
Doctoral Thesis

Evolution of Spiking Neural Networks
for Temporal Pattern Recognition and

Animat Control.

Author:

Ahmed Abdelmotaleb

A thesis submitted to the University of Hertfordshire in partial fulfilment of the

requirements for the degree of Doctor of Philosophy

February 2015

http://www.herts.ac.uk/

“In science one tries to tell people, in such a way as to be understood by everyone, some-

thing that no one ever knew before. But in the case of poetry, it’s the exact opposite!”

Paul Dirac

Abstract

Evolution of Spiking Neural Networks for Temporal Pattern Recognition

and Animat Control.

I extended an artificial life platform called GReaNs (the name stands for Gene Regu-

latory evolving artificial Networks) to explore the evolutionary abilities of biologically

inspired Spiking Neural Network (SNN) model. The encoding of SNNs in GReaNs was

inspired by the encoding of gene regulatory networks.

As proof-of-principle, I used GReaNs to evolve SNNs to obtain a network with an output

neuron which generates a predefined spike train in response to a specific input.

Temporal pattern recognition was one of the main tasks during my studies. It is widely

believed that nervous systems of biological organisms use temporal patterns of inputs

to encode information. The learning technique used for temporal pattern recognition is

not clear yet. I studied the ability to evolve spiking networks with different numbers of

interneurons in the absence and the presence of noise to recognize predefined temporal

patterns of inputs. Results showed, that in the presence of noise, it was possible to

evolve successful networks. However, the networks with only one interneuron were not

robust to noise.

The foraging behaviour of many small animals depends mainly on their olfactory sys-

tem. I explored whether it was possible to evolve SNNs able to control an agent to find

food particles on 2-dimensional maps. Using firing rate encoding to encode the sensory

information in the olfactory input neurons, I managed to obtain SNNs able to control

an agent that could detect the position of the food particles and move toward it.

Furthermore, I did unsuccessful attempts to use GReaNs to evolve an SNN able to con-

trol an agent able to collect sound sources from one type out of several sound types.

Each sound type is represented as a pattern of different frequencies.

In order to use the computational power of neuromorphic hardware, I integrated GRe-

aNs with the SpiNNaker hardware system. Only the simulation part was carried out

using SpiNNaker, but the rest steps of the genetic algorithm were done with GReaNs.

Acknowledgements

I am using this opportunity to express my gratitude to everyone who supported me

throughout my PhD study, specially my supervisors: Borys Wróbel, Maria Schilstra,

Neil Davey, and Volker Steuber. I would like also to thank my parents for their support

and my sister Noha for her help. Special thanks to my fiancée Ceyna for encouraging

and supporting me. I am also grateful to my friend Adam Peszke for helping me in

reviewing the English of my thesis, and to Micha l Joachimczak for his help in debugging

GReaNs.

The work presented in chapter 8 in this thesis was done in collaboration with Dr. Sergio

Davis from University of Manchester. This work was done during CapoCaccia workshops

in 2012, 2013, and 2014. I received a scholarship from Convergent Science Network

of Biomimetic and Biohybrid Systems (CSN) to attend Capocaccia 2012 workshop.

During Capocaccia 2013 and 2014 workshops, I was supported by both University of

Hertfordshire and Foundation for Polish Science.

I would like to thank Artur Jarmolowski and Arleta Kucz from Adam Mickiewicz Uni-

versity in Poznan for their support and help for maintaining the logistical issues during

my stay in Poland.

I used the PhD thesis of Nicolas Oros as a reference for me to follow the standard of

PhD thesis of University of Hertfordshire as he was a previous PhD student there.

I used a latex template to shape up this thesis. I downloaded this template from

http://www.latextemplates.com. The authors of this template are Steven Gunn and

Sunil Patel. The license of this templatee can be found here.

I used Sharelatex online latex editor for my thesis which allowed me to share the thesis

with my supervisors easily.

My work was supported by Adam Mickiewicz University in Poznan, Poland, by the

Polish National Science Centre (projects BIOEMERGE, UMO-2011/03/B/ST6/00399,

and EvoSN, UMO-2013/08/M/ST6/00922, both awarded to Dr. Borys Wróbel), and by

the International PhD Programme ”From Genome to Phenotype: A Multidisciplinary

Approach to Functional Genomics” (awarded by the Foundation for Polish Science,

co-financed by EU Regional Development Fund—Innovative Economy Operational Pro-

gramme 2007-2013) at the Adam Mickiewicz University.

iii

http://users.ecs.soton.ac.uk/srg/softwaretools/document/templates/
http://www.sunilpatel.co.uk/thesis-template/
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://www.sharelatex.com

Contents

Abstract ii

Acknowledgements iii

Contents iv

List of Figures viii

List of Tables xii

1 Introduction 1

1.1 Motivation and Goals . 1

1.2 Contribution to Knowledge . 2

1.3 Structure of the Thesis . 4

1.3.1 Chapter 2 . 4

1.3.2 Chapter 3 . 4

1.3.3 Chapter 4 . 5

1.3.4 Chapter 5 . 5

1.3.5 Chapter 6 . 6

1.3.6 Chapter 7 . 6

1.3.7 Chapter 8 . 6

2 Literature Review 7

2.1 Central Nervous System . 7

2.2 Neuron . 8

2.3 Spiking Neural Networks . 9

2.3.1 Leaky Integrate-and-Fire neural model 11

2.3.2 Non-Linear Integrate-and-Fire models 12

2.3.3 Hodgkin and Huxley model . 14

2.3.4 Simulation of Spiking Neural Networks 15

2.4 Neural coding . 16

2.4.1 Rate code . 16

2.4.2 Population rate code . 17

2.4.3 Binary code . 17

2.4.4 Latency code . 17

iv

Contents v

2.4.5 Rank order code . 18

2.5 Temporal Pattern Recognition with Spiking Neural Networks 18

2.5.1 Introduction . 18

2.5.2 Encoding and decoding mechanism for Temporal Pattern Recog-
nition . 19

2.5.3 Training SNNs for Temporal Pattern Recognition 19

2.6 Animat Foraging with Spiking Neural Networks 21

2.6.1 Introduction . 21

2.6.2 The model . 22

2.6.3 The agent . 22

2.6.4 The environment . 24

2.6.5 Encoding strategies for the sensory information 25

2.6.6 Adding noise to the neural network 26

2.7 Genetic Algorithm . 27

2.8 Gene Regulatory Network . 28

3 Mapping GRNs to SNNs in GReaNs platform 30

3.1 Introduction . 30

3.2 From genome to network . 30

3.3 Evolution of networks in GReaNs . 33

3.4 Mapping the GRN to the SNN . 34

3.4.1 LIF Model in GReaNs . 35

3.4.2 AdEx Model in GReaNs . 36

3.4.3 Validating the SNN implementation in GReaNs 37

3.5 The Evolution of the SNN . 38

3.6 Conclusion . 38

4 Using GreaNs to Evolve a Spiking Neural Network which Generates
Desired Spike Patterns 40

4.1 Introduction . 40

4.2 Genetic algorithm . 41

4.3 Results . 43

4.3.1 Reproducing spike trains . 43

4.3.2 Double-shifting task . 44

4.4 Conclusion . 48

5 Temporal Pattern Recognition in GReaNs 49

5.1 Introduction . 49

5.2 Genetic algorithm . 50

5.3 Temporal pattern recognition with a sequence of four inputs 50

5.4 Temporal pattern recognition with a sequence of three inputs 52

5.4.1 Pattern 1-2-3 recognition with a varying hard-coded limit on the
size of the network . 52

5.4.2 The robustness to temporal noise 55

5.4.3 Network analysis . 56

5.4.3.1 Category 1 . 57

5.4.3.2 Category 2 . 60

5.4.3.3 Category 3 . 62

Contents vi

5.5 Conclusion . 64

6 Real Time Control of Foraging Behaviours 65

6.1 Introduction . 65

6.2 The Model . 66

6.2.1 Spiking Neural Networks Model . 66

6.2.2 Animat Simulation . 66

6.2.3 Genetic algorithm . 68

6.3 Encoding sensory information in the SNNs in GReaNs 70

6.3.1 The strength of food smell at sensors to synaptic conductance
injection . 70

6.3.2 Unary coding . 77

6.3.2.1 Using the (V − Vth) thrust 77

6.3.2.2 Using the constant thrust 82

6.3.2.3 Using the sliding window thrust 85

6.3.3 Encoding the sensory information at sensors as current injection . 90

6.4 Conclusion . 99

7 Temporal Pattern Recognition in Animats 101

7.1 Introduction . 101

7.1.1 The description of the animat and its simulation environment . . . 102

7.1.2 Genetic algorithm . 103

7.1.3 Results for this task . 103

7.1.4 Using two sound source types . 104

7.2 Conclusion . 108

8 Integrating GReaNs with SpiNNaker 109

8.1 Introduction . 109

8.2 The integration model . 110

8.3 Results . 111

8.3.1 Initial communication protocol with the small SpiNNaker board . 111

8.3.2 Communication protocol with the big SpiNNaker board 113

8.4 Conclusion . 114

9 General Conclusion and Future Work 116

9.1 General Conclusion . 116

9.2 Future Work . 118

9.2.1 SNNs model and the evolutionary algorithm 118

9.2.2 Temporal pattern recognition . 118

9.2.3 Evolving SNNs for animat control 119

Bibliography 121

An example of a PyNN script generated by GReaNS 129

Contents vii

Published Papers 134

List of Figures

2.1 A simplified structure of a biological neuron. 8

2.2 A schematic diagram for a spike generated by a neuron. 9

2.3 An example of a synapse between two neurons. 10

2.4 The first generation model of an artificial neuron 10

2.5 An example of a spike generated by a neuron. 11

2.6 Schematic diagram of the LIF model . 12

2.7 An example of an AdEx neuron behaviour. 13

2.8 The difference between count, latency, and rank coding schemes for 10
neurons over a time window of 10 ms . 16

2.9 Hopfield decoding mechanism for temporal pattern recognition 20

2.10 The structure of the Natschläger and Ruf network 21

2.11 The agent model used by Oros and colleagues 23

2.12 The representation of chemicals in the model presented by Oros and col-
leagues . 24

2.13 The relation between the concentration of chemicals at the antennae and
the firing rate of the sensory neurons in the model presented by Oros and
colleagues . 25

2.14 The relation between the concentration of the chemicals and the firing rate
of the sensory neurons using sigmoid function in the model presented by
Oros and colleagues . 26

2.15 The behaviour of the animat before and after adding the colored noise in
the model presented by Oros and colleagues 28

3.1 A screenshot of the initial window of GReaNs software 31

3.2 The structure of the genome in GReaNs 32

3.3 How edges between nodes in the GRN are created in GReaNs 33

3.4 The relation between the affinity of the connection between any promoter
and any gene in the genome and the β factor in GReaNs 33

3.5 A simple model to test the behaviour of SNNs in GReaNs 38

3.6 The difference between the behaviour of a simple SNN using both GReaNs
and Brian simulator . 39

4.1 The behaviour of the champion networks evolved to match a response of
a single neuron, but shifted with 5 ms . 43

4.2 The behaviour of the champion networks evolved to match a response of
a single neuron, but shifted with 10 ms . 44

4.3 The behaviour of the champion networks evolved to match a response of
a single neuron, but shifted with 20 ms . 44

viii

List of Figures ix

4.4 The behaviour of the champion networks evolved to match a response of
a single neuron, but doubled and shifted with 5 ms 45

4.5 The behaviour of the best LIF network (in terms of generalization) to
match the spikes of single AdEx neuron shifted by 20 ms. 47

4.6 The behaviour of the best LIF network (in terms of generalization) to
match the spikes of single AdEx neuron shifted by 5 ms. 47

4.7 The behaviour of the best AdEx network (in terms of generalization out
of 10 independent evolutionary runs) evolved to double-shift the spikes of
single LIF neuron. 48

5.1 The evolved SNN to distinguish one pattern of four inputs 52

5.2 The behaviour of the evolved SNN to distinguish the pattern 1-2-3-4 . . . 53

5.3 The evolved SNN with one interneuron to distinguish one pattern of three
inputs . 54

5.4 The evolved SNN with two interneurons to distinguish one pattern of
three inputs . 55

5.5 A SNN from category 1 with three inputs and two interneurons robust to
noise with sd 10 ms . 59

5.6 A SNN from category 2 with three inputs and two interneurons robust to
noise with sd 10ms . 61

5.7 A SNN from category 3 with three inputs and two interneurons robust to
noise with sd 10ms . 63

6.1 The model of the animat evolved in order to collect targets on 2D maps. . 67

6.2 The gradation of the strength of food smell generated by 20 targets in
GReaNs . 68

6.3 A suboptimal behaviour of the agent that has been discovered before
when the GRN was used in GReaNs. 70

6.4 The behaviour of the animat that had been evolved using simulation time
2 s and synaptic conductance injection coding when it was simulated for
2 s . 72

6.5 The behaviour of the animat evolved using simulation time 10 s and
synaptic conductance injection coding when it was simulated for 10 s . . . 73

6.6 The behaviour of the evolved animat using synaptic conductance injection
coding using simulation time 6 s during the evolution when simulated for
10 s . 74

6.7 The behaviour of the best evolved animat using synaptic conductance
injection coding using simulation time 6 s during the evolution 75

6.8 The evolution history of the best animat evolved using conductance in-
jection coding . 75

6.9 The behaviour of the best evolved animat using unary coding using sim-
ulation time 6 s . 78

6.10 The evolution history of the best animat evolved using unary coding . . . 78

6.11 The right and the forward thrusts generated by the actuators during the
simulation of the best animat evolved using unary coding and (V − Vth)
thrust with 1 target on the map. 80

6.12 The right and the forward thrusts generated by the actuators during the
simulation of the best animat evolved using unary coding and (V − Vth)
thrust with 20 targets on the map. 81

List of Figures x

6.13 The behaviour of the evolved animat using unary coding and constant
thrust using simulation time 6 s . 82

6.14 The behaviour of the evolved animat using unary coding and constant
thrust using simulation time 12 s . 83

6.15 The right and the forward thrusts generated by the actuators during the
simulation of the best animat evolved using unary coding and constant
thrust with 1 target on the map. 84

6.16 The right and the forward thrusts generated by the actuators during the
simulation of the best animat evolved using unary coding and constant
thrust with 20 targets on the map. 85

6.17 The behaviour of the best evolved animat using unary coding and sliding
window thrust using simulation time 6 s 86

6.18 The behaviour of the best evolved animat using unary coding and sliding
window thrust using simulation time 12 s 87

6.19 The right and the forward thrusts generated by the actuators during the
simulation of the best animat evolved using unary coding and sliding
window thrust with 1 target on the map. 88

6.20 The right and the forward thrusts generated by the actuators during the
simulation of the best animat evolved using unary coding and sliding
window thrust with 20 targets on the map. 89

6.21 The relation between the strength of smell at the sensors and the injected
current at the input neurons using the Hill function (Equation 6.10) using
a step period 1 ms. 91

6.22 The relation between the strength of smell at the sensors and the firing
rate of the input neurons using the Hill function (Equation 6.10) using a
step period 1 ms. 91

6.23 The relation between the injected current at the inputs and the firing rate
of the input neurons using the Hill function (Equation 6.10) using a step
period 1 ms. 92

6.24 The relation between the strength of smell at the sensors and the injected
current at the input neurons using the Hill function (Equation 6.10) after
decreasing the step period to 25 µm. 92

6.25 The relation between the strength of smell at the sensors and the firing
rate of the input neurons using the Hill function (Equation 6.10) after
decreasing the step period to 25 µm. 92

6.26 The relation between the injected current at the inputs and the firing
rate of the input neurons using the Hill function (Equation 6.10) after
decreasing the step period to 25 µm. 93

6.27 The difference between the animat before and after modifications 93

6.28 The difference between the strength of smell at the right sensor and the
left sensor before increasing the radius of the animat and the length of
the sensors and after increasing the radius of the animat and the length
of the sensors . 93

6.29 The behaviour of the best evolved animat using current injection coding
after 1000 generations on a map for 6 targets. 95

6.30 The evolution history of the best animat evolved using current injection
coding . 95

6.31 The behaviour of the best evolved animat using current injection coding
after 1100 generations . 96

List of Figures xi

6.32 The behaviour of the best animat after re-evaluation using current injec-
tion coding simulated for 3 s . 97

6.33 The behaviour of the best animat after re-evaluation using current injec-
tion coding simulated for 30 s . 98

7.1 A simplified description of the task of collecting sound sources. 102

7.2 The evolution history of the evolved animat to collect sound sources with
pattern 1-2-3 and ignore sound sources with other five patterns 104

7.3 The evolution history of the best animat in the population to collect sound
sources with pattern 1-2 and ignore sound sources with pattern 2-1 105

7.4 The behaviour of the evolved animat when the sound sources with the
first pattern were presented . 106

7.5 The behaviour of the evolved animat when the sound sources with the
second pattern were presented . 107

8.1 The communication protocol between GReaNs and SpiNNaker 111

8.2 The distribution of the neurons of the 300 SNNs over SpiNNaker board . 112

8.3 The small SpiNNaker board with only 4 chips which was used in the first
version of the integration . 113

8.4 The big SpiNNaker board with 48 chips which was used in the second
version of the integration . 115

List of Tables

3.1 Mapping the Gene Regulatory Network to Spiking Neural Network in
GReaNs . 35

3.2 LIF model parameters values . 36

3.3 AdEx model parameters values . 37

4.1 Statistics on the behaviour of the best networks of 10 independent evolu-
tionary runs . 46

4.2 Comparison between the networks with the best ferr values during the
evolution and the networks with the best ferr values for generalization
over the 10 independent evolutionary runs. The numbers out side the
parentheses are the values of ferr during the evolution while the numbers
in the parentheses are the values of ferr for generalization 46

5.1 Evolution of robustness to noise in a temporal pattern recognition task
in LIF networks with 1 interneuron . 56

5.2 Evolution of robustness to noise in a temporal pattern recognition task
in LIF networks with 2 interneurons . 56

5.3 Evolution of robustness to noise in a temporal pattern recognition task
in LIF networks with 5 interneurons . 57

5.4 Evolution of robustness to noise in a temporal pattern recognition task
in LIF networks with 10 interneurons . 57

xii

To my fiancée Ceyna - the moon that brightens the sky of my life. . .

xiii

Chapter 1

Introduction

1.1 Motivation and Goals

The work I have carried out during my PhD is part of broader research program to

compare the computational properties of Spiking Neural Networks (SNNs) and networks

that are not spiking. At the beginning of my studies, I built two SNN models: Leaky

Integrate and Fire model (LIF) [1, 2] and Adaptive exponential leaky integrate and

fire model (AdEx) [3] based on the previous Gene Regulatory Networks (GRNs) that

have been implemented before in the artificial life platform GReaNs (the name stands

for Gene Regulatory evolving artificial Networks) [4]. Mapping the GRNs to SNNs in

GReaNs allowed me to use theem genetic algorithm which was already implemented

before in GReaNs and used for GRNs.

