting of the wagon
through systematic selection of optimal section pro-
files of the superstructure.

Design scope

As mentioned in the previous section, this study relates
to a real-life project to a lightweight intermodal freight
wagon. Table 1 shows specific constraints and factors
that guided the design, specifically the selection
of structural geometry for lightweighting purposes.
The most commonly used compound sections in the
design of freight wagon frames are based on
I- and C-section profiles.26 Some, however, are based
on the Z-section. See Table 2 and Figure 1 for the
illustrations.

Most intermodal freight wagons running in Europe
consist of a platform that has a welded steel structure.
The main supporting elements are ridged and side
rails. The sill is usually made in the form of I-beams
with variable cross section. The traditional design of a
wagon is a platform with a frame in the form of a
beam with a carrier equiresistant (uniform load) sill
(Figure 2). The beam has a variable section, with
weaker sections in the ends (where the bogie is con-
nected), and stronger in the central part where the
bending moment is highest. The frame is a welded
steel structure; the basic elements are the carriers
and side sill. Table 3 shows the design characteristics
of a typical wagon.

Table 1. Design constraints/factors.

Constraint Details Remarks

Space Accommodate power convertor on each semi wagon:

Length¼ 2000 mm

Width¼ 800 mm

Height¼ 600 mm

Weight¼ 500 kg

� For dynamic stability, centrally locate the 0.5 t

power unit.

� PC should be accessible for maintenance. Noting

that the unit has a high reliability.

� Allow for adequate ground clearance (noting that

ground to the wagon top is 1155 mm taking

account of bounce motion).

Accommodate the InnovaTrain horizontal transhipment

technology.

� Five adaptor frames per platform (each weighing

430 kg). Accommodate 20/40/45 foot containers

and 7.45 m swap body.

� Inserting a separate adaptor frames.

Dynamic

performance

To minimise the tare weight, it was recommended that

the centre of gravity should be shifted from the

centre bogie towards the outer bogies.

� Power convertor located towards outer bogies.

� The transhipment adaptor frames are a

constraint.

Matsika et al. 3



As part of structural section optimisation, 24
profiles were considered as detailed in Table 2 and
Figure 1. By applying both quantitative and quali-
tative criteria in a three-stage selection process, one
profile was chosen as preferable to meet the light-
weighting design objective. Details of the process are
presented in the next section.

Methodology

The iterative design process of the SPECTRUM
intermodal wagon is shown in Figure 3. While
the main process was running vertically from
initial CAD design to final CAD model, other fac-
tors influence key inputs that defined the scope and

Figure 1. Pre-fabricated sections.27,28

Figure 2. A standard flat wagon design.22

Table 2. Conventional/ordinary longitudinal beam section profiles.

Type of Cross

Sectional Profile

Profile

Sketch

Closed Box sections

Open Box Sections
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constraints of the design. These included required
dynamic performance, fitting of electrical sys-
tems and the type of cargo transhipment technology
applied.

Two categories of section profiles were considered.
The first constitutes those that are fabricated by
wagon manufacturers from raw material (‘manufac-
turer fabricated’) and the second being those pre-
fabricated by (usually) the steel manufacturers
through cold or hot rolling or forming. Table 4
shows the advantages and disadvantages of the two.

Nine sections, predominantly used in Europe and
USA, and 15 pre-fabricated sections were considered.
In order to determine the most suitable profile, a
three-stage procedure (as indicated in the flow chart
in Figure 4) was applied.

Preliminary selection stage

The initial 24 profiles were assessed based on their
potential for general engineering application for rail
wagons.

First stage selection. Fourteen section profiles that went
through the preliminary stage were analysed for the
following key performance indicators (KPIs):

. Maximum bending stress;

. Maximum deflection;

. Buckling load.

The indicators applied were based on the most crit-
ical loading conditions (bending and axial loading).
Both EC standards and general design of freight

Figure 3. SPECTRUM wagon design process.

Table 3. Design characteristics of a typical flat wagon.

Design aspect Justification

Two I-beams on outer

sides of the wagon

� To provide for multi-platform

concept (fixing stations and

sidewalls for box wagons).

� Improve torsional stiffness

Varying section

in the x–y plane

� Variable section allows for

uniform bending strength

along the beam (lower

bending moment on the

ends).

� Allows for lowering of the

loading platform, thus

accommodating high cube

containers (critical in coun-

tries where the loading gauge

is low).

I-beams � To increase bending strength

in the longitudinal plane.

Permanent joints � Improve rigidity

� Minimise vibrations

UIC Spigots � Improve operational

efficiency

Matsika et al. 5



wagons show that these are two most critical loading
conditions for longitudinal beams. The steel industry
applies these as a measure of cross section resistance
to failure.

The first load is bending in the longitudinal vertical
plane and the other being buffer (compressive) load-
ing from which the tendency to buckle is inferred. To
this effect, the indicators (or KPIs) applied were bend-
ing stress (MPa), deflection (mm) and buckling load
(N). It should be noted that a section profile is deemed
to perform better with reducing values of stress and
deflection. Conversely, it is deemed to perform better
with increasing values of buckling load.

Since lightweighting is the main design objective
function, all the sections considered weighed 215 kg/

m. On that basis, the better performing sections were
those that could provide a good balance of being able
to withstand bending loads and compressive loads as
determined by the indicators explained in the previous
section.

Second stage selection. Three top section profiles were
subjected to assessment using eight KPIs:

. Dynamic performance;

. Manufacturability;

. Number of parts;

. Formability of parts;

. Section assemblability;

. Ease of integration into the wagon structure;

. Cost (implied through manufacturing and trans-
portation costs);

. Environmental impact (e.g. waste generated).

Since the SPECTRUM wagon is concerned with
lightweighting and ensuring that there is space for
auxiliary items such as power convertor, the two
objective functions chosen for the first stage selection
procedure were constant mass per unit length of each
section (kg/m), with each occupying the same
volume. Figure 5 shows the cross sectional area of
the first design (I-beam). This was the benchmark (or
reference) section. All the other sections had to fit
into the 770mm� 700mm space, each having a
length of 7535mm which was the length of the
widest portion of the I-beams. The thickness
chosen for each section ensured a constant mass
per unit length.

Due to the complexity of some of the section pro-
files, FEA was applied using ANSYS to conduct
structural analysis.

Structural analysis using FEA

The numerical simulations carried out during the first
stage covered the determination of the axial buckling
loads and evaluation of the bending behaviour in terms
of maximum bending stress and maximum deflection.

The numerical analysis has been conducted con-
sidering the central longitudinal beam of the current
design of the original SPECTRUM wagon, and repla-
cing the original I-beams, which are located symmet-
rically with respect to the longitudinal plane, with the

Figure 4. Selection process of section profiles.

Table 4. Advantages and disadvantages of manufacturer versus pre-fabricated wagon sections.

Section type Advantages Disadvantages

Wagon manufacturer fabricated High customisation � Long manufacturing process

� Labour intensive

� Leaves much waste (in terms of off cuts)

Pre-fabricated Difficult to customise � Shorter manufacturing process

� Less labour intensive

� Limit on thickness of the raw material
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13 alternative section profiles chosen for the first selec-
tion stage. Shown in Figure 6 are the details of the
section profiles.

For the sake of comparison, the characteristic
dimensions of each section have been chosen so that
the total space occupied by cross sections as well as
the total masses is equal to those of the I-beams.
The two constraints were imposed because the two
design objectives were lightweighting and space opti-
misation. For the cross section of the I-beam, refer to
Figure 5.

The common modelling approach in structural
optimisation is to implement an FE model of the
structure using beam elements. Although this
approach is widely used, there are several limitations
as the real distribution of the stiffness over the com-
ponent and the details related to particular features
are not included. To overcome the limitations, in
this study, the mid-surfaces of the beams have been
generated in the CAD software. These surfaces have
been meshed using shell elements. In particular,
the shell element with linear shape functions, which
are already implemented in the ANSYS library
as SHELL 181, has been used. The welds have been
modelled using rigid connections. For the ordinary
sections, the elements by which the section is com-
posed are connected for the whole length along the
longitudinal direction; thus, the fillet has been mod-
elled by coupling the corresponding nodes using con-
straint equations (Figure 7(a)). For the pre-fabricated
sections, the connection between the different elem-
ents of the section is realised using spot welds
having a diameter equal to 10mm and located at a
distance d¼ 100mm between each other (Figure 7(b)).
Moreover, the spot welds are located symmetrically
with respect to the symmetry planes of the cross sec-
tion (Figure 7(c)).