Researchers showed that the brain uses temporal patterns of spikes to encode sensory

information [3, 5–11]. It has been shown that temporal coding is used in vision [5],

hearing [12], and olfaction [13] (more details in 2.5.1). The exact learning mechanism

the brain uses for training the neurons to recognize temporal pattern is not clear yet.

Hopfield [14] presented a mechanism for encoding and decoding temporal patterns of

spikes. This mechanism is based on the delays of the synapses of the input neurons

and a coincidence detection mechanism. Based on Hopfield’s work, some studies have

been done in training the delays of the input neurons synapses for temporal pattern

recognition [15–18].

In contrast, I developed a learning algorithm that is based on evolving only the weights

and the topology of the networks using fixed delays for the synapses. After successfully

obtaining SNNs able to recognize some patterns of inputs, I investigated the behaviour of

these networks and checked their robustness when noisy patterns were used for testing.

1

Chapter 1. Introduction 2

The foraging system of many animals depends on the olfactory sensory neurons that

allow collecting information about the odours in the environment [19, 20]. Moths for

example have a strong olfactory system on which their foraging system depend. These

tiny animals with very small brain have the ability to locate chemical sources even if

they are miles away from them [19, 20]. The exact way how the sensory information is

encoded in animal’s brain and how these sensory information is transferred for actions

is not clear yet.

During my PhD studies, I investigated the different ways of encoding the sensory infor-

mation in spiking neural networks and the different ways of updating the forces at the

actuators based on these sensory information.

The ability of using SNNs for animat foraging was also investigated in previous work

[21–25]. GReaNs platform was used before for evolving GRNs able to control animats

for food foraging [26, 27]. Using the same genetic algorithm, I evolved SNNs in GReaNs

to control animats for collecting food particles in 2D environment and compare their

behaviour with the behaviour of the animats when GRNs were evolved.

Being able to explore the tasks of temporal pattern recognition and animat foraging

in GReaNs opened the gate for me to investigate more interesting tasks by merging

both tasks together. I replaced the food particles in the food foraging task with sound

sources. Each sound source is represented with number of input neurons each with

different frequency.

SpiNNaker [28] (Spiking Neural Network Architecture) is a massively parallel computing

system which was designed to support large scale spiking neural networks simulations.

I was interested in using the computational power of SpiNNaker with GReaNs. I inte-

grated SpiNNaker with GReaNs so that the simulation step of the evolutionary algorithm

is done with SpiNNaker and the rest of the steps are carried out using GReaNs.

1.2 Contribution to Knowledge

My main contribution to knowledge has been to extend the range of behaviour of spiking

neural network models. In particular I show how the inherently temporal behaviour of a

spiking neural network can be used in both the decoding of temporally coded information

and in the production of temporal behaviour. This has been shown in the more detailed

contributions described below:

1. I have created a biologically inspired Spiking Neural Network (SNN) model to al-

low the evolution of the topology of the SNNs and the weights of their synapses. I

Chapter 1. Introduction 3

build this model based on Gene Regulatory Network model which was implemented

before in GReaNs platform. I used two popular SNN models in my work: Leaky

integrate and fire model (LIF) and Adaptive exponential leaky integrate and fire

model (AdEx) SNN models. Using genetic algorithm, I evolved the SNN to ac-

complish number of tasks including generating a predefined spike train in response

to specific input, temporal pattern recognition, animat foraging, and temporal

pattern recognition with animats.

2. The first main evolutionary task I have carried out during my PhD studies was

evolving SNNs able to perform temporal pattern recognition. I have introduced an

evolutionary algorithm based on evolving only the topology of the network and the

weights of the synapses between the neurons in the network. Learning algorithms

have been used before in order to obtain SNNs able to perform temporal pattern

recognition [15–18]. These algorithms were based on adjusting only the delays

between the neurons in the SNNs. I have used networks with various numbers of

interneurons (1, 2, 5, and 10) and I compared their robustness to Gaussian noise

with various standard deviation (10, 20, and 30 ms) added to the spike times of

the inputs. Furthermore, I studied the different behaviours of the SNNs of two

interneurons which are robust to noise and found that the positive feedback loops

are important for robustness of the SNNs to noise.

3. I evolved SNNs which were able to control animats in order to perform food for-

aging. I have introduced various coding strategies for the sensory information

represented the concentration of the food. I have also investigated three different

ways of determining the thrusts at the actuators of the animats. After using these

coding strategies and the ways of determining the thrusts, I compared the evolved

animats based on some factors. These factors include the ability of the evolved

animat to cope with high food density when it was simulated on a map which

contained large numbers of targets.

4. I have investigated the ability to evolve spiking neural networks in order to control

an animat able to detect and distinguish between temporal patterns emitted by

simulated sound sources. The animat was supposed to effectively discriminate

between different sequences of simulated acoustic signals, measure the distance to

the sound source, and move towards a desired source. Althought it was not possible

to evolve this animat successfully, I presented some suggestions that could lead in

the future work to have an animat that could successfully do this task.

5. I have integrated the GReaNs evolutionary software with SpiNNaker system [28]

in order to use its computational power to simulate large scale SNNs. The idea

was to run the simulation part in the genetic algorithm with SpiNNaker while the

Chapter 1. Introduction 4

other steps of the genetic algorithm were carried out with GReaNs. I have used

two evolutionary tasks for the integration each with different SpiNNaker board.

Although the integration did not afford any improvement, this work can be seen

as a contribution to theory by presenting a communication protocol between an

evolutionary algorithm and a neuromorphic hardware. I also suggested some ideas

in order so speed up the integration between GReaNs and SpiNNaker.

1.3 Structure of the Thesis

The structure of the thesis is the following:

1.3.1 Chapter 2

This chapter presents the literature review I have done during my PhD studies. At the

beginning of the chapter, I introduced briefly the different neural networks from the

first, second, and third generations. Then I explained two models of artificial neurons

commonly used in SNN research and which I used in my work (Leaky Integrate and Fire

(LIF) [1, 2] and Adaptive exponential leaky integrate and fire model (AdEx) [3, 29]).

Later in this chapter, I presented various neural coding and how sensory and motor

information can be represented in the brain using spikes.

The main two tasks I carried out during my PhD studies were evolving SNNs for temporal

pattern recognition and animat foraging. In the last part of the chapter, I reviewed the

work that have been done previously in these two tasks.

1.3.2 Chapter 3

The third chapter describes the GReaNs platform. This platform was used before to

evolve gene regulatory networks (GRN) to perform some tasks including controlling mul-

ticellular development in three dimensions [30–32], processing signals [33] and controlling

animats [26, 27].

At the beginning of the chapter I describe how the GRN is constructed from the genome

and the steps of the genetic algorithm which is used to evolve the GRNs. The third

chapter includes also a description for the first task I carried on during my PhD study

of mapping the GRN in GReaNs to spiking neural network (SNN). In this task I im-

plemented two different SNN models, Leaky Integrate and Fire model (LIF) [2] and

Adaptive exponential leaky integrate and fire model (AdEx) [3, 29].

Chapter 1. Introduction 5

Finally I validated the behaviour of a simple SNN in GReaNs by comparing its behaviour

with the behaviour of the same SNN simulated using PyNN package [34] with Brian

simulator [35] as a back-end simulator.

1.3.3 Chapter 4

This chapter presents the first evolutionary task I have tried in GReaNs after mapping

the GRN to SNN successfully. This task includes evolving SNNs to obtain a network

able to generate a predefined spike train in response to specific input. This task can be

divided to two main parts. First, obtain LIF (or AdEx) SNN able to generate the same

spike train (shifted by 5ms, 10ms, or 20ms) generated by a single AdEx (or LIF) neuron

when both the SNN and the single neuron are connected to the same input.

The second part consists of obtaining LIF (or AdEx) SNN able to double (generate two

spikes 5 ms and 25 ms after each spike) the spike train generated by a single AdEx (or

LIF) neuron when both the SNN and the single neuron are connected to the same input.

Finally, I tested the generalization of the final networks obtained from the previous two

sub-tasks by comparing the behaviour of the single neuron and the evolved SNN when

both of them are connected to a different input other than the one which was used

during the evolution.

1.3.4 Chapter 5

The temporal pattern recognition task which is one of the two main tasks I did during

my studies is presented in this chapter. In this chapter I studied the ability to evolve

spiking networks, with varying numbers of LIF neurons (1, 2, 5, 10, and unlimited) to

recognize predefined temporal patterns of different number of inputs (3 and 4). Then I

tested the behaviour of the final networks when Gaussian noise with different standard

deviations (10, 20, and 30 ms) was applied to the time of the spike in each input.

Furthermore, I used the noisy inputs during the evolution and checked if I could get

final networks without error. It was interesting then to study the difference between

the structure of the final networks (with only 2 interneurons) which were evolved in

absence of noise and the final networks (with 2 interneurons also) which were evolved

with presence of noise.

Chapter 1. Introduction 6

1.3.5 Chapter 6

After evolving SNNs for generating predefined spike trains and for temporal pattern

recognition, I explored a more practical task that is relevant for evolutionary robotics.

This task includes evolving SNNs for real time control of foraging behaviours. This task

is introduced in this chapter. First, I introduce the the model I used of the animat and

the description of the simulation environment; this includes the structure of the animat

and the food resources on the map. The next section describes the genetic algorithm

used in this task.

One of the most important issues covered in this chapter is the various strategies of

encoding the sensory information in the SNN. Finally, I introduce the results and discuss

about the methods I applied in order to improve the behaviour of the animat.

1.3.6 Chapter 7

This chapter presents the description of the integration of the temporal pattern recogni-

tion task and the real time control of foraging behaviours task. The description includes

the structure of the animat, and the simulation environment. Finally, I introduce the

results of the experiments and discuss these results.

1.3.7 Chapter 8

The integration work I have done with SpiNNaker [28] (Spiking Neural Network Architecture)

is presented in this chapter. SpiNNaker is a massively parallel computing system. Due

to its high computational power, it can afford real-time simulation for a large scale SNNs

with thousands of neurons. In this chapter, I introduce two versions of integration I have

done with two different SpiNNaker boards.

In the first version, the task of evolving LIF SNNs to match the spike train of a single

AdEx neuron shifted by 5 ms described in chapter 4 was presented using the small SpiN-

Naker board with only four chips. In the second version, I used the bigger SpiNNaker

board with 48 chips to integrate with GReaNs. The task of evolving SNNs with 10

interneurons for temporal pattern recognition in the presence of noise was explored in

this version. Finally, I compare in terms of computational time the results of the two

tasks with the results of the same tasks when SpiNNaker boards were not used.

Chapter 2

Literature Review

2.1 Central Nervous System

The nervous system is responsible for controlling all the body parts and for commu-

nications between them. The nervous system consists of two main parts, the central

nervous system which includes the brain and the spinal cord and the peripheral nervous

system which includes sensory and motor neurons responsible for connecting the central

nervous system with all body parts and the environment.

The spinal cord is a long and thin bundle of nervous tissue that resides in the vertebral

cavity. It is responsible for a large part of the communication between the brain and

the rest of the body. On the other hand, the brain, which resides in the head, is

considered the most complex organ in the human body. It is responsible mainly for

processing and analysing the information it receives from the sensory neurons located

in the peripheral nervous system and taking decision based on it. Most of the actual

information processing takes place in the cerebral cortex which plays a very important

rule in consciousness, memory, attention, perception, and language.

The structure and the function of the brain have been studied by many experimentalists

and theoretical neurobiologists over the past hundred years. These studies showed that

the size of the brain varies a lot between animals. African elephant brain contains 257

billion neurons which makes it the animal with the largest counted number of neurons

[36]. Most of the neurons in the elephant brain are located in the cerebellum [36].

Sperm whale brain is about two times larger than elephant brain, but the exact number

of neurons in the whale brain is not known yet. On the other hand, the predatory rotifer

Asplanchna brightwellii brain contains only 200 neurons [37].

7

Chapter 2. Literature Review 8

Human brain has around 80 billions [38] of neurons (Fig. 2.1). These neurons are

considered the elementary processing units in the nervous system [39]. Neurons connect

to each other in an efficient way to process the incoming signals in order to make decisions

and control movements. Neurons communicate with each other with short electrical

pulses.

2.2 Neuron

Fig. 2.1 shows the biological neuron: for a simplified view, each neuron receives most

of the incoming signals through their dendrites, these signals change the voltage (also

called membrane potential) of this neuron. When the voltage reaches the value of the

threshold, the neuron generates a spike or an action potential which is sent to the

connected neurons through the axon. The effect of the presynaptic neurons on the

postsynaptic neurons depends mainly on the type of the presynaptic neuron (excitatory

or inhibitory) and the strength of the synapses between them.

Figure 2.1: A simplified structure of a biological neuron. At the middle of the cell
body of the neuron resides the nucleus which contains the genetic material. Each neuron
receives input spikes from other neurons through its dendrites and cell body. At the
output stage, the neuron uses its axon to send spikes to all connected neurons. From

http://webspace.ship.edu/cgboer/theneuron.html.

The action potential (Fig. 2.2) generated by a neuron is a fast depolarization resulted

from opening of the two ion channels (sodium Na+ and potassium K+) of the neuron.

When the membrane potential reaches the maximum value, the membrane is repolarized

Chapter 2. Literature Review 9

until the potential reaches the minimum value during the refractory period in which the

neuron cannot fires more spikes.

Figure 2.2: A schematic diagram for a spike generated by a neuron. When
the membrane potential of a neuron reaches the threshold (1), its ion channels
open leading for membrane depolarization (2). When the membrane potential
reaches the maximum value (3), the membrane is repolarized and the potential
decreases till it reaches the rest potential (5). The potential continue decreas-
ing until it reaches the minimum value during the repfractory period (6). From

http://www.bazaarmodel.net/Onderwerpen/neuron/ps2lec1.htm.

The spike is transferred from the presynaptic neuron to the postsynaptic neuron through

the synapse between the two neurons. The synapse (Fig. 2.3) is a microscopic gap that

lies between the axon of the presynaptic neuron and the dendrites of the postsynaptic

neuron. A series of chemical events occur during the transferring of the signal through

the synapse. These events include releasing of neurotransmitters (chemical substances)

from the presynaptic neuron and receiving them by receptor sites in the postsynaptic

neuron.

2.3 Spiking Neural Networks

Modeling neural systems has passed a number of generations of research, starting from

McCulloch-Pitts threshold neurons [40] which are considered the first generation of ar-

tificial neural networks. This model simply considers the neuron as a digital element

which sends a binary signal if the sum of the incoming signals, scaled by their weights,

Chapter 2. Literature Review 10

Figure 2.3: An example of a synapse between two neurons. The transfer of the spike
from the axon of the presynaptic neuron (upper part) to the dendrite of the postsynaptic
neuron (lower part) includes transmission of neurotransmitters to the posysynaptic

receptors. From http://www.bazaarmodel.net/Onderwerpen/neuron/ps2lec1.htm.

crosses the value of the threshold (Fig. 2.4). This model have been applied on many

artificial neural networks, for example, multi-layer perceptrons and Hopfield networks

[41].