The material chosen for all sections is S355J2 steel.
It is modelled as linear elastic, having defined Young’s
Modulus E¼ 205GPa and Poisson’s ratio n¼ 0.29.

The boundary conditions adopted for the numer-
ical analysis have been chosen in accordance with the
service conditions of the wagon. Figure 8 indicates the
way in which the loading was applied. The tendency
to undergo buckling under the action of the axial load
has been evaluated, since one of the most important
loading conditions is represented by the compressive
load created at the buffers level. Bending behaviour
has been studied since the loading units would exert
a bending load in the vertical direction. The loading
conditions were applied as prescribed by the EU
standard EN 12663-2.29 The maximum stress and
maximum deflection on the mid-plane of the wagon
are two of the parameters to be considered in the
design of the wagon.

In particular, the loading and constraint conditions
adopted are as follows (Figure 8):

For the buckling analysis: on one end, all degrees
of freedom (DoFs) were constrained. On the other
end (where the axial load is applied), all DoFs were
constrained except for the axial displacement.

For the bending analysis: two hinges at the two
ends and a rigid region in the mid-plane by which
the vertical load equal to 22.5 t (the nominal
axle load for freight wagons) have been applied.
The master node of the rigid region has been used
to constrain the displacement along the longitudinal
axis of the beams.

The ‘first buckling load’ (Figure 9) has been used for
comparison. The maximum bending stress has been
evaluated in the midsection whilst the maximum verti-
cal displacement, due to the different deformed config-
urations, has been measured at the master node of the
rigid region used to apply the vertical load (Figure 11).

Figure 5. Cross section of the longitudinal beams for the design of benchmark wagon.
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Figure 6. List of the 14 sections.

Figure 7. Details of the rigid connections adopted for the continuous spot welds.
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Figure 8. Boundary conditions used for the numerical analysis.

Figure 9. Deformed buckling configuration – details of the longitudinal stress and master node used to evaluate the vertical

displacement.

Figure 10. Boundary conditions adopted for the second series of simulations.

Matsika et al. 9



After FEA of the 14 sections, four sections were
chosen for further selection process based on their
good performance. Further numerical simulations
on the four sections were carried out in order to iden-
tify the optimal section. The criteria for the second set
of analysis are based on the structural response of the
beams under the action of the dynamic loads pro-
duced by the vertical and the transverse accelerations
induced in service (see Figure 10).

In order to better simulate the structural response
of the beams under the real service conditions, two
concentrated masses at the spigots and in the midsec-
tion were introduced. These masses have been rigidly
connected to the nodes of the mid-cross-section by
means of coupling equations. On the nodes of the
concentrated masses, the vertical and the lateral accel-
erations prescribed by the Standard EN 14363:200530

and equal to 5 and 3m/s2, respectively, have been

applied. The forces corresponding to the aforemen-
tioned accelerations produce torsion and bending,
which are transmitted to the constraints at the two
ends, to which vertical and lateral displacements are
associated. The values of these have been used to
compare the performance of the four sections under
evaluation for choosing the optimal section.

Results

First stage selection

The results in Table 5 show that the only KPI that is
barely met is deflection, and it is therefore given the
highest level of importance when ranking the section
profiles. Buckling is given the lowest level of import-
ance in the ranking process because it has been met
based on the prescribed loading of 1200 kN from the
EN 12663:-2 2010.29 This conclusion is further sup-
ported by the fact that the bucking load for all the
14 section profiles ranged from 1577.2 to 8009.9 N
(see Figure 12). Therefore, all the profiles would
meet the buffer loading requirement. Subsequently,
buckling is not considered further in the ranking pro-
cess. The varying importance of the indicators is fur-
ther strengthened by the following:

Bending is applied in daily operations due to the
weight of loading units (containers and swap
bodies).