McCulloch-Pitts’s model has been modified in the second generation by replacing the

threshold by a continuous activation function (usually sigmoid or hyperbolic tangent

[42]) which allows for analog inputs and outputs. The output of the neuron in this

network lies in the range [0, 1] when the sigmoid function is used while it lies in the

range [-1, 1] when the hyperbolic function is used. Second generation neural networks

are considered more powerful as they can be used for analog input and output.

Figure 2.4: The first generation model of an artificial neuron. In this model the neuron
works as a digital element which sends a binary signal if the sum of the incoming signals
(x1, ..., xn), scaled by their weights (w1, ..., wn), crosses the value of the threshold (θ).

Taken from [43].

Chapter 2. Literature Review 11

The use of spikes (Fig. 2.5) appeared in the third generation of neural models, which

is considered even more biologically realistic. Using spikes allows the model neurons in

these spiking neural networks (SNNs) [39, 44–46] to communicate with each other using

single pulses like real neurons. This facilitates the representation of time in the model.

Figure 2.5: An example of a spike generated by a neuron. The neuron receives
inputs from the connected neurons (x1, ..., x4) which allows the membrane potential to
integrate until it reaches the threshold voltage when the neuron fires a spike. After
firing a spike the membrane potential is set to the reset voltage. The neuron needs to
wait for a period of time until it can fire another spike (refractory period). Taken from
http://lis2.epfl.ch/CompletedResearchProjects/EvolutionOfAdaptiveSpikingCircuits/.

2.3.1 Leaky Integrate-and-Fire neural model

The Leaky Integrate-and-Fire (LIF) model [1, 2] is the simplest and most widely used

spiking neuron model. In this model, a neuron is represented by a basic electrical circuit

(Fig. 2.6). As we can see in the circuit on the right-hand side, an input current I(t)

charges a capacitor and flows across a resistor, which are arranged in parallel.

I(t) = I(C) + I(R) (2.1)

where I(C) is the current which charges the capacitor, and I(R) is the current through

the resistor. From Ohm’s law:

I(R) =
V

R
(2.2)

where V is the voltage over the resistor.

From the definition of the capacity:

I(C) = C
dV

dt
(2.3)

Now we can rewrite the equation as follows:

Chapter 2. Literature Review 12

I(t) =
V (t)

R
+ C

dV

dt
(2.4)

We can introduce a new constant called membrane time constant:

τm = RC (2.5)

then we can write the previous equation as following:

τm
dV

dt
= −V (t) +RI(t) (2.6)

which is the general equation of the membrane potential in the LIF model. When the

membrane voltage of a neuron reaches the value of threshold θ, the neuron generates a

spike, and the value of the membrane potential is reset to Vr. Often, a short refractory

period where the neuron is unresponsive is included by clamping the membrane potential

to Vr for the duration of a few milliseconds.

Figure 2.6: Schematic diagram of the LIF model. On the left side, a presynaptic
spike arrives at the synapse. A low-pass filter is used to convert the pulse δ to input
current I(t). On the right side, the basic circuit of the neuron which shows the current

I(t) charges the RC circuit. If the voltage crosses the value of θ at time t
(f)
i , a spike

δ(t− t(f)i) is fired. Taken from [43].

2.3.2 Non-Linear Integrate-and-Fire models

The LIF model is too simple to produce many behaviours observed in real neurons. For

example, behaviours that are not captured by standard LIF models include bursting

and spike rate adaptation, that is, the gradual reduction of spike rate over time. Adding

Chapter 2. Literature Review 13

an adaptation variable and a non-linearity can make Integrate-and-Fire models more

biologically realistic. The adaptation variable allows for the production of spiking and

bursting behaviour of known types of cortical neurons (regular spiking, adapting, delayed

spike initiation, bursting, initial bursting, and fast spiking) [47]. The general equations

of such models are as following:

dV

dt
= F (V)− w + I (2.7)

dw

dt
= a(bV − w) (2.8)

where w is the adaptation variable, a and b are constants, and the function F (V) varies

from model to model.

• Adaptive Exponential (AdEx) LIF Model [3, 29] is one of the non-linear integrate-

and-fire models that uses an exponential function (for example exp(V−Vtδ) where V

is the membrane potential, Vt is the threshold potential, and δ is the slope factor).

Both the membrane voltage V and the adaptation variable w are reset when the

neuron fires a spike (Fig. 2.7).

Figure 2.7: The temporal evolution of the membrane potential (top) and the adap-
tation variable (bottom) in an AdEx model. When the AdEx neuron fires a spike, the
value of the adaptation variable is increased by a constant value which decreases the

activation of the neuron. Take from [47].

Chapter 2. Literature Review 14

• Izhikevich model [48] is also considered non-linear integrate-and-fie model. This

model uses a quadratic function (xV 2+yV +z, where V is the membrane potential

and x, y, and z are constants) for F (V) in Equ. 2.7.

2.3.3 Hodgkin and Huxley model

In 1952, Alan Lloyd Hodgkin and Andrew Huxley presented a neural model when they

performed some experiments on the giant axon of the squid [49–53]. Their model is

based on three different ionic currents, sodium (Na), potassium (K), and a leak current

(L). These ionic currents charge the capacitor as following:

C
dV

dt
= −ΣjIt(j) + I(t) (2.9)

where C is the capacitance, V is the membrane potential, ΣjIt(j) is the sum of the

current from all the ionic channels, and I(t) is the injected current.

The current from all the ionic channels (ΣjIt(j)) can be calculated using the following

equation:

ΣjIt(j) = gNam
3h(V − ENa) + gKn

4(V − EK) + gL(V − EL) (2.10)

where gNa, gK , gL are constanct conductances, ENa, EK , EL are reversal potentials, and

m, n, and h are called gating variables which are used for activation and deactivation

and caclulated using following equations:

dm

dt
= αmV (1−m)− βmV m (2.11)

dn

dt
= αnV (1− n)− βnV n (2.12)

dh

dt
= αhV (1− h)− βhV h (2.13)

where α and β are voltage dependent rate constants.

The Hodgkin and Huxley model is not suitable for large number of neurons simulation

and for real time simulations as it is very expensive model to implement. To evaluate 0.1

Chapter 2. Literature Review 15

ms of model time using Hodgkin and Huxley model, it takes 120 floating point operations

[54].

On the other hand, adaptive leaky integrate and fire models (AdEx and Izhikevich

models) allow to adequately simulate the behaviour of cortical neurons [54].

I used only LIF and AdEx models during my studies as both of them are supported in

SpiNNaker [28] system with which I was planning to integrate my work.

2.3.4 Simulation of Spiking Neural Networks

Simulating SNNs is a field that attracted many researchers and engineers. Many software

tools have been implemented for simulating SNNs on personal computers. These tools

include the simulators Brian [35], Nest [55], and Neuron [56].

Dedicated hardware systems have been also used for SNN simulation. Hardware sim-

ulators can provide real time simulations of SNNs and consume less energy. Based on

the approach used for the implementation of the neural models, the hardware simula-

tors can be divided into analog (for example, Neurogrid [57]) and digital (for example,

SpiNNaker [28]) hardware simulators.

Analog hardware simulators consume less energy and take less area. It has been shown

[58] that analog simulators consume 20 times less energy than digital simulators while

they take 5 times area less than digital simulators. On the other hand, the digital

hardware simulators are less noisy which make them not sensitive to process variability.

Using all of these software and hardware tools will require writing different scripts for

each tool to define the structure and the settings of the SNNs. To make the simulation of

SNNs on different simulation tools, PyNN [34] has been developed. PyNN is a simulator-

independent platform for building neuronal network models. Using PyNN, the network

structure can be described in the Python programming language. PyNN also allows

choosing which simulator back-end to be used during the simulation. Both software

simulators and hardware simulators can be used as a back-end simulator for PyNN.

Chapter 2. Literature Review 16

2.4 Neural coding

The previous section provided a brief overview about some types of neuronal models,

and gave examples of simple spiking neuron models that can be used to study the spike-

based representation of information in neural networks. The current section explores

how sensory and motor information can be represented in the brain using spikes. This

work was presented originally in [59].

2.4.1 Rate code

A firing rate code is the simplest and most commonly used form of information trans-

mission between neurons. This model is based on considering the sensory neurons as

analog-to-frequency converters as the intensity of the stimulus is mapped onto the firing

rate, with high stimulus intensity mapped onto high firing rate and low intensity mapped

onto low firing rate [59].

Figure 2.8: The difference between count, latency, and rank coding schemes for 10
neurons over a time window of 10 ms. Each neuron can generate only one spike. In this
simple example, there are (10 + 1) possible states with a count code, while by using a
latency code we can get 1010 states. Finally, there are 10! possible states using a rank

code. Taken from [59]

Chapter 2. Literature Review 17

2.4.2 Population rate code

This code is a special case of a rate code that is based on counting the number of spikes

generated by a number of neurons during a specific time window. The advantage of a

population rate code compared to a rate code that relies on a single neuron is that the

time window that is required to count spikes is smaller. Fig. 2.8 illustrates a population

rate code (here called count code) that operates based on a single spike per neuron. In

this particular example there are nine spikes generated during a window of 10 ms, so

the population frequency of this population of N = 10 neurons is 90s−1. In order to

compare this code with other codes, the amount of data (in bits) that can be represented

by this code will be calculated by taking the logarithmic value with base 2 of the possible

number of states that can be represented with each code. There are (N + 1) possible

states for the count code of this population during this window (from 0 to N spikes). In

which means that the maximum amount of data that can be transferred using this code

is log2(N + 1) bits.

2.4.3 Binary code

During the observation window, each neuron could either fire one spike or keep silent,

so each neuron could be seen as a line in a ten-line digital cable. As we can see in

Fig. 2.8, the current state of the population could be described by the binary sequence

1111111101, and the total amount of information that could be transmitted would be

log2(2
10) bits or in general for N neurons log2(2

N) bits.

2.4.4 Latency code

The latency or timing code is one of the most efficient codes as it is based on the

precise timing of the spikes of each neuron. The middle column in Fig. 2.8 shows the

latency code of each neuron. Since the observing window is 10 ms, the latency code can

take any of the values from 1 to 10 or null. The amount of information that can be

transmitted using this code depends on the precision of the determination of the time of

each spike. Using a precision of 1 ms, the maximum amount of information that could

be transmitted in the observation window (t) is log2(t)
N bits, where N is the number of

neurons. However, although efficient, latency codes are very sensitive to temporal noise

in the spike trains.

For a population of neurons, the relative latency code of each of them can be interpret

the spiking patterns generated by this population.

Chapter 2. Literature Review 18

2.4.5 Rank order code

Instead of looking at the exact timing of the spikes, this code is based on the order

in which the neurons fire spikes, thereby addressing the problem of the sensitivity of

a latency code to noise. For the population in Fig. 2.8 the order C-B-D-A-E-F-G-J-

H-I is transmitted. There are N ! different orders that can be generated by N neurons

which makes the total amount of information that could be transferred using N neurons

log2(N !) bits.

2.5 Temporal Pattern Recognition with Spiking Neural

Networks

2.5.1 Introduction

In the 20th century, it was widely believed that neurons in the brain use firing rate

(described in 2.2.1) to encode their sensory information (for example, [60, 61]). One

of the early and leading studies in neural coding showed that there is a strong relation

between the firing rate of the stretch receptor neurons in the muscles and the force

applied to the muscle [62, 63]. Based on these studies, the firing rate coding was used

to describe the properties of different sensory neurons in response to various actions. It

was used to describe the modality and topographical attributes of cat’s cortex neurons

in response to different actions including movement of hairs and pressure upon the skin

[60]. Moreover, the firing rate was used to describe the properties of anesthetized cat’s

cortical neurons in response to stimulating its retina separately or simultaneously with

light spots of various sizes and shapes [61].

By the end of the 20th century, many studies have been made criticizing the ability of

firing rate to encode all sensory information. Temporal pattern code was presented as

an alternative [3, 5–11]. For example, one of these studies [5] criticized the ability of the

firing rate coding to be used in the movement-sensitive neuron in the visual system of

the blowfly. The reason behind that is that the course correction of the blowfly takes

only 30 ms while the firing rate of the movement-sensitive neuron is in the range between

100 to 200 s−1. This constraint limits the number of spikes generated by the movement-

sensitive neurons during the course correction of the blowfly to an extent that makes

using firing rate code not appropriate.

Other studies [9] proposed that cortical neurons use more than one form of neural

coding. For single neurons both firing rate code and temporal structure of the spike

trains are used. For large population of neurons, both the population coding and the

Chapter 2. Literature Review 19

temporal coding can be used. As I mentioned in the previous section, the population

code is considered a special case of the firing rate code which involves counting the spikes

generated by a population of neurons. The coordinated-coding uses the relationship

between the signals from the neurons in this population to represent the messages in the

cortical neurons. This relationship could be the order of the spikes generated by each

neuron in the population.

Thorpe and colleagues argued that human brain can recognize 3D objects in less than

400 ms which makes it impossible for the straight forward firing rate code to be used

for processing information for vision without using the exact time of spikes [64]. Fur-

thermore, it has been shown that temporal coding is used for processing information for

hearing [12] and olfaction [13].

2.5.2 Encoding and decoding mechanism for Temporal Pattern Recog-

nition

As we explored in the previous section that it is widely accepted that the brain uses

temporal pattern of inputs to encode sensory information. Hopfield suggested an encod-

ing and decoding mechanism for temporal pattern recognition [14]. His mechanism was

based on the synaptic delays of the inputs with the temporal patterns, then detecting

the coincidences between these inputs (Fig. 2.9). He suggested that radial basis function

can be used by the decoding neurons for recognizing specific temporal patterns.

2.5.3 Training SNNs for Temporal Pattern Recognition

Delays play a crucial rule in the mechanism suggested by Hopfield. If his mechanism is

true, then there must be a learning mechanism for these delays in the brain. Natschläger

and Ruf have suggested a structure of a Spiking Neural Networks used for temporal

pattern recognition [15]. They also proposed a learning algorithm for the synaptic

delays that allows obtaining a network able to differentiate between different temporal

patterns.

The network Natschläger and Ruf have presented (Fig. 2.10) contains two layers. The

input neuron layer contains all the inputs of the network (u1 to um). Each input (ui)

fires only one spike at time xi during a total interval T . The second layer is the output

layers which contains the output neurons (v1 to vn). Since the main job of the output

neurons is to calculate a radial basis function (RBF), output neurons are called RBF

neurons.

Chapter 2. Literature Review 20

Figure 2.9: Hopfield decoding mechanism. The mechanism that was suggested by
Hopfield includes two aspects. First, each of the synapse between the inputs and the
decoding neuron has delay, then coincidences of the input patterns is detected using
radial basis function (RBF) in the decoding neuron which is called RBF neuron. Taken

from [65]

RBF neuron is a neuron that spikes only if it observes the same input pattern that the

neuron was encoded with.

Each input neurons is connected with RBF neuron by a synapses with weight wij and

delay dij . If the spikes from all input neurons arrive at any RBF neuron at the same time,

this will let the RBF neurons fire a spike which will inhibit the other RBF neurons before

this RBF neuron inhibits itself. Natschläger and Ruf have used leaky-integrate-and-fire

model to model the RBF neurons.

Natschläger and Ruf used an unsupervised learning algorithm for the RBF neurons to

be able to cluster input patterns. The idea of their algorithm is to allow each input

neuron ui to be connected with each RBF neuron vj with multiple synapses each with

different weight w
(k)
ij and delay d

(k)
ij . The values of the weights and delays are initially

chosen randomly from predefined ranges. Each RBF neurons vj should receive at least

one spike from all inputs before it spikes. The idea of the algorithm is that each RBF

neuron rewards the synapses which drive it to spike and punish the other synapses. The

rewarding and punishment mechanism is performed by allowing each RBF neuron to

propagate spikes back through its synapses when it fires a spike. Based on the differ-

ence between the presynaptic and postsynaptc spikes times each synapse is rewarded

(punished) by increasing (decreasing) the synaptic weight respectively. In case that the

Chapter 2. Literature Review 21

Figure 2.10: The structure of Natschläger and Ruf network. Each input neuron ui
is connected with each output neuron vj by a synapse with weight wij and delay dij .
When the output neuron fires a spike it inhibits the other output neurons and then it

inhibits itself.Taken from [15]

difference between the presynaptic and postsynaptc spikes times is small, the synapse is

rewarded and vise verse.

Steuber and colleagues also showed that decoding of temporal parallel fibre input pat-

terns can be implemented in a multi-compartmental model of a cerebellar Purkinje cell

[16–18, 66]. They used a non-hebbian learning algorithm for training the synaptic delays

between the neurons in the network. They used a biochemical mechanism for adapting

the synaptic delays. Adapting the synaptic delay was modelled by adapting the latencies

of calcium responses after activation of metabotropic glutamate receptors.

2.6 Animat Foraging with Spiking Neural Networks

2.6.1 Introduction

Many animals depend on their olfactory system for foraging [19]. The foraging system

relies on the olfactory sensory neurons to collect information about odours in the en-

vironment. The information collected by the sensory neurons is encoded as spikes and

sent to the brain through the axons of the sensory neurons [67]. Many coding strategies

have been proposed in the olfactory system to encode the information collected from the

environment. These coding strategies include the firing rate, the number of the active

Chapter 2. Literature Review 22

sensory neurons and the synchronization of firing between the sensory neurons [19]. Re-

cently, Oros and collaborators have investigated the ability of evolving SNNs to control

animats for foraging [22]. In the following sections I will cover in more detail the work

by Oros and colleagues on controlling agents.

2.6.2 The model

A network of simple LIF models was used to control the agent. In this model the

membrane potential of every neuron was updated every time step (0.1 ms was used)

based on the following equation:

dV

dt
= − V

τm
+

n∑
j=1

IjWj (2.14)

where V is the membrane potential of the neuron, τm is the membrane time constant,

n is the number of synapses, Ij is the current received from synapse number j, and Wj

is the weight of this synapse (in units of 1/F). During the experiments, the value of the

membrane time constant (τm) was set to 50 ms.

The resting potential was set to 0 mV, the threshold θ was set to 20 mV, and a refractory

period of 3 ms was used. After a neuron fires a spike, the synaptic current of all

postsynaptic target neurons is given by the following equation:

Ij(t) =

(
t− (tspike + delay)

τs

)
exp

(
1− (t− (tspike + delay))

τs

)
(2.15)

where tspike is the time when the presynaptic neuron fired the spike, delay is the con-

duction delay between the neuron which fired the spike and the neuron which received

it, and τs is the synaptic time constant. The synaptic time constant (τs) was set to 2

ms. The delay is calculated with the following function:

delay = coeffdelay × distance (2.16)

where coeffdelay is the delay coefficient and distance is the distance between the neuron

which fired the spike and the neuron which received it. coeffdelay = 5× 10−5 was used.

2.6.3 The agent

Oros and colleagues used an agent similar to a Braitenberg vehicle [68]. In this model

(Fig. 2.11) the agent has two wheels, one on the right side and one on the left side;

Chapter 2. Literature Review 23

each of them is controlled by two motor neurons. Each wheel can move forward or

backward. One motor neuron supports forward movement and another motor neuron

supports backward movement.

On the front of the agent, there are two antennae. Each of these antennae is connected

to a sensory neuron. The distance between the two antennae was long enough in order

to allow a large difference in the chemical concentration. In the absence of any chemical

concentration, the agent will be still be able to move forward thanks to adding a baseline

input current (0.5 A/F) to the forward motor neurons. Every 10ms, the velocity of the

agent is updated by calculating the difference between the firing rate of the forward

motor neurons and the backward motor neurons as following:

Vw = Kv

(
Sforward − Sbackward

tperiod

)
(2.17)

where Vw is the velocity of each wheel, Kv is a constant, tperiod is the period after which

the velocity was updated, Sforward is the number of spikes fired by the forward motor

neuron during tperiod and Sbackward is the number of spikes fired by the backward motor

neuron during the same period tperiod. Kv = 0.3 and tperiod = 10ms were used during

the experiments.

Figure 2.11: The agent model used by Oros and colleagues. Two long antennae
(black) were connected to sensors (yellow) in order to detect the chemicals and two
wheels controlled by 4 neurons 2 of them were responsible for forward movement (green)
and the other 2 were responsible for the backward movement (orange). The numbers

on the figure represent the dimensions of the agent. Take from [25].

Chapter 2. Literature Review 24

2.6.4 The environment

Oros and colleagues used a 2-dimensional map to simulate the world. Only two chemi-

cals were placed on the map. Each chemical was represented as a circle of concentration

where the maximum concentration is at the centre of the circle and the concentration

gradually decreases with the distance from the centre (Fig. 2.12).

Figure 2.12: The representation of chemicals in the model presented by Oros and
colleagues. The chemical is represented as a circle where the maximum concentration
is at the centre of the circle, and it linearly decreases when we move far from the centre.

Taken from [25].

The concentration of each chemical can be calculated at any place on the map using the

following equation:

c = max((Max− (K × d)), 0) (2.18)

where c is the concentration at any place on the map, Max is the maximum concentration

(at the center of the chemical), K is a constant and d is the distance between the center

of the chemical and the place where the concentration is calculated. Max = 300 and K

= 0.3 were used.

Chapter 2. Literature Review 25

2.6.5 Encoding strategies for the sensory information

Oros and colleagues showed that the agent could use both temporal coincidence and

firing rate encoding strategies depending on the level of concentration of the chemical at

the antennae. When the network used the firing rate encoding only, the agent was not

able to detect the difference of the chemical concentration between its two sensors for low

concentrations. The network used temporal coincidence encoding for low concentration.

With high chemical concentrations, the firing rate encoding was working well.

For the firing rate encoding, choosing the suitable equation to map the concentration of

chemicals to sensory neuron current was the main concern for Oros and colleagues. As

we can see in Fig. 2.11, the two antennae are connected with 2 sensory neurons. Based

on the concentration of the chemical read at the antennae, the sensory neuron current

is calculated. The membrane potential is updated every time step based on the sensory

neuron current and when the membrane potential reaches the threshold θ, the sensory

neuron fires a spike. This leads to an indirect relation between the concentration of the

chemical at the antennae and the firing rate of the sensory neuron connected to this

antennae (Fig. 2.13).

Figure 2.13: The relation between the concentration of chemicals at the antennae and
the firing rate of the sensory neurons in the model presented by Oros and colleagues.

Take from [23].

In order to obtain a model able to detect the small differences between the concentration

of the chemicals between the right and left antennae it was very important to find

a suitable function to map the chemical concentration to sensory neuron current so

that there would be linear relation between the concentration and the firing rate of the

sensory neuron. Oros and colleagues tried many equations to map the concentration

at the antennae to sensory neuron current [23]. First they started by setting a linear

relation between the concentration and the current but the firing rate of the sensory

neurons was saturating. They also tried to use Hill function to map the concentration

Chapter 2. Literature Review 26

to the sensory neuron current. Hill function was first used by Archibald Hill in 1910 for

describing the binding of oxygen to Hemoglobin.

Using the Hill function they got a better relation between the concentration and the

firing rate of the sensory neurons but it was not linear yet. Finally they used a sigmoid

function with offset. The equation they used was as following:

I = K1 ×
1

1 + exp
(
h−C
K2

) + b (2.19)

where I is the current, K1, K2, h, and b are constants, and C is the concentration.

K1 = 3.9 ∗ 104, K2 = 59, h =691, and b = 0.08 were used. The relation between the

concentration and the firing rate (Fig. 2.14) was not exactly linear, but it was still

accepted.

Figure 2.14: The relation between the concentration of the chemicals and the firing
rate of the sensory neurons using sigmoid function in the model presented by Oros and

colleagues. Taken from [23].

2.6.6 Adding noise to the neural network

Oros and collaborators noticed that the agent moved straight through and then away

from the chemical source when the agent trajectory was directly along the direction of

the gradient of the chemical concentration. In this case the values of the concentration

of the chemical were equal at the two antennae and the agent could not recognize the

position of the chemical source. They added noise to the neural network in order to

overcome this problem [21]. Diffusive Ornstein-Uhlenbeck current noise [69] was added

to the equation of the total current (Eqn. 2.15). The noise current was calculated as

following:

dI(t)

dt
= − 1

τI
(I(t)− I0) +

√
2σ2

τI
ξ(t) (2.20)

Chapter 2. Literature Review 27

where I is the total current, τI is the current noise time constant (2ms in their case),

I0 is the mean synaptic current (0 in their case), σ is the noise diffusion coefficient and

ξ(t) is a white Gaussian noise (with mean = 0 and standard deviation = 1). Different

values of σ were used in the experiments in the range of [0, 0.001].

Adding this coloured noise mimicked the subthreshold voltage fluctuations in real neu-

rons due to the intense network activity [70]. After implementing this noise, the agent

was able to stay in the range of the chemical concentration (Fig. 2.15).

In the work I present in Chapter 6 and Chapter 7, I built on the work that had been

done by Oros and colleagues. I used the Hill function they used in order to map the

food concentration at the sensors to input current.

My work can be considered an extension to the work I have just presented in this chapter.

In the work done by Oros and colleagues, they used only one food source from the same

type. I allowed the environment to have more food sources (up to 20 food sources), and

when the animats ate one of these food sources, this food source disappeared and the

concentration map was updated. This task is considered more difficult as the animat

should be able to deal with different levels of concentrations.

One of the main extensions I have also done was upgrading the food sources to sound

sources. Each sound source produces a different temporal pattern of sounds. The animat

should distinguish between them and be able to move forward to only one sound source

with a specific pattern.

The differences and the similarities between my work and the work that had been done

by Oros and colleagues are presented in more details in chapter 6.

2.7 Genetic Algorithm

The genetic algorithm (GA) is one of the heuristic search algorithms which was invented

by John Holland in the 1960s [71]. It was inspired by the evolution theory of Darwin

(survival of the fittest) and is well described in many books [72–76]. It is an example of

the evolutionary algorithms which uses natural evolution techniques for searching opti-

mal solution. These techniques include inheritance, mutation, selection, and crossover.

In nature, crossover occurs in the reproduction process of the chromosomes in which

genes from parent chromosomes recombine together to produce new chromosomes. An-

other operation which also happens during reproduction of chromosomes is mutation.

Mutations happen by applying some changes in the produced chromosomes. Fitness is

another term that is used as a measurement of how good a solution is. It is kind of

Chapter 2. Literature Review 28

Figure 2.15: The behaviour of the animat before and after adding the colored noise in
the model presented by Oros and colleagues. After running the agent for 300s, the agent
(red path) was not able to stay in the range of the chemical concentration (blue circle)
when no noise was added (left panel). When a colored noise was added (right panel)
the agent (red path) was able to stay inside the range of the chemical concentration

(blue circle) when the same simulation time was used (300s). Taken from [21].

evaluation of the produced chromosomes on which the selection of the chromosomes,

which will pass for the next generation, is based on.

In order to apply GA on optimization problem, the first step should be the encoding

in which the problem is represented as chromosomes. For example, if we want to apply

GA on eight queens problem, one possible representation of the board is a string of 64

bits (encodes a string of genes) for the 64 squares in the boards. The value of each bit

in this string shows if this bit is occupied by a queen or not. Another important step

is defining the fitness function with which the individuals are evaluated. The fitness

function in the eight queens problem would be the number of queens that do not threat

any other queen.

More factors should be put in consideration when desiging a GA such as the cross over

probability, the probability of mutations, number of individuals in each generation, ..

etc.

2.8 Gene Regulatory Network

Gene Regulatory Network (GRN) [77–79] is a network between DNA segments in a

cell that describes the interaction between genes in this cell. This network is used to

formulate the differential equations that represent the kinetics of gene products synthesis

and degradation in the cell.

Chapter 2. Literature Review 29

The vertices in the GRN represent genes products while the edges represent the regula-

tion between the genes products. Each edge should have a direction from the regulator

gene to the target gene. The target gene is the gene that its expression can be activated

or suppressed by the regulator gene. On the other hand, the regulator gene is the gene

which controls the target gene.

Chapter 3

Mapping GRNs to SNNs in

GReaNs platform

3.1 Introduction

The GReaNs is an artificial life software platform which was developed by Michal

Joachimczak and Borys Wrobel and used to evolve Gene Regulatory Networks (GRNs).

GReaNs has been used previously for evolving gene regulatory networks for tasks includ-

ing controlling single cells, as unicellular entities or parts of multicellular bodies in two

dimensions [80, 81] (it has been used to transform the structures into soft-bodied ani-

mats swimming in a fluid-like environment) and in three dimensions [30–32], processing

signals [33], and controlling animats [26, 27]. All the networks which were evolved by

GReaNs in the previous work consisted of non-spiking nodes. As I mentioned in 1.1, my

work is part of broader research program to compare the computational properties of

spiking neural networks and networks that are not spiking, so the first task I conducted

in my project was to convert the GRN to a SNN in GReaNs.

3.2 From genome to network

The genome in GReaNs was modelled so that it gets the evolutionary features of the

biological genomes. It is formed of a string of genetic elements. The genetic element

can be either P (promoter), G (gene) or S (a special element which could be an input

or output element). The networks in GReaNs (Fig. 3.2) are formed of regulatory units

(nodes) with regulatory relations (edges). Each regulatory unit is encoded in the linear

genome as a chain of genetic elements of type P succeeded by a chain of genetic elements

30

Chapter 3. Mapping GRNs to SNNs in GReaNs platform 31

Figure 3.1: A screenshot of the initial window of GReaNs software. On the right side
of the figure there are graphs for the history of the best, average, and worst fitness for
each generation and graph for the distribution of the fitness in the last generation. On
the left side, there are some options to control the evolution run, information about
the best, average, and worst fitness in the last generation, and the log of the current

running task.

Chapter 3. Mapping GRNs to SNNs in GReaNs platform 32

of type G. So each regulatory unit should include at least one promoter followed by at

least one gene.

Figure 3.2: The structure of the genome in GReaNs. On the left, the structure of
the genetic element. On the right, the encoding of regulatory as a chain of promoters

followed by a chain of genes. Take from [82].

Each genetic element (Fig. 3.2) is identified by a number of variables: the type (P for

promoter, G for gene, or S for external element which could be input or output), the sign

(positive or negative which define the kind of interaction between the products and the

promoters if it is inhibitory or excitatory) and the coordinates which determine a point in

space (product-promoter affinity is a function of the Euclidean distance between them).

Based on the number of products (genes) in each regulatory unit and the affinity between

them as well as the promoters in other regulatory units, the products concentration is

calculated in each step during the simulation.

Based on the distribution of the genetic elements on the two dimensions space, the

connections between nodes in the GRN are constructed (Fig. 3.3). If the Euclidean

distance between any promoter and any gene in the genome is less than the cutoff

distance (5 was used in the work described in this thesis), then based on the product

of the signs of the gene and the promoter an excitatory (if the product equals 1) or

an inhibitory (if the product equals -1) connection is constructed. The weight of the

connection is calculated by the following equation:

w = β
2(5− d)

10d+ β
(3.1)

where w is the weight of the connection, d is the distance between the promoter and the

gene, and β is a factor in order to control the negative relation between the distance

and the weight (Fig. 3.4). The variable d can take the values in the range of [0, 5] as

the cutoff distance is 5 (there is no connection between any promoter and any gene in

the genome if the Euclidean distance between them is more than 5). β = 1 was used

during all the tasks.

Chapter 3. Mapping GRNs to SNNs in GReaNs platform 33

Figure 3.3: How edges between the nodes in the GRN are created in GReaNs. The
order of the genetic elements on the genome used for identifying the regulatory units,
while the positions of the genetic elements in the two dimensions space form the in-
teraction between the regulatory units. (a) a structure of a simple genome. (b) the
distribution of the genetic elements of genome in two dimensions space (c) the excita-
tory (red) and inhibitory (blue) connections between the promoters and the genes if

the distance between each of them is less than the cutoff distance. Taken from [26].

Figure 3.4: The relation between the affinity of the connection between any promoter
and any gene in the genome and the β factor in GReaNs. The figure shows different
behaviour of the graph when different values of β are used (1 and 10). Taken from [82].

3.3 Evolution of networks in GReaNs

A genetic algorithm is used in GReaNs to obtain the required GRN. The genetic op-

erators are applied on the level of the genetic elements by mutating their type, their

sign or their position. They are also applied on the level of the genome by changing the

order of the genetic elements or changing the number of the genetic elements by adding,

deleting, or duplicating them.

At the initialization step, a random population of individuals each with random number

of neurons is constructed. In the evaluation step, the simulation of the individuals is

Chapter 3. Mapping GRNs to SNNs in GReaNs platform 34

carried out and the fitness function is calculated based on the task of the network. The

best individuals are then selected and the crossover and mutation operations are applied.

There were two different stopping criteria for the evolutionary algorithm in GReaNs.

The first criteria was to stop the algorithm if no improvement was attained in the last

specific number of generations, 500 generations for example, while the second criteria

is to stop the algorithm after specific number of generations no matter an improvement

was attained or not.

There are a number of parameters which are set in GReaNs based on the evolutionary

task. Some of these parameters define the structure of the network like the number of

regulatory units in the genome (defining the number of the regulatory units that should

be decoded, and the rest of the elements in the genome are ignored), the probability

of the appearance of each element type when creating new genomes, number of the

inputs in the network, number of the outputs, the cutoff affinity between the regulatory

elements etc.

Other parameters are responsible for defining the genetic algorithm like the population

size in each generation, maximum number of generations, simulation time, number of

individuals generated using crossover, elitism factor (number of individuals passing to

the next generations without being altered), the probability of mutating every attribute

of the genetic elements, probability of duplications and deletions etc.