With the SPECTRUM wagon designed for block
wagon loads, the wagons would not be subjected
to buffer loading on a regular basis.

Figure 11. Vertical, lateral and Von Mises stress for the Z-section.

Table 5. Summary results from FE analysis of initial design of

the SPECTRUM wagon.

Parameter Value Comment

Maximum bending

stress in main

I-beam

149 MPa Less than material

yield strength of

355 MPa

Maximum deflection of

the main I-beam

41.3 mm Close to 45 mm

allowable

Minimum buckling load

of the wagon

1200 kN No buckling observed

in I-beams

FE: finite element.
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The results from buckling loads indicate that out
of the 14 section profiles considered, none would
fail under the buffer loading of 1200 kN for
category F-II freight vehicles according to EN
12663:-2:2010.29

From this point onwards, only two KPIs are con-
sidered. A graphical method is applied to determine
the best section using the optimal trade-off to minim-
ise both the bending stress and deflection objective
functions.

Figure 12. Buckling loads for the 14 section profiles.

Figure 13. Bending stress against deflection for the 14 section profiles.

Matsika et al. 11



The methodology applied to determine which
section profile to choose is based on Ashby,31 which
optimises a design with conflicting objectives; in this
case, minimising both the stress and deflection. From
Figure 13, the top Cluster A (CBS4, OBS1, PFS1,
PFC2, PFC4 and PFC6) in the top right corner is
disregarded on the basis of having high stress and
deflection levels. Although CBS3 (Cluster B) has one
of the least stress levels, it is disregarded on the basis

of having a relatively high deflection compared to
the preferred section profiles. Cluster C (PFZ1,
PFC3, CBS5, CBS1, PFC5, CBS2 and PFC1), which
has the best performing sections, is further analysed as
amplified in Figure 14. Two sections emerge as having
the best performance because they are closest to the
trade-off surface: PFZ1 in terms of lowest deflection
(and therefore high stiffness) and CBS5 with the
lowest stress level. However, each has a downside

Figure 14. Bending stress against deflection for the seven considered section profiles.

Figure 15. The results of dynamic analysis.
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with PFZ1 having a relatively higher stress level, while
CBS5 has a relatively higher deflection. A comprom-
ise is seen in PFC3 which falls near the middle of the
two but is far from the trade-off surface. When con-
sidering section profiles to take forward for further
analysis, these three are selected. This means that
those in the top right corner (CBS1, CBS2, PFC1
and PFC5) are disregarded for further consideration.
However, since CBS1 is the I-beam section (the refer-
ence), it is taken forward for analysis together with
the top three, merely for comparison with current
practice. As mentioned earlier, the analysis carried
so far indicated that deflection is the most important
(or critical) KPI. The lipped Z-section was therefore
the most preferred section due to its low deflection
(high stiffness) characteristic. This is followed by
PFC3, despite it exhibiting higher stress level than
CBS5. Its preference to CBS5 is supported by the
fact that it has a lower deflection. In addition, it
also performs better in terms of buckling resistance
by a factor of nearly 2 (6339.1 N for PFC3 against
3319.9 N for CBS5). Considering the aforesaid

characteristics, the ranking of the three selected sec-
tion profiles (see Figure 14) is as follows:

1. PFZ1
2. PFC3
3. CBS5

The top two most preferred sections are pre-
fabricated ones. This entails that pre-fabricated sec-
tions present a better potential for lightweighting than
the ordinary (conventional) sections.

Second (final) section of section profile

In the previous section, three section profiles were
chosen out of 14 following the analysis of their cap-
ability to withstand bending and buckling loads. A
further more detailed selection process is applied in
this section (stage three in ‘Methodology’ section).
For the purposes of comparison with the baseline sec-
tion, the traditional I-beam (CBS1) is included in the
analyses.

Table 6. Characteristics of section profiles.

Section profile

Section

sketch

Manufacturability

Environmental

impact

Number

of parts

Part

processing

Section

assembly

Lipped Z-section (PFZ1) 1 � Forming

� Cutting

N/A � Pre-fabricated at steel factory

� Transported pre-fabricated

� Minimal waste/off cuts at wagon factory

� Reduced labour requirements

I-beam cut (PFC3) 3 � Forming

� Cutting

� Spot welding � Pre-fabricated at steel factory

� Transported pre-fabricated

Closed C-sections (CBS5) 4 � Forming

� Cutting

� Arc welding

� Integrated box

� Fabricated at wagon factory

� Transported as raw materials

� Increases use of labour at factory

Separate I-beams

(CBS1) – benchmark

3 � Cutting � Arc welding � Fabricated at wagon factory

� Transported as raw materials

� Increases use of labour at factory

Table 7. Final assessment of section profiles.

Section profile

Dynamic

performance

Manufacturability

Cost

Environmental

impact Score

No. of

parts Formability

Section

assemblability Integration

Lipped Z-section (PFZ1) 4 5 4 5 3 4 4 29

I-beam cut (PFC3) 2 2 3 3 3 3 2 18

Closed C-sections (CBS5) 5 1 3 2 4 2 1 18

Separate I-beams

(CBS1) – benchmark

3 2 5 3 4 3 1 21

Matsika et al. 13



The dynamic performance results are summarised in
Figure 15. Although the closed section CBS5 had the
best performance in terms of displacement and stress, it
does not consider material that needed to be removed
to make holes to accommodate the power convertor in
the centre of the wagon (see Table 1).

The key characteristics of each profile are pre-
sented in Table 6 related to manufacturability, cost
and potential environmental impact.

A Likert scale (1–5) is applied to determine how
favourable a section profile is for each KPI. In this
case, a score of 1 represents least favourable, while 5

Figure 16. Correlation between maximum stress and deflection.

Figure 17. Correlation between bending stiffness and deflection.
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represents most favourable. Table 7 presents a sum-
mary of the assessment. For comparison purposes, the
section profile CBS1 that was applied in the original
(first iteration) design has been included as a bench-
mark (or reference). With all KPIs considered, the
Z-section profile presents the overall best option for
lightweighting under the design constraints of the
SPECTRUM Wagon.

Discussion of the results

In the previous sections, the results obtained by means
of the FE models implemented in ANSYS have been
discussed in order to make a comparison among them
and select the cross section suitable for the particular
application. In this section, the same results obtained
with the numerical simulations will be analysed in
order to identify useful correlations and general

Figure 18. Correlation between flexural rigidity D and thickness.

Figure 19. Surface response to correlate buckling load with thickness and flexural rigidity.
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considerations. With this purpose, graphs and
response surfaces have been obtained. The correlation
between the maximum stress and the deflection
(Figure 16) can be fitted with a straight line which
has a different slope with respect to the beam the-
ory because the deflection computed with FE analysis
takes into account local effects, such as rotation of the
cross sections and variation in the stiffness over the
beam, that are neglected in Saint Venant’s principle.

However, Figure 17 shows that the bending stiff-
ness values with respect to the vertical displacement
computed using the beam theory and those from the
FE analysis are in perfect agreement. This is because
the stiffness is a global property which is not affected
by the local behaviour of the beam.

In the analysis of the buckling load for the different
cross sections, most of them undergo local buckling.
The analytical approach that can be used to estimate

Figure 20. Surface response to correlate maximum stress with second moment of area and flexural rigidity.

Figure 21. Surface response to correlate vertical deflection with second moment of area and flexural rigidity.
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the local buckling load for the beam is related to flex-
ural stiffness of the plate. Considering part of the
beam as a plate, the stiffness D is identified as graph-
ically represented in Figure 18. The beams with the
higher values of the flexural rigidity are OBS1 PFC4
PFZ1 and CBS4 all of them having the thickness
greater than 12.75mm. It can be seen that for the

aforementioned beams the buckling is global except
for the CBS4 for which the buckling is local because it
has a closed cross section which leads to a high value
of the second moment of area and thus it is more
prone to a local buckling.

Combining the previous graph with the response
surface shown in Figure 19, it can be seen that the

Figure 22. Surface response to correlate vertical deflection with bending stiffness and second moment of area.

Figure 23. Surface response to correlate vertical deflection with bending stiffness and flexural rigidity.
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higher values of the buckling load are reported at the
values of the flexural rigidity of the four aforemen-
tioned cross sections.