3.4 Mapping the GRN to the SNN

Due to the similarities between the computational characteristics of a node in a biological

gene regulatory network and a node in a neural network, I extended GReaNs to simulate

and evolve Spiking Neural Networks [83–85].

The extension of GReaNS includes mapping each regulatory unit to a single neuron, the

connections between the regulatory units to synapses, and the value of the concentration

of the products in the unit to the neuron membrane potential (Table 3.1), in addition

to allow each node to fire a spike when the value of the membrane potential exceeded a

predefined threshold (in case of LIF model as the AdEx model does not have a threshold).

I implemented two models in GreaNs as part of the extension, LIF [2] model and AdEx

[3] model.

Chapter 3. Mapping GRNs to SNNs in GReaNs platform 35

Table 3.1: Mapping the Gene Regulatory Network to Spiking Neural Network in
GReaNs.

Gene Regulatory Network Spiking Neural Network

Regulatory unit Neuron

Connections between regulatory
units

Synapses between neurons

Products concentration Membrane potential

3.4.1 LIF Model in GReaNs

Leaky Integrate and Fire (LIF) is considered one of the simplest and most commonly

used spiking neural models. In the simulation part in GReaNs, I used the following

differential equation in order to update the membrane potential during each simulation

step:

dV

dt
=
gL(VR − V) + gE(Erev,E − V) + gI(Erev,I − V)

C
(3.2)

where V is the membrane potential, VR is the resting potential, gL is the leak conduc-

tance, gE is the conductance of the excitatory synapses, gI is the conductance of the

inhibitory synapses, Erev,E is the reversal potential of the excitatory input, Erev,I is the

reversal potential of inhibitory input, and C is the capacitance of the membrane.

In this model, when the value of the postsynaptic potential in any neuron reaches the

threshold voltage (Vth), the neuron fires a spike and the value of the membrane potential

decays to the reset voltage (Vreset). Based on the Euclidean distance between the genes

in the presynaptic node and the promoters of the postsynaptic nodes, and their signs,

the postsynaptic conductance is updated. The postsynaptic conductance is decaying

exponentially:

gE
dt

=
−gE
τE

and
gI
dt

=
−gI
τI

(3.3)

where τE and τI are the decay time constants of the excitatory and inhibitory synaptic

conductance respectively. I used the values in Table 3.2 for these parameters. I used the

examples for LIF model implemented for Brian simulator [35] as a reference for choosing

the model parameters values with small modifications in order to control the firing rate

of the neurons.

Chapter 3. Mapping GRNs to SNNs in GReaNs platform 36

Table 3.2: The values of the LIF model parameters I used for simulating the SNN in
GReaNs.

Parameter Value

VR -65.0 mV

gL 0.05 µS

Erev,E 0 mV

Erev,I -70.0 mV

C 1 nF

Vth -50.0 mV

Vreset -65.0 mV

τE 5.0 ms

τI 5.0 ms

3.4.2 AdEx Model in GReaNs

AdEx model is a two-dimensional extension of the LIF model which is considered a

more biologically realistic model. I used the following equations to implement the AdEx

model:

dV

dt
=
gL(EL − V + δe

V−VT
δ) + gE(Erev,E − V) + gI(Erev,I − V)−W

C
(3.4)

where V is the membrane potential, EL is the leak reversal potential, δ is the slope factor,

VT is the threshold potential, gL is the leak conductance, gE (or gI) is the conductance

of the excitatory (inhibitory) synapses, and Erev,E (Erev,I) is the reversal potential of

the excitatory (inhibitory) input.

dW

dt
=
a(V − EL)−W

τW
(3.5)

where W is the adaptation variable, C is the capacitance of the membrane, a is the

adaptation coupling parameter, and τW is the adaptation time constant.

The reset behaviour in this model is slightly different from the LIF model. In addition to

changing the value of the membrane potential to Vreset when the post-synaptic potential

crosses Vspike value, the adaptation variable is also changing by adding to it the value of

the b. I used the values in Table 3.3 for these parameters. Again I used Brain examples

which correspond to tonic spiking behaviour as reference for choosing the parameters

values with small modifications to control the firing rate of the neurons.

Chapter 3. Mapping GRNs to SNNs in GReaNs platform 37

Table 3.3: The values of the AdEx model parameters I used for simulating the SNN
in GReaNs.

Parameter Value

EL -65.0 mV

δ 2.0 mV

VT 50.0 mV

gL 0.05 µS

Erev,E 0 mV

Erev,I -70.0 mV

C 1 nF

a 4.0 nS

τW 40.0 ms

Vreset -70 mV

Vspike -40 mV

b 0.0805 nA

The same equations used for LIF model were also used here for modeling the postsynaptic

conductance.

In both the LIF and the AdEx models I implemented, each neuron could be connected

to a postsynaptic neuron by an exitatory synapse and at the same time connected

to a postsynaptic neuron by an inhibitory synapse. This allows the neuron to act

as an excitatory neuron and as an inhibitory neuron at the same time, which is not

biologically common; in biological neurons, in contrast, a given neuron is in most cases

either excitatory, or inhibitory [86].

I allowed the neurons to act as excitatory and inhibitory neurons as in the previous

tasks that were done in GReaNs using GRNs, each regulatory unit can be connected to

other regulatory units with positive and negative connections at the same time. GReaNs

could be modified to reflect biology in future work by modifying the way in which genetic

elements encode the character of the connection.

3.4.3 Validating the SNN implementation in GReaNs

I constructed a simple network of three LIF neurons (Fig. 3.5). Neuron 2 fires four spikes

at 1 ms, 10 ms, 50 ms, and 55 ms, while neuron 3 fires once at 40 ms. Both neuron

Chapter 3. Mapping GRNs to SNNs in GReaNs platform 38

2 and neuron 3 connected with neuron 1 by equal strength excitatory and inhibitory

synapses, respectively.

To validate if the implementation of SNN is correct in GReaNs, I compared the time

course of the membrane potential in a neuron 1 simulated in GreaNs with the time

course simulated in Brian simulator. I set the simulation time to 100 ms. One feature

in GReaNs enables inspecting each neuron and exporting the values of its membrane

potential over time. I also exported the network as a PyNN script[34], and simulated

it using Brian [35]. The network showed the same behaviour using both GReaNs and

Brian (Fig. 3.6). I used the values in Table 3.2 for the LIF model’s parameters.

Figure 3.5: A simple network of three neurons (circles), neuron 2 and neuron 3 are
connected with neuron 1 by excitatory and inhibitory synapses, respectively.

3.5 The Evolution of the SNN

I used the same genetic algorithm which was used for evolving the GRN in GReaNs

to evolve the SNN. The encoding of the structure of the network in linear genomes

described in Fig 3.2 allows for the evolution of the topology of the network and the

weights of the synapses between the neurons in the network. The delays of the synapses

were constant (1 ms was used) for all the network during the evolution.

3.6 Conclusion

We can conclude that mapping the GRN in GReaNs is a suitable approach for encoding

SNN that can be used for evolutionary tasks. Implementing this biologically inspired

SNN model in GReaNs will allow repeating the previous evolutionary tasks (which used

GRN) using SNN and comparing the results obtained before and after adding SNNs to

GReaNs.

Chapter 3. Mapping GRNs to SNNs in GReaNs platform 39

Figure 3.6: The behaviour of the network showed in Fig. 3.5 when it was simulated
for 100ms. This network was simulated by both GReaNs and by PyNN with Brian as
a back-end simulator. The network had the same behaviour with both GReaNs and
PyNN. Upper graph: The membrane potential of neuron 1 in the network showed in
Fig. 3.5. Lower graph: The conductance of both the excitatory synapses (blue) and

the inhibitory synapses (green) of neuron 1.

Chapter 4

Using GreaNs to Evolve a Spiking

Neural Network which Generates

Desired Spike Patterns

4.1 Introduction

After mapping the GRN to SNN in GReaNs successfully, the next step was to check

the ability of evolving SNNs in GReaNs. The first evolutionary task I have tried in

GReaNs was evolving spiking neural networks to obtain a network with an output neuron

which generates a predefined spike train in response to specific input. This task was an

easy task to start with that was investigated before in GReaNs using GRNs. Both

the Leaky and Integrate-and-Fire model and the non-linear Adaptive Exponential LIF

model (AdEx) were used in this task.

First, I evolved LIF networks to generate the same spike train which was generated by a

single AdEx neuron when both the LIF networks and the AdEx neuron were connected

to the same input neuron. Exactly the opposite task for AdEx networks: given a spike

train which was generated by a single LIF neuron, I evolved AdEx networks to generate

the same spike train when both the LIF neuron and the AdeX networks were connected

to the same input.

One of the constrains which was imposed in GReaNs is that the direct connection be-

tween the input neurons and the output neurons is not permitted. Giving this constrains,

it is impossible to achieve this task without a delay in the spike train. I used three dif-

ferent delay levels: 5 ms, 10 ms and 20 ms. Longer delays can also be used, but they

will create more difficult tasks, requiring (in principle) more neurons. Furthermore, I

40

Chapter 4. Using GreaNs to Evolve a Spiking Neural Network which Generates Desired
Spike Patterns 41

extended this task to evolve a network not only able to generate a specific spike train,

but to double it (to generate two spikes for each spike in the spike train, one at the same

time, and one after 20 ms). From now on, I will call this task as double-shifting task.

For generalization, I tested the difference between the behaviour of the evolved network

when it is connected to a different input which was not used during the evolution and

the single neuron when it is connected to the same input. Finally, I investigated the

statistics on the values of best fitness and the generalization fitness of 10 independent

evolved networks.

4.2 Genetic algorithm

A genetic algorithm was used to evolve a population of 300 individuals. Each of the

genomes in the initial population had 5 regulatory units, encoding a SNN with 5 neurons.

The number of promoters and the number of genes in each unit was determined in the

same fashion, randomly. A random variable was sampled from a Gaussian distribution

(same Gaussian distribution used in the previous tasks in GReaNs, [33] for example),

and the number was set to 1 if the variable was smaller than 1. After parsing each

genome and building the neural network, each network was simulated. The fitness value

of each network is calculated then using the following fitness function:

ferr =
α min(|Sdesired − SGReaNs|, Sdesired) + β(Sdesired −MGReaNs)

Sdesired
(4.1)

where min() is the minimum function, Sdesired is the desired number of spikes, SGReaNs

is the number of spikes generated by a network under evaluation, MGReaNs is a match

between the actual and desired response, a number that ranged from 0 to the number of

desired spikes, and determined as described below, while α and β are constant fractions.

I used α+ β = 1 in order to limit the value of ferr in the range of [0, 1] where the best

value is 0 and the worst is 1.

The first term penalized a network if it generated an incorrect number of spikes, but if

this number exceeded twice the desired number of spikes, there was no further penalty.

The second term in the equation penalized the network if the spikes in its response

did not match the required response pattern. Since the original task was to generate

matching spikes, I gave more weight to the second term (I used α = 0.3 and β = 0.7).

The match was determined by first considering a short (19 ms) temporal window around

each spike in the desired response and finding the closest spike in the actual response.

Chapter 4. Using GreaNs to Evolve a Spiking Neural Network which Generates Desired
Spike Patterns 42

In order to penalize spikes that did not match the required response exactly, the match

was determined using a Gaussian function in the following fashion:

MGReaNs =

Sdesired∑
i=1

e
−d2i
15 (4.2)

where di is the distance in time (a value between 0 and 9) between the spike in the

desired and the closest spike in the actual response. In other words, each spike with

exact timing contributed 1 to MGreans, a spike 1 ms late or early contributed 0.936, etc.,

with a spike 9 ms late or early contributing only 0.0045.

After calculating the value of ferr for all the individuals, the 300 individuals of the next

generation were formed. The best five individuals were copied without any modification

(elitism), and tournament selection was used to choose the rest 295 individuals. The

selection was performed by choosing two random genomes from the previous generation

and selecting the best of them. Mutations were applied then on the 295 individuals and

crossover was applied on only 100 individuals.

For the cross-over, single point cross-over was introduced for each genome. The position

of the cross-over on the genome was sampled uniformly. The individuals in the parent

population were also sampled uniformly and each genome from the parent population

was selected with probability 0.5.

Mutations were applied at both the level of genetic elements and at the level of the

genome. At the level of genetic elements by mutating the type of the elements (each

element could be promoter, gene or special element for input or output) with a proba-

bility 0.005, by mutating the sign of the elements (can be - or +) with probability 0.005,

or by mutating the coordinates of the elements by adding to each coordinate random

value from normal distribution centered at 0. Mutations were applied at the level of

genome, with a probability 0.1 for each position on the genome by adding, deleting, or

duplicating a chain of elements. For adding or deleting a chain of elements, the length of

the chain was sampled from a logarithmic distribution with mean 10. For duplication,

the length of the chain was also sampled form a logarithmic distribution and the position

where the duplicate chain would be added was chosen from a uniform distribution over

the genome.

Apart from the fitness function which I formulated, the rest of the genetic algorithm with

the stated parameters values in the last two paragraphs was the same genetic algorithm

used before in the previous tasks in GReaNs ([33] for example).

Chapter 4. Using GreaNs to Evolve a Spiking Neural Network which Generates Desired
Spike Patterns 43

4.3 Results

4.3.1 Reproducing spike trains

I used the Brian simulator [35] to simulate single AdEx neuron. Then I used GReaNs to

evolve LIF networks to generate the same spike train generated by the single AdEx neu-

ron simulated with Brian. Both the AdEx neuron and the LIF networks were connected

to the same Poisson spike source with 100 Hz. As I mentioned in the introduction, the

spike train was shifted by 5 ms, 10 ms, or 20 ms. The second task was exactly the

opposite of the first task by using LIF model in Brian and AdEx model in GReaNs. The

results in this section are for the networks with the best ferr out of 10 independent runs

for each configuration each was evolved for 500 generations.

In order to check if GReaNs successfully trained the SNNs or it just overfitted, I tested

the generalization properties of the final SNNs. Generalization was done by checking

the behaviour of the final SNNs, when they were connected to any input not used during

the evolution. Here are the final results:

• For the shift of 5 ms (Fig. 4.1), and after 500 generations, the best network of

LIF neurons had ferr = 0.005 (0.09 for generalization), while the best network of

AdEx neurons had ferr = 0.0 (0.18 for generalization).

Figure 4.1: The behaviour of the champion networks evolved to match a response
of a single neuron, but shifted with 5 ms. Upper (lower) panels show the membrane
potentials of the output neuron in a LIF (AdEx) network (blue line) matching each
spike in the response of one AdEx (LIF) neuron (red), to the input (green) seen during

evolution (left panels) and not (right panels.)

• For the shift of 10 ms (Fig. 4.2), and after 500 generations, the best network of

LIF neurons had ferr = 0.01 (0.051 for generalization), while the best network of

AdEx neurons had ferr = 0.0 (0.057 for generalization).

Chapter 4. Using GreaNs to Evolve a Spiking Neural Network which Generates Desired
Spike Patterns 44

Figure 4.2: The behaviour of the champion networks evolved to match a response
of a single neuron, but shifted with 10 ms. Upper (lower) panels show the membrane
potentials of the output neuron in a LIF (AdEx) network (blue line) matching each
spike in the response of one AdEx (LIF) neuron (red), to the input (green) seen during

evolution (left panels) and not (right panels.)

• For the shift of 20 ms (Fig. 4.3), and after 500 generations, the best network of

LIF neurons had ferr = 0.15 (0.65 for generalization), while the best network of

AdEx neurons had ferr = 0.006 (0.142 for generalization).

Figure 4.3: The behaviour of the champion networks evolved to match a response
of a single neuron, but shifted with 20 ms. Upper (lower) panels show the membrane
potentials of the output neuron in a LIF (AdEx) network (blue line) matching each
spike in the response of one AdEx (LIF) neuron (red), to the input (green) seen during

evolution (left panels) and not (right panels.)

4.3.2 Double-shifting task

The second evolutionary task I tried in GReaNs was evolving LIF SNNs to double the

spike train which was generated by a single AdEx neuron, when both the network and

the single neuron are connected to the same input (I used a Poisson spike source with

Chapter 4. Using GreaNs to Evolve a Spiking Neural Network which Generates Desired
Spike Patterns 45

spike frequency 75 Hz) (Fig. 4.4). That task of duplicating the spike train means the

following: for every spike in the original response, generates a response with one spike

5ms later, and another 20 ms later. Then I tested the generalization of the final network

by comparing the output of the network with the output of the single neuron when

another random input was used. The best network of LIF neurons had ferr = 0.11 (0.33

for generalization), while the best network of AdEx neurons had ferr = 0.17 (0.53 for

generalization)

Figure 4.4: The behaviour of the champion networks evolved to match a response
of a single neuron, but doubled and shifted with 5 ms. Upper (lower) panels show
the membrane potentials of the output neuron in a LIF (AdEx) network (blue line)
matching each spike in the response of one AdEx (LIF) neuron (red), to the input

(green) seen during evolution (left panels) and not (right panels.)

I investigated in more detail the results of evolving (LIF and AdEx) networks to match

the output of a single (AdEx and LIF) neuron shifted by 20 ms and the results of the task

of duplicating spike train (Table. 4.1). I calculated the average and standard deviation

of the ferr during the evolution and for the generalization of the 10 independent runs

with each task. I also calculated the average and the standard deviation of the size of

the networks for each task.

After checking these results (Table. 4.1), we can see that the networks have lower fitness

when they are tested with different inputs not used during the evolution. It it also

obvious that the task of matching a spike train shifted by 20 ms is much easier for AdEx

networks. On the other hand, the task of duplicating spike train is equally difficult for

both LIF and AdEx networks.

We can also see that there is a clear overfitting especially when the tasks are getting

harder (Table. 4.2). For example, for the task of LIF network matching an output of one

AdEx neuron shifted by 20 ms, the network with the best ferr during evolution (0.146)

had the value of ferr = 0.652 for generalization (upper figures in Fig. 4.3), while the

Chapter 4. Using GreaNs to Evolve a Spiking Neural Network which Generates Desired
Spike Patterns 46

Table 4.1: The average ± standard deviation and range (square brackets) of the values
of ferr and size of the networks evolved with GReaNs for the best networks in each
of 10 independent evolutionary runs for each task, both for the input spike train used

during evolution and for another Poisson spike train (generalization).

Type of the network and
task for evolution

ferr, input
used in
evolution

ferr, another
input

network
size

LIF network matching an
output of one AdEx neuron
shifted by 20 ms

0.239± 0.046
[0.146, 0.309]

0.729± 0.137
[0.517, 0.963]

8.3 ± 3.2
[5, 15]

AdEx network matching
an output of one LIF neu-
ron shifted by 20 ms

0.087± 0.065
[0.006, 0.158]

0.390± 0.185
[0.142, 0.625]

9.6 ± 4.4
[5, 16]

LIF network matching a
doubled-shifted output of
one AdEx neuron

0.235± 0.060
[0.112, 0.300]

0.38 ± 0.058
[0.290, 0.434]

11.2 ± 5.8
[4, 26]

AdEx network matching a
doubled-shifted output of
one LIF neuron

0.258± 0.044
[0.171, 0.301]

0.478± 0.044
[0.373, 0.531]

8.1 ± 3.9
[4, 17]

Table 4.2: Comparison between the networks with the best ferr values during the
evolution and the networks with the best ferr values for generalization over the 10
independent evolutionary runs. The numbers out side the parentheses are the values
of ferr during the evolution while the numbers in the parentheses are the values of ferr

for generalization

Type of the network and
task for evolution

Best ferr during
evolution

Best ferr for gen-
eralization

LIF network matching an
output of one AdEx neuron
shifted by 20 ms

0.146 (0.652) 0.285 (0.516)

AdEx network matching
an output of one LIF neu-
ron shifted by 20 ms

0.006 (0.142) 0.006 (0.142)

LIF network matching a
doubled-shifted output of
one AdEx neuron

0.112 (0.327) 0.239 (0.290)

AdEx network matching a
doubled-shifted output of
one LIF neuron

0.171 (0.531) 0.301 (0.373)

Chapter 4. Using GreaNs to Evolve a Spiking Neural Network which Generates Desired
Spike Patterns 47

network with the best value of ferr during generalization (0.516) had only ferr = 0.285

during evolution (Fig. 4.5).

The network of AdEx neurons did not have the same behaviour for the same task, as

the network with the best ferr during evolution (0.006) had also the best ferr during

the generalization (0.142) (lower figures in Fig. 4.3). The overfitting appeared again in

the double-shifting task of one AdEx neuron, as the network with the best ferr during

the evolution (0.112) had ferr = 0.327 during the generalization (upper figures in Fig.

4.4), while the network with the best ferr during generalization (0.290) had ferr = 0.239

during evolution (Fig. 4.6).

The overfitting was considerable in the double-shifting task of one LIF neuron. In this

task, the network with the best ferr (0.171) during the evolution had the worst ferr

(0.531) during generalization (lower figures in Fig. 4.4), while the network with the best

ferr (0.373) during the generalization had the worst ferr (0.301) during the evolution

(Fig. 4.7).

Figure 4.5: The behaviour of the best LIF network (in terms of generalization out of
10 independent evolutionary runs) evolved to match the spikes of single AdEx neuron

shifted by 20 ms.

Figure 4.6: The behaviour of the best LIF network (in terms of generalization out of
10 independent evolutionary runs) evolved to match the spikes of single AdEx neuron

shifted by 5 ms.

Chapter 4. Using GreaNs to Evolve a Spiking Neural Network which Generates Desired
Spike Patterns 48

Figure 4.7: The behaviour of the best AdEx network (in terms of generalization out
of 10 independent evolutionary runs) evolved to double-shift the spikes of single LIF

neuron.

4.4 Conclusion

The results show that it is possible to use GReaNs to evolve a network connected so

that when the input is presented to the input neuron in the network, the output neuron

generates the same output (shifted or double-shifted) generated by a single neuron when

the same input is presented to this neuron. This task is simple but not trivial and can

be uses as a proof-of-principle for evolving SNN in GReaNs. This task opened the gate

for more difficult tasks to be carried out using GReaNs.

Chapter 5

Temporal Pattern Recognition in

GReaNs

5.1 Introduction

Temporal patterns of spikes is one of the methods the brain uses to encode sensory

information [3, 5–11]. The brain uses this encoding for processing information for vision

[64], hearing [12], and olfaction [13].

In this chapter I studied the ability of GReaNs to evolve spiking networks, with varying

numbers of LIF neurons (1, 2, 5, 10, and unlimited) to recognize predefined temporal

patterns of various number of inputs (3 and 4). Then I tested the behaviour of the final

networks when Gaussian noise with different standard deviations (10, 20, and 30 ms)

was applied to the time of the spike in each input [85].

Furthermore, I used the noisy inputs during the evolution and checked if I could get

final networks without error. It was interesting then to study the difference between the

structure of the final networks (with only 2 interneurons) which were evolved in absence

of noise and the final networks (with 2 interneurons also) which were evolved in presence

of noise.

Temporal pattern recognition has been performed before by adjusting synaptic delays

between the neurons [16–18], but in the work I have done I allowed only the evolution

of the synaptic weights and the structure of the network with fixed synaptic delays.

49

Chapter 5. Pattern Recognition in GReaNs 50

5.2 Genetic algorithm

As I explained in the the previous chapter, a genetic algorithm was used to evolve

the genome in GReaNs. Genetic operators were applied at both the genome level and

at the genetic elements level. At the genome level, mutations were introduced with a

probability of 0.1 for each element, by adding a string of random elements, by deleting

an existing string of elements or by duplicating a string of existing elements in the

genome in any position in it. The position of the duplication was chosen from a uniform

distribution, and the length of the string was sampled from a logarithmic distribution

with mean 10. Moreover, one-point cross-over was applied on the genome level with

a probability of 0.5 per each genome selected randomly from the parent population

and sampled uniformly. The genetic operators were also applied at the level of genetic

elements by changing the sign of the elements (- or +) with a probability 0.005, by

changing the type of the elements (promoter, gene, or special element) with a probability

0.005, or by changing the coordinates by adding to each coordinate a random value from

a normal distribution centred at 0.

The first generation was initialized with 300 individuals. Each individual encoded 5

interneurons. Each interneuron was encoded by strings of promoters and genes. The

length of the string encoding each interneuron was sampled from a Gaussian distribution

with mean = 1, standard deviation = 1 and minimum value = 1. The size of the pop-

ulation in each generation was fixed during the whole experiment. After the evaluation

of all 300 individuals, the new generation was formed by copying the best 5 individuals

(elitism), selecting 295 individuals (the selection was performed by choosing 295 times

2 random genomes from the previous generation and selecting the best of them) and

applying mutations to all of them and crossover to only 100 (50 randomly chosen pairs)

of them.

5.3 Temporal pattern recognition with a sequence of four

inputs

The first task I have tried was evolving a SNN of LIF neurons to generate the maximum

number of spikes when it is presented with a temporal pattern of 4 inputs (1-2-3-4), each

with only one spike at the times: 50 ms, 150 ms, 250 ms, and 350 ms, respectively, and

to stay silent when it was presented with other patterns of the 4 inputs with only 1 spike

on each of them (23 permutations). The period of simulation I used for this experiment

was 1000 ms. I used the following function during the evolution to calculate the error:

Chapter 5. Pattern Recognition in GReaNs 51

ferr = 1− α min(Sdesired, S1)

Sdesired
+
βΣ24

i=2min(Sdesired, Si)

Sdesired
(5.1)

where min() is the minimum function, Si is the number of spikes generated by a network

when it is presented with the pattern i during the period between 350 and 1000 ms,

Sdesired is the desired number of spikes, while α and β are constants.

I used Sdesired = 250, as the output neuron of the network should start firing spikes

only after the last input (350 ms) and since the refractory period of each neuron is 2

ms, the maximum number of spikes that can be generated is 650/2 = 325, so 250 spikes

were considered sufficient. I used α = 1, and β = 0.04 during this task. The second

term,
β

24∑
i=2

min(Sdesired,Si)

Sdesired
, was added to penalize the network activity in response to the

other 23 patterns, with the same input spike timings but a different order (for example,

2-3-1-4).

After less than 1000 generations, I managed to get an individual (Fig. 5.1) with ferr =

0. By checking the behaviour of each neuron individually (Fig. 5.2), we can conclude

the following:

• Neuron 1 started firing after receiving input 2, so it acts as an input 1 – input 2

detector.

• Because of the excitatory feedback loop of neuron 1, neuron 1 keeps firing at a

fixed rate which puts neuron 2 in a plateau state.

• When neuron 1 receives the third input, it starts firing at a higher rate, which

makes neuron 2 go to a higher plateau state.

• When neuron 2 receives the fourth input, it starts spiking, so it acts as a neuron

1 - input 3 - input 4 detector.

• Because of the strong excitatory feedback loop of neuron 2 and the strong excita-

tory connection between neuron 2 and 1, both neuron 1 and neuron 2 keep firing

at the maximum rate.

• The excitatory connections between both neuron 1 and neuron and the output

allow the output to fire at maximum rate.

• Neuron 3 does not play any role in the process and the behaviour of the network

will not change if it were to be removed.

Since neuron 1 worked as input - 1 input 2 detector, the network was silent for all the

patterns which did not contain the sub-pattern 1-2. So why the output neuron was not

Chapter 5. Pattern Recognition in GReaNs 52

active with other patterns which had the sub-pattern 1-2 (for example, 3-1-2-4)? Neuron

2 needed to receive spikes from neuron 1 followed by one spike from each of input 3 and

input 4 in order to start spiking. The sub-pattern 1-2 was followed by spikes from input

3 and input 4 in only 2 patterns; 1-2-3-4 and 1-2-4-3. The pattern 1-2-4-3 did not

allow neuron 2 to be active due to the strong inhibitory connection between input 4 and

neuron 1.

Figure 5.1: The evolved SNN to distinguish one pattern of four inputs. The network
has four inputs (cyan) each with only one spike at the times: 50 ms, 150 ms, 250 ms, and
350 ms, respectively, 3 interneurons (black), and one output (purple). The neurons are
connected with both excitatory connections (green) and inhibitory connections (red).

The thickness of lines signifies the strength of the connections.

5.4 Temporal pattern recognition with a sequence of three

inputs

In order to understand the behaviour of the final networks more easily, I decreased the

number of inputs to 3 (1 2 3), each with one spike at the times 50 ms, 150 ms, and

250 ms, respectively. I also introduced constraints on the number of the neurons in the

network.

5.4.1 Pattern 1-2-3 recognition with a varying hard-coded limit on the

size of the network

Using three inputs, each generating one spike at the times 50 ms, 150 ms, and 250 ms,

respectively, I evolved the SNNs in order to fire at the maximum rate when the network

Chapter 5. Pattern Recognition in GReaNs 53

(a) Neuron 1 (b) Neuron 2

(c) Neuron 3 (d) Output

Figure 5.2: The behaviour of the neurons of the evolved SNN in (Fig. 5.1) to distin-
guish the pattern 1-2-3-4. The actual simulation time is 1000 ms, but for clarity only
up to 500 ms are shown, the neurons continue spiking afterwards. Note: the horizontal

bands are an artifact of plotting.

was presented with the pattern 1-2-3, and to stay silent when it is presented with other

patterns (5 permutations). The following function was used to calculate the error:

ferr = 1− α min(Sdesired, S1)

Sdesired
+
βΣ6

i=2min(Sdesired, Si)

Sdesired
(5.2)

where min() is again the minimum function, Si is the number of spikes generated by a

network when it is presented with pattern number i during the period between 250 and

1000 ms, same as previous task, Sdesired = 250 is the desired number of spikes, while

α and β are constant fractions. I used α = 1 and β = 0.2 during this task so that the

weight of the behaviour of the SNN with the first input pattern equals the summation

of the weights of the behaviours of the SNN with the other five input patterns. The

values of ferr vary from 0 for the best network to 2 for the worst network.

Here again the second term,
β

6∑
i=2

min(Sdesired,Si)

Sdesired
, was added to penalize the network

activity in response to the other 5 patterns, with the same spike timings but a different

order (for example, 2-3-1).

I studied the behaviour of the final network with different number of neurons. First I

started with the simplest network with only one neuron (Fig. 5.3). There is only one

possible topology of this network since direct connections between inputs and output are

not permitted. So the interneuron will act as pattern 1-2-3 detector; there is a strong

Chapter 5. Pattern Recognition in GReaNs 54

excitatory connection between the interneuron and the output neuron so that the output

will act as an interneuron 1 detector and an excitatory feedback loop for the interneuron

allows it to continue spiking.

The reason why the network was silent with other patterns was not clear from checking

the structure of the network in Fig. 5.3. The figure shows that the three input neurons

were connected with the interneuron with three equal weights excitatory synapses and

three equal weights inhibitory synapses. After checking the exact values of the weights

of the synapses, I found that the pattern 1-2-3 represents the descending order of the

weights of the inhibitory synapses and the ascending order of the excitatory synapses

between the inputs and the interneuron. The differences between the values of the

weights were very small to appear in the figure. This order minimize the effect of the

inhibitory neurons in a way that allow the network to be active only with the pattern

1-2-3 and be silent with all the other patterns.

Figure 5.3: The evolved SNN with one interneuron to distinguish one pattern of three
inputs. The network has 3 inputs (cyan) each with only one spike at the times: 50 ms,
150 ms, and 250 ms, respectively, 1 interneuron (black), and one output (purple). This
network was evolved to distinguish the input pattern 1-2-3 from the 5 other permuted
patterns. The neurons are connected with both excitatory connections (green) and
inhibitory connections (red). The thickness of lines signifies the strength of the con-
nections. The actual simulation time is 1000 ms, but for clarity only up to 300 ms are

shown, the neurons continue spiking afterwards.

I increased the complexity by allowing the network to include two interneurons (Fig.

5.4). In the resulting final network interneuron 2 plays the role of the pattern 1-2

detector, interneuron 2 allows interneuron 1 to move to the plateau state and to stay in

Chapter 5. Pattern Recognition in GReaNs 55

stand by, waiting for any small stimulus in order to spike, so interneuron 1 acts as an

interneuron 2-input 3 detector, and finally the output detects the pattern interneuron

2- interneuron 1.

Figure 5.4: The evolved SNN with two interneurons to distinguish one pattern of three
inputs. The network has 3 inputs (cyan) each with only one spike at the times: 50 ms,
150 ms, and 250 ms, respectively, 2 interneurons (black), and one output (purple). This
network was evolved to distinguish the input pattern 1-2-3 from the 5 other permuted
patterns. The neurons are connected with both excitatory connections (green) and
inhibitory connections (red). The thickness of lines signifies the strength of the con-
nections. The actual simulation time is 1000 ms, but for clarity only up to 300 ms are

shown, the neurons continue spiking afterwards.

Networks with 5 and 10 interneurons were also successfully evolved and managed to dis-

tinguish the pattern 1-2-3, but it was very complicated to understand their behaviours.

5.4.2 The robustness to temporal noise

I checked the robustness of the evolved networks (with 1, 2, 5, and 10 interneurons) to

temporal noise added to spike times (Gaussian noise with standard deviations 10, 20,

and 30 ms). I compared the robustness of the network when the temporal noise was not

present during the evolution, and when it was present at different levels (10, 20, and 30

ms standard deviation) during the evolution.

Chapter 5. Pattern Recognition in GReaNs 56

Table 5.1: Evolution of robustness to noise in a temporal pattern recognition task in
LIF networks with 1 interneuron. The networks evolved with various level of noise in
the input (Gaussian noise added to spike times, centered at zero and with indicated
standard deviation, sd) were tested with the same (or different) level of noise that
(than) was used during evolution. The first value shows the performance of the best

network in 10 runs, the values in brackets are averages ± sd.

Testing
Temporal noise during evolution

no noise sd = 10 ms sd = 20 ms sd = 30 ms

no noise 0(0.09± 0.06) 0.05(0.056± 0.012) 0.05(0.07± 0.04) 0.049(0.08± 0.076)

sd=10 ms 0.017(0.48± 0.21) 0.198(0.25± 0.06) 0.2(0.23± 0.1) 0.196(0.235± 0.1)

sd=20 ms 0.042(0.55± 0.2) 0.29(0.39± 0.05) 0.22(0.27± 0.09) 0.216(0.271± 0.093)

sd=30 ms 0.11(0.56± 0.18) 0.4(0.49± 0.06) 0.25(0.37± 0.09) 0.229(0.361± 0.081)

Table 5.2: Evolution of robustness to noise in a temporal pattern recognition task in
LIF networks with 2 interneurons. The networks evolved with various level of noise in
the input (Gaussian noise added to spike times, centered at zero and with indicated
standard deviation, sd) were tested with the same (or different) level of noise that
(than) was used during evolution. The first value shows the performance of the best

network in 10 runs, the values in brackets are averages ± sd.

Testing
Temporal noise during evolution

no noise sd=10 ms sd=20 ms sd=30 ms

no noise 0 (0.026± 0.052) 0 (0.04± 0.07) 0.05 (0.18± 0.2) 0 (0.08± 0.12)

sd=10 ms 0 (0.36± 0.22) 0 (0.12± 0.1) 0 (0.18± 0.066) 0 (0.145± 0.09)

sd=20 ms 0.04 (0.41± 0.21) 0 (0.21± 0.16) 0.01 (0.2± 0.1) 0(0.17± 0.11)

sd=30 ms 0.08 (0.47± 0.19) 0.05 (0.31± 0.17) 0.06 (0.28± 0.11) 0.07 (0.27± 0.11)

I used the evolutionary algorithm to obtain 10 independent networks for each setting (160

networks in total, 4 different network sizes × 4 different noise levels × 10 independent

runs). When the noise was present during the evolution, each network was evaluated 100

times with random noise, and ferr was calculated as the average of the 100 evaluations.

I tested each evolved network 100 times for each noise level (no need to test the network

100 times when no noise is present) and calculated the average ferr, then I calculated

the average value and the standard deviation of the average ferr for the 10 individual

networks with the same settings. The results are shown in Tables 5.1 - 5.4.

5.4.3 Network analysis

We can see in the results that it is possible to evolve a network with 2 interneurons which

is robust to noise (Table. 5.2). Moreover, it was straightforward to analyse the topology

Chapter 5. Pattern Recognition in GReaNs 57

Table 5.3: Evolution of robustness to noise in a temporal pattern recognition task in
LIF networks with 5 interneurons. The networks evolved with various level of noise in
the input (Gaussian noise added to spike times, centered at zero and with indicated
standard deviation, sd) were tested with the same (or different) level of noise that
(than) was used during evolution. The first value shows the performance of the best

network in 10 runs, the values in brackets are averages ± sd.

Testing
Temporal noise during evolution

no noise sd=10 ms sd=20 ms sd=30 ms

no noise 0 (0± 0) 0 (0.06± 0.13) 0.05 (0.09± 0.11) 0.05 (0.06± 0.02)

sd=10 ms 0 (0.4± 0.25) 0 (0.07± 0.09) 0.006 (0.18± 0.06) 0.03 (0.18± 0.05)

sd=20 ms 0 (0.42± 0.25) 0 (0.13± 0.12) 0.03 (0.23± 0.07) 0.07 (0.2± 0.05)

sd=30 ms 0.04 (0.5± 0.23) 0.054 (0.24± 0.15) 0.07 (0.33± 0.01) 0.08 (0.29± 0.08)

Table 5.4: Evolution of robustness to noise in a temporal pattern recognition task in
LIF networks with 10 interneurons. The networks evolved with various level of noise
in the input (Gaussian noise added to spike times, centered at zero and with indicated
standard deviation, sd) were tested with the same (or different) level of noise that
(than) was used during evolution. The first value shows the performance of the best

network in 10 runs, the values in brackets are averages ± sd.

Testing
Temporal noise during evolution

no noise sd=10 ms sd=20 ms sd=30 ms

no noise 0 (0± 0) 0 (0.02± 0.06) 0 (0.06± 0.08) 0 (0.16± 0.08)

sd=10 ms 0.03 (0.4± 0.29) 0 (0.02± 0.06) 0 (0.05± 0.08) 0 (0.165± 0.08)

sd=20 ms 0.14 (0.46± 0.25) 0 (0.04± 0.08) 0 (0.08± 0.1) 0.01 (0.18± 0.08)

sd=30 ms 0.4 (0.54± 0.2) 0.07 (0.14± 0.01) 0.02 (0.17± 0.1) 0.05 (0.24± 0.09)

of the network with 2 interneurons. I performed 10 independent evolutionary runs of

networks with 2 interneurons in the presence of temporal noise with 10 ms standard

deviation. After checking the topology of the final networks we can see that these 10

champions can be divided into 3 main categories as following:

5.4.3.1 Category 1

In 3 out of 10 champions (Fig. 5.5), one interneuron (1) acts as a detector of a spike in

input (IN2); once this interneuron starts firing at high frequency (because of a recurrent

excitatory connection), the second interneuron (2) goes to a plateau state—the mem-

brane potential is higher than the resting potential, but still sub-threshold—. When the

third input (IN3) generates a spike, it increases the firing rate of interneuron (1) putting

interneuron (2) in a higher plateau. The membrane potential of interneuron (2) is slowly

Chapter 5. Pattern Recognition in GReaNs 58

increasing until it reaches the threshold at around 350 ms. Because of this plateau state,

the activation of the interneuron (2) does not depend on the time between spikes in the

second input (IN2) and the third input (IN3) (which allows for the robustness to noise).

Interneuron (2) acts as a detector of the sub-pattern interneuron (1) - input (IN3). This

is why the spike from input (IN2) should arrive before the spike of input (IN3), so the

network will be silent for the patterns 1-3-2, 3-2-1, and 3-1-2. Input (IN1) inhibits both

interneurons, so they remain silent when presented with input patterns 2-3-1 or 2-1-3.

With 1-2-3, interneuron (2) starts spiking at 350 ms (100 ms after the spike on input,

at 250 ms), allowing for robustness to noise on input (IN1).

Chapter 5. Pattern Recognition in GReaNs 59

Figure 5.5: The final SNN of 3 inputs (cyan) each with only one spike at the times: 50
ms, 150 ms, and 250 ms, respectively, 2 interneurons (black), and one output (purple).
The neurons are connected with both excitatory connections (green) and inhibitory
connections (red). The thickness of lines signifies the strength of the connections. The
actual simulation time is 1000 ms, but for clarity only up to 400 ms are shown, the
neurons continue spiking afterwards. Note: The effect of inputs spike is shifted forward

or backward due to the noise.

Chapter 5. Pattern Recognition in GReaNs 60

5.4.3.2 Category 2

In 5 out of 10 champions (Fig. 5.6), one interneuron (1) starts spiking after the spike

in input (IN1) and thanks to the positive feedback loop it keeps firing, putting the

other interneuron (2) into a plateau state. When the spike from input (IN2) arrives,

interneuron (1) starts firing at a higher rate, putting interneuron (2) into a higher

plateau state. Only a small stimulus—a spike from input (IN3)—is now required so that

interneuron (2) starts spiking, and thus also the output. Here also the plateau state

allows for robustness to noise—the times between spikes in input (IN1) and (IN2), or

(IN2) and (IN3) have no effect on the pattern recognition.

The spike from input (IN1) should arrive first in order to activate interneuron (1) which

then puts interneuron (2) into a plateau, thus the patterns 2-1-3, 2-3-1, 3-1-2, and 3-2-1

do not allow the output neuron to be active. It is not clear from Fig. 5.6 why the

pattern 1-3-2 does not activate the output neuron. I checked the exact values of the

weights of the synapses and found that input (IN2) has a stronger inhibitory synapse

with interneuron (1) than the inhibitory synapse between input (IN3) and interneuron

(1). While input (IN3) has a stronger excitatory synapses with interneuron (1) than the

excitatory synapses between input (IN2) and interneuron (1). This structure allows the

sub-pattern 2-3 to have more effect on interneuron (1) than the pattern 3-2, thus the

pattern 1-3-2 does not allow the output to be active.

Chapter 5. Pattern Recognition in GReaNs 61

Figure 5.6: The final SNN of 3 inputs (cyan) each with only one spike at the times: 50
ms, 150 ms, and 250 ms, respectively, 2 interneurons (black), and one output (purple).
The neurons are connected with both excitatory connections (green) and inhibitory
connections (red). The thickness of lines signifies the strength of the connections. The
actual simulation time is 1000 ms, but for clarity only up to 300 ms are shown, the
neurons continue spiking afterwards. Note: The effect of inputs spike is shifted forward

or backward due to the noise.

Chapter 5. Pattern Recognition in GReaNs 62

5.4.3.3 Category 3

2 champions out of 10 evolved with 10 ms noise (Fig. 5.7) were in fact only robust to

less noise than for which they were evolved, on the timing of the spike in input (IN3)—

even though they had zero error when tested with 10 ms noise. This is because one

interneuron (1) acts as a detector of the time interval between spikes in input (IN1)

and (IN2). If this interval is higher than the network was evolved for, the pattern is

not recognized. Otherwise, once interneuron (1) puts the second interneuron (2) into

the plateau state, any timing of the spike in input (IN3) is sufficient for correct pattern

recognition.

The spike from input (IN2) is not enough to make interneuorn (1) active alone. Input

(IN1) should precede input (IN2) in order to make interneuron (1) active, so interneuron

(1) acts as a 1-2 sub-pattern detector. For this reason, the patterns 2-1-3 and 2-3-1 do

not allow the output to be active. The excitatory synapse between input (IN1) and

interneuron (1) is very strong comparing with the excitatory synapse between input

(IN3) and interneuron (1). That is why the inputs sub-pattern 3-2 does not activate

interneuron (1), thus the patterns 1-3-2 and 3-2-1 can not make the network active.

Despite the excitatory synapses between input (IN3) and interneuron (1) is not very

strong, but it is enough to increase the firing rate of interneuron (1) to make interneuron

(2) active. As a result, the pattern 3-1-2 does not allow interneuron (2) to be active.

Chapter 5. Pattern Recognition in GReaNs 63

Figure 5.7: The final SNN of 3 inputs (cyan) each with only one spike at the times: 50
ms, 150 ms, and 250 ms, respectively, 2 interneurons (black), and one output (purple).
The neurons are connected with both excitatory connections (green) and inhibitory
connections (red). The thickness of lines signifies the strength of the connections. The
actual simulation time is 1000 ms, but for clarity only up to 300 ms are shown, the
neurons continue spiking afterwards. Note: The effect of inputs spike is shifted forward

or backward due to the noise.

Chapter 5. Pattern Recognition in GReaNs 64

5.5 Conclusion

After checking the results of evolving and testing the SNNs with 1, 2, 5, and 10 in-

terneurons with different noise levels (Table 5.1 - 5.4), we can clearly see that there is

significant improvement in the values of the ferr when we use 2 interneurons instead

of 1 interneuron. On the other hand, we can see that there is no big difference in the

behaviour of the networks with 2, 5, and 10 interneurons. These results would not be

surprising at all after the analysis of the SNNs with 2 interneurons which are robust to

the noise (Fig. 5.5 - 5.7).

The analysis shows that the excitatory feedback loops play a crucial role in transferring

the network from one plateau state to another, until it becomes active. This plateau

behaviour of the network requires at least 2 interneurons in the network (1 interneuron

with a positive feedback loop put the other interneuron in the plateau state). We can

now also understand why the networks with just one interneuron cannot reach 0 error

when noise is present during the evolution.

It was expected that it would be more difficult to evolve large networks with five and

ten interneurons than the network with only one and two as large networks have wider

search space. The reason behind that could be that the task was too easy for SNNs.

Chapter 6

Real Time Control of Foraging

Behaviours

6.1 Introduction

Olfactory system is used by many animals for food foraging[19]. Olfactory sensory neu-

rons collect information about odours in the environment. This information is encoded

as spikes and sent to the brain through the axons of the sensory neurons [67]. The

foraging system uses this information to locate and follow food sources (targets) in the

environment.

Many coding strategies were proposed as a proper way to encode the information col-

lected from the environment to be used by olfactory system. These coding strategies

include the firing rate, the number of the active sensory neurons, and the synchronization

of firing between the sensory neurons [19].

Oros and collaborators have investigated the ability of evolving SNNs to control animats

for foraging [22]. I built up on their work and extended it by presenting more encoding

strategies and allowing more targets in the environment.

It is arbitrary that sensory information represents smell (concentrations of chemical

substances) in this chapter. It could as well be any signal that attenuates with distance

(light, sound). To simplify the discussion in this chapter, I will be using the metaphor

of food sources and an animat that can sense the smell of food.

The GReaNs platform was used in earlier work to explore the ability of evolving GRNs

to control real time behaviour [26, 27]. Here I explain how I extended this previous work

to allow the use of SNNs instead of GRNs.

65

Chapter 6. Real Time Control of Foraging Behaviours 66

6.2 The Model

6.2.1 Spiking Neural Networks Model

I used the LIF SNN model described in chapter 3 for the animat foraging task as it is

considered more simple than the AdEx SNN model.

6.2.2 Animat Simulation

A very simple model was used to represent the animat in GReaNs [26, 27]. Each animat

is modelled as a circular object with two sensors on each side of the front of the animat

and two actuators on each side of the back of the animat. Each sensor is connected to

an input neuron, while each actuator is connected to an output neuron. The animat is

simulated in a 2D environment, where food resource objects are placed randomly. In the

previous work [26, 27], the strength of the food smell generated from each food resource

was represented as a circle, where the maximum strength is at the centre of the circle

and it gradually decreases moving away from the centre (Fig. 6.2). The strength of the

food smell generated by each food source is determined by the following equation:

s =
1

1 + αd
(6.1)

where s is the strength of smell at the sensor generated by a single food source, d is

distance between the sensor and the food resource, and α is a scaling factor. In the

work that had been done before for using GRN to control the agent [26, 27], α = 0.05

was used. I needed to increase the scaling factor in order to increase the range of the

food particles. Increasing the range of the food particles helped in allowing the animat

to smell the food when it was far from them. I used α = 0.2 during all the simulations.

Based on the distance between the animat and the surrounding food resources, the

strength of the smell of the food is calculated at both sensors by adding the strengths

generated by each food resource individually.

When an output neuron is active, the corresponding actuator generates force (thrust) in

the direction indicated in Fig. 6.1. The length of this vector is proportional to either:

• The difference between the membrane potential of the output neuron and the

threshold. When the membrane potential crossed the threshold, the force of the

corresponding actuator is update with the value:

Thrust = V − Vth (6.2)

Chapter 6. Real Time Control of Foraging Behaviours 67

where Thrust is the value of the thrust generated at the corresponding actuator, V

is the membrane potential of the output neuron, and Vth is the threshold potential

of the output neuron.

This was the first way I implemented to update the actuators force. I decided

to start with this method as it was very close to the way the actuators force was

updated when GRNs were used, before moving to more realistic methods from the

point of view of neuroscience.

• Constant value. When the membrane potential of the output neuron fires a spike,

the force of the actuator is increased by a constant value as following:

Thrust = β (6.3)

where V is the membrane potential and β is a constant.

• The number of spikes generated by the output neuron during a sliding window.

The force at the actuator is updated with the number of spikes fired by the cor-

responding output neuron within a sliding window with a fixed width, divided

by a constant factor. Since the refractory period is 1 ms (we can not have more

than one spike each 2 ms as the maximum firing rate is 500 Hz), the force at the

actuators is updated each 1 ms.

Thrust =
N

γ
(6.4)

where N is the number the spikes generated by the corresponding output neuron

during the sliding window, and γ is a constant factor.

Figure 6.1: The model of the animat evolved in order to collect targets on 2D maps.
The animat has 2 sensors (SL and SR) on the front and 2 actuators (AL and AR) on

the back. The two actuators generate forces in the directions FAL and FAR [26].

The movement of the animat is controlled by simple Newtonian physics that was im-

plemented before [26, 27]. Not only do the spikes of the output neurons affect the force

of the actuators, but the animats are also affected by the fluid drag which decreases

the velocity of the animats. The effect of the fluid drag on the force of the actuator is

described by the following equation:

Chapter 6. Real Time Control of Foraging Behaviours 68

Fnew = Fold − cdd|−→v | (6.5)

where Fnew is the new force, Fold is the old force, cd is the drag coefficient, d is the

diameter of the animat, and −→v is the velocity of the animat. cd = 1 was used in all the

tasks of evolving animats in this thesis.

Due to this fluid resistance, the speed of the animat gradually decreases in the case

when both of the actuators are not active. If one actuator is on and the other is off, the

animat will move in a circle, as it is not allowed to rotate in its initial position. This

feature was implemented in the previous work by adding a rotation drag force to the

system which worked against the rotation of the animat [26, 27].

Figure 6.2: The gradation of the strength of food smell generated by 20 targets in
GReaNs.

6.2.3 Genetic algorithm

As in the previous tasks, the first generation in each evolutionary run was initiated

with 300 random SNNs, each with five neurons, the size of the population in each

Chapter 6. Real Time Control of Foraging Behaviours 69

generation was kept constant. In the work that had been done before by Joachimczak

and colleagues to evolve GRNs for animat foraging [26, 27], crossover and elitism were

disabled. Disabling the elitism means that mutations were applied on all the genomes

in the previous generation in order to generate the new generation.

Disabling the elitism put a pressure on the evolutionary algorithm in order to evolve

GRNs which could be robust to mutations. Joachimczak and colleagues also reduced

the probability of duplication and deletions of regulatory elements, used in the previous

tasks, by an order of magnitude in order not to loose the successful genomes very easily.

I used the same probability of genetic operators as used previously as this probability

already showed that it was successful for animat foraging task.

I also used the same function which was used in the previous work in GReaNs [26, 27]

to calculate the error value:

ferr = 1− collected

total
(6.6)

where collected is the number of the food resources and total is the total number of food

resources in the simulation environment. The value of ferr varies from 0 for the best

animat to 1 for the worst animat.

In the foraging tasks done before with GReaNs when artificial GRNs controlled the

behaviour of the neurons [26] it was noticed that this error function led to inefficient

behaviour of the animat moving in circles towards the food resources. An example

of such behaviour can be seen in Fig. 6.3. The animat moves in circles instead of

moving in a smooth path. The animat had this behaviour because the right actuator

was always dominating the left actuator. In order to solve this problem, Joachimczak

and colleagues multiplied the total error value of the animats that change the direction

of their movement at least once during the simulation by 0.9.

In the tasks presented in 6.3.1 and 6.3.2.1, the animats did not show this suboptimal

behaviour, so I did not add the change direction reward. I did not add this reward in

the tasks presented in 6.3.2.2 and 6.3.2.3 as well, but adding this reward would be useful

as half of the evolved animats suffered from this circling movement. In the last tasks

in this chapter in 6.3.3, it was mandatory to use this reward as most of the evolved

animats suffered from this suboptimal behaviour. I increased the effect of the reward

by multiplying the total value of ferr by 0.8 instead of 0.9. I will talk again about this

change direction reward when I describe each task separately.

During the evolution, the animats were evaluated using more than one random map.

The value of ferr of each animat was calculated as the average of the ferr on all maps.

Chapter 6. Real Time Control of Foraging Behaviours 70

Figure 6.3: A suboptimal behaviour of the agent that has been discovered before in
GReaNs [26] when the GRN was used to control the agent.

Using a large number of maps during the evolution would allow getting a more exact

estimate of fitness for each animat, but it also penalized the animats that moved fast

but not in the direction of targets (but that could hit some sources on some of the few

random maps by chance) at the beginning of the evolution. Although this movement

of the animat was not the goal of the evolution, this movement at the beginning of

the evolution could lead to targeted movement (moving toward the target) during the

subsequent generations.

On the other hand, using small number of maps could result in obtaining a lucky animat

that collects the targets with directional movement. So it was necessary to find the

suitable number of maps for evaluating the animats.

6.3 Encoding sensory information in the SNNs in GReaNs

I implemented different methods to encode the strength of the food smell calculated at

the two sensors.

6.3.1 The strength of food smell at sensors to synaptic conductance

injection

The first encoding method I implemented to represent the sensory information was the

synaptic conductance injection encoding. In this encoding, synapses of all the neurons

connected to the input neurons are updated based on the strength of food smell at the

sensors.

As a result of the small distance between the two sensors of the animat comparing to

the simulation environment, the difference of the strengths of food smell at the right

Chapter 6. Real Time Control of Foraging Behaviours 71

sensor (SR) and the left sensor (SL) was too small that made it difficult to evolve an

animat able to find the location of the targets. In the work that had been done before

in GReaNs [26, 27], the following sigmoid functions were used:

S1 =
1

1 + e−ε(SR−SL)
(6.7)

S2 =
2

1 + e−ε(SR+SL)
− 1 (6.8)

where ε was used to control the steepness of the function. ε = 10 was used.

Based on the type of the synapses (excitatory or inhibitory) the excitory or the inhibitory

synaptic conductance, of the neurons connected to the input neurons, was updated by

the one of the following equations:

˙gE = λS or ġI = λS (6.9)

where S could be S1 or S2 and λ is a constant. λ = 0.5 was used.

I used equation 6.2 to update the force of the actuators for the animat in this task.

I did not use the 0.8 decrease of the total error value was rewarded to the animats that

change the direction of their movement at least once during the simulation in this task.

In this task, I tried to find the best simulation time for the evaluation of the animat,

the suitable number of random maps used for evaluation, and the suitable number of

generations for the evolution.

In the first settings, I used 2000 steps (2 s as each step corresponds to 1 ms), 24 random

maps for evaluation, and I ran it for 1000 generations. Using these settings, I got an

animat with ferr = 0.4979 (Fig. 6.4). This animat had ferr = 0.527 when it was tested

with other 24 random maps. This animat was able to collect only 11 targets out of

20 targets when it was simulated for 2 s (the same simulation time used during the

evolution).

As I explained at the beginning of this chapter, the number of maps used for evaluating

was a trade-off. For this reason, I used four random maps for evaluating the animat

during the first 500 generations in order to allow directional movement at the beginning

of the evolution. Using only four maps allowed also to have high variability in the

behaviour of the animats. This high variability allowed promoting big advances early

in the evolution. However, late in evolution, the advances are small, so the evaluation

Chapter 6. Real Time Control of Foraging Behaviours 72

Figure 6.4: The behaviour of the animat that had been evolved using simulation
time 2 s and synaptic conductance injection coding when it was simulated for 2 s. The
gray circle represents the animat, black circles represent the uncollected targets, white
circles represent the collected targets and the continuous line represents the path of the

animat during the simulation.

needed to be more precise. For this reason, I increased the number of random maps

used for evaluation to 24 in the last 100 generations (600 generations in total).

It was obvious that the animat shown in Fig. 6.4 needed more time in order to collect

all targets. I increased the simulation time used during the evolution to 4000 steps (4

s) and started the evolution from the beginning again, but this did not help much.

I increased simulation time used during the evolution to 10 s. As I mentioned above, I

decreased the number of random maps used during the evaluation to four maps during

the first 500 generations. I ran the evolutionary algorithm for 100 generations more

using 24 maps. At the end of the evolution, I got an animat with ferr = 0 and it had

the same value for generalization. Fig. 6.5 shows that the animat was able to collect all

targets, however, the simulation time was quite long that gave the opportunity to the

animat to move slowly and take a long path.

I repeated the previous task again, but after reducing the simulation time used during

the evolution to 6000 steps (6 s). After 600 generations, the best animat I got had

ferr = 0.0375. When this animat was simulated for 6 s, it did not manage to collect

all the targets, however after prolonging the simulation time to 10 s (Fig. 6.6), this

Chapter 6. Real Time Control of Foraging Behaviours 73

Figure 6.5: The behaviour of the animat evolved using simulation time 10 s and
synaptic conductance injection coding when it was simulated for 10 s. The gray circle
represents the animat, black circles represent the uncollected targets, white circles
represent the collected targets and the continuous line represents the path of the animat

during the simulation.

animat managed to collect all the targets. Reducing the simulation time used during

the evolution from 10 s to 6 s allowed having an animat with higher speed.

In order to make sure that I can always get an animat able to collect all the targets and

that obtaining the animat shown in Fig. 6.6 was not just some fluke in a particular run,

I investigated the behaviour of 10 champions from independent runs. In each run, I used

simulation time 6 s, four random maps for evaluation until the 500th, and 24 random

maps for the last 100 generations.

The best animat I got out of the 10 champions had ferr = 0. This animat was able to

collect all the targets on the map (20 targets) when only 6 s were used for simulation

(Fig. 6.7). Note that Fig. 6.6 and 6.7 show the behaviour of champions from different

independent runs on the same random map for comparison.

I investigated the evolutionary history of the best animat shown in Fig. 6.8. As we

can see in Fig. 6.8 (lower panel), the curve goes down steeply during the first 100

generations. In the period between the 100th generation and the 400th generation, the

curve goes down less steeply but it oscillates very quickly until it reaches 0 before the

end of the 400th generations. This oscillation behaviour resulted from the fact that the

possible ferr values are discrete as there are only 80 targets in total on four maps.

Chapter 6. Real Time Control of Foraging Behaviours 74

Figure 6.6: The behaviour of the evolved animat using synaptic conductance injection
coding using simulation time 6 s during the evolution when simulated for 10 s. The
gray circle represents the animat, black circles represent the uncollected targets, white
circles represent the collected targets and the continuous line represents the path of the
animat during the simulation. The red arrow shows where the animat stopped when it

was simulated for only 6 s.

At generation 500, the number of maps used for evaluation the animat was increased

from four to 24. We can see that this increased the error at the beginning of the last

100 generations, but it goes down again to reach 0 at the end of the evolution.

If we zoom in to compare the trajectory of the ferr between the 100th generation and the

400th generation Fig. 6.8 (upper left panel) with the trajectory of the ferr between the

500th generation and the 600th generation (upper right panel), we will see that the range

of oscillation is less in the last 100 generations. This decrease in the range of oscillation

resulted from increasing the number of random maps used for evaluation from four to

24 maps.

The average ferr of the best evolved animats from the 10 champions was 0.14 with

standard deviation 0.12. Despite no reward was added in order to get rid of circling

movement, none of these 10 animats suffered from this suboptimal behaviour.

In order to get an estimate of the fitness values of the best animats out of the 10

champions, I re-evaluated these animats on another 100 random maps. I used 100

random maps as it gave a less variable estimate of fitness than the numbers of maps

used during the evolution (4 and 24). I used the same number of targets during the

Chapter 6. Real Time Control of Foraging Behaviours 75

Figure 6.7: The behaviour of the best evolved animat using synaptic conductance
injection coding using simulation time 6 s during the evolution. The gray circle repre-
sents the animat, black circles represent the uncollected targets, white circles represent
the collected targets and the continuous line represents the path of the animat during

the simulation.

Figure 6.8: The evolution history of the best animat evolved using conductance
injection coding.

Chapter 6. Real Time Control of Foraging Behaviours 76

evaluation (20 targets) and I increased the simulation time to 12 s in order not to

penalize the slow animats. The average (over the 10 champions) of the average (over the

100 evaluation) ferr was 0.07 and the standard deviation of the average ferr was 0.06.

When the animats were re-evaluated using 100 random maps again, the differences in

the estimate ferr were about about 0.01.

In the 10 champions evolved here using conductance injections, 20 targets were used.

Increasing the number of targets on the map will increase the density of the food concen-

tration. In order to test if the animats evolved using 20 target will be able to cope with

higher food density or if they will break down (malfunctioning of the network, stemming

possibly from the recurrence, would result in a perfectly circular trajectory before all

the targets are reached), I tested the best evolved animat out of the 10 champions after

re-evaluating them with 100 random maps.

The initial plan for checking the fragility of the evolved networks was to keep doubling

(40, 80, ...etc) the number of targets and testing the best animat until it breaks. After the

largest number of targets for which the animat would not malfunction was determined

by doubling, I would again perform the search above this number using a logarithmic

scale, but now multiplying by 1.1, not 2. When it breaks I took the largest successful

number as an indicator for the limit of this animat.

I did not limit the simulation time as movement speed of the animat was not important

in this test.

After applying this plan, the best animat showed an interesting reaction. I kept doubling

the number of targets until it reached 20480 without breaking (to move in circles or

to stop moving at all). Due to computational power limitation of my computer, I

was not able to test the animat with more targets. Using the conductance injection

encoding resulted in obtaining a SNN very robust with increasing the food density in

the environment.

Chapter 6. Real Time Control of Foraging Behaviours 77

6.3.2 Unary coding

The second encoding method I implemented to represent the sensory information was

the unary coding. The unary coding is an encoding that is used to represent natural

numbers. Each number n is represented using this coding as n ones followed by a zero

(4 is represented as 11110). I used this coding to map the value of the food smell at

the sensors to the number of active neurons in the input layer. The network had 100

neurons in the input layer which were initially not active. At each simulation step, based

on the food smell at the sensors, the number of active neurons in the input layer was

determined and varied from 0 to 100 neurons where 0 active neurons represented the

minimum smell and 100 active neurons represented the maximum smell.

Although this encoding looks different from the previous one, if we will simplify them

to equations, we will find that they are the same. The only difference is that the unary

encoding has digital values (1, 2, ... 100) for the synaptic conductance injection, while

the encoding explored in the section 6.3.1 has continuous values.

Here again I found 10 champions after 500 generation with four random maps and then

100 generations with 24 random maps.

I have applied the three methods of determining the thrust at the actuators using the

unary coding. The results of these tasks can be described as following:

6.3.2.1 Using the (V − Vth) thrust

The first method of updating the force at the actuators was the (V −Vth) thrust described

in equation 6.2.

The best animat (Fig. 6.9) I got out of the 10 champions had ferr = 0. This animat

was able to collect all the targets during the 6 s used as the simulation period during

the evolution.

The evolutionary history of this animat (Fig. 6.10) shared the same properties of the

evolutionary history of the best animat evolved using conductance injection. The value

of ferr goes down very steeply during the first 100 generations as well. The slope of

the trajectory started to be less steep after the 100th generation but the trajectory was

oscillating very quickly with a wide range. After increasing the number of random maps,

the trajectory started to oscillate less until it stabilized at around the 520th generation.

The average of the ferr of the 10 champions was 0.14 with standard deviation 0.18.

Again here, none of the evolved animats suffered from the suboptimal behaviour despite

not using the reward mechanism.

Chapter 6. Real Time Control of Foraging Behaviours 78

Figure 6.9: The behaviour of the best evolved animat using unary coding using
simulation time 6 s. The gray circle represents the animat, black circles represent the
uncollected targets, white circles represent the collected targets and the continuous line

represents the path of the animat during the simulation.

Figure 6.10: The evolution history of the best animat evolved using unary coding.

Chapter 6. Real Time Control of Foraging Behaviours 79

In order to estimate the ability of the best evolved animats from the 10 champions to

collect 20 targets on any random map, I re-evaluated the best animat from each champion

on 100 random maps using a simulation time 12 s with 20 targets. The average (over the

10 champions) of the average (over the 100 evaluation) ferr was 0.06 and the standard

deviation of the average ferr was 0.09. When a given champion was re-evaluated using

100 random maps again, the difference in the ferr tended to be about 0.001.

In order to test the fragility of the best animat evaluated on the 100 random maps when

more food density was presented during the simulation, I followed the same testing plan

as in section 6.3.1.

First I started with 40 targets which the animat was able to collect and I increased until

I reached to 2560 which the animat was still able to collect. When I doubled the targets

to 5120 the animat was able to collect only 658 targets before it started moving in a

circle.

I reduced the targets to 2816 (2560 × 1.1), but the animat was also not able to collect

all of them and manged to collect only 2470 targets. Since the largest number of targets

this animat managed to cope with was 2560, by this measure the best evolved animat

here is more fragile than the one investigated in section 6.3.1.

I added the ability to save the history of the thrusts at the actuators during the simula-

tion. This feature will allow me to see how the (V − Vth) thrust affected the movement

of the animat and how does this method differ from other methods of updating the force

of the actuators.

I simulated the best animat out of the 10 champions two times. The first simulation

was for 1 s when only one target was presented. In order to see if the density of the

food concentration will affect the range of the thrusts, I simulated the behaviour of the

animat again for 1 s but using 20 targets.

During each simulation I saved the thrust at the left and right actuators at each step.

I used the value L+R√
2

as an indicator for the thrust forward and the value L−R√
2

as the

thrust right (it will take a positive value if the animat turns right, and negative if it

turns left, i.e. when the right actuator is more active than the left actuator).

Fig. 6.11 shows the simulation of the animat with one target. As we can see, the thrusts

can take a wide range of value with high variance. During the last 400 steps and with

absence of any concentration, the right thrust was negative; in other words the animat

turned left (was on a circular trajectory, going anticlockwise).

When the animat was simulated with 20 targets (Fig. 6.12), there was a slight increase

at the strength of the forward and right thrusts.

Chapter 6. Real Time Control of Foraging Behaviours 80

(a) The trajectory of the best animat evolved using unary coding and (V − Vth) thrust when
it was simulated for 1 s with only 1 target. The gray circle represents the animat, white circle
represents the collected target and the continuous line represents the path of the animat during

the simulation

(b) The thrust forward generated by actuators
during the simulation.

(c) The thrust right generated by actuators dur-
ing the simulation.

Figure 6.11: The right and the forward thrusts generated by the actuators during the
simulation of the best animat evolved using unary coding and (V − Vth) thrust with 1

target on the map.

Chapter 6. Real Time Control of Foraging Behaviours 81

(a) The trajectory of the best animat evolved using unary coding and (V − Vth) thrust when
it was simulated for 1 s with 20 targets. The gray circle