On the basis of the previous considerations, a
single analytical approach cannot be identified to cor-
relate the results with respect to the buckling
response. However, for an open cross section it can
be considered that at a thickness value greater than
12.75mm the buckling is global whilst below this
value the buckling is local. Considering the maximum
bending stress values obtained using FE analysis, the
response surface shown in Figure 20 correlates it with
the I (second moment of area) and the D (flexural
rigidity). The cross sections for which the minimum
values of the bending stress are attained are CBS2
CBS3 and CBS5, which actually are closed sections.
As previously discussed, the middle space between the
beams should be accessible to fit a power convertor
which is a crucial aspect for the design of the central
beam of the wagon (Table 1). For this reason, ‘open’
sections are considered (i.e. those for which it is pos-
sible to access the space between the beams them-
selves). These sections (PFC3, CBS1, PFC1, PFC5
and PFZ1) have bending stress ranging between 38
and 48MPa.

In terms of vertical displacement, it is observed
that an increase in the values of second moment of
area together with the flexural rigidity increases the
values of the vertical displacement due to an increase
in the local stiffness which results in a greater displace-
ment of the sections at the applied load (Figure 21).

Regarding the response surface in which the verti-
cal displacement is related to the bending stiffness and
the second moment of area (Figure 22), it can be seen
that the results are in agreement with the beam
theory. For each value of the second moment of
area, the maximum vertical displacement is attained
at the minimum value of the bending stiffness.

The bending stiffness is a global property of the
beam and does not take into account the local stiff-
ness of the parts constituting the beam. Since the
results discussed in the present paper are related to
beams having the same values of the cross section
area, modifying the thickness the value of vertical dis-
placement increases or decreases depending on
the concurrent effects produced by the local and the
global stiffness of the beam. On the basis of the pre-
vious considerations, the value of the vertical dis-
placement at a certain value of the bending stiffness
increases as the flexural rigidity increases due to an
increase in the local stiffness of the beam which results
in a greater vertical displacement of the entire beam.
Some of the beams under evaluation are composed of
different parts connected together with spot welds or
welds, which affects the deformability as well as the
maximum stress. Since the results discussed here are
affected by these factors, the response surfaces present
a different trend in the region with low values of the
flexural rigidity and bending stiffness (Figure 23).

Conclusions

This paper has applied the conventional engineering
design process to develop a framework specific to select-
ing the geometrical section profile of an intermodal
freight wagon main beam. Various sections were
considered including I, C, Z and derivative compound
sections. Both ordinary (non-pre-fabricated) and pre-
fabricated sections were considered. Out of 24 sections
analysed for structural integrity, bearing in mind light-
weighting as the main objective, the scores indicate that
overall the lipped Z (pre-fabricated) section is the pre-
ferred section. It is noteworthy that within the top three
sections, two were pre-fabricated while the other one
was an ordinary section. This shows that although
pre-fabricated sections have not been applied in con-
struction of freight wagons, there exists high untapped
potential for lightweighting the wagons.

Further analysis was regarding the structural behav-
iour of the considered section profiles. In particular,
the possibility to implement a 3D model of each
beam enabled proper understanding of the response
of each beam in terms of stiffness and strength over-
coming the limitations related to the theoretical beam
theory. However, the response in terms of global stiff-
ness is in accordance with the beam theory, since it is
related to the overall structure, whilst the buckling and
the vertical displacements, which are strongly affected
by the local behaviour of the structure, differ from
what was predicted from the analytical approach.
For the buckling conditions, it has been possible to
identify a cut-off thickness (t¼ 12.75mm) at which
the local buckling becomes global.

Regarding the maximum stress values, the possibil-
ity to model the welds in detail allowed for accounting
for stress concentration effects close to the welding
locations and due to the variation in stiffness. By
means of the detailed modelling approach, more real-
istic values, rather than the nominal values identified
with the beam theory, have been obtained. On the
basis of the results presented in this paper, it can be
deduced that the optimisation process, which relies on
the results obtained using beam theory, has certain
limitations. In particular, ignoring the effects related
to the actual cross section on the local stiffness can
lead to neglecting stress increase or local buckling
phenomena, which can strongly affect the final results
when the cross section is implemented in service.
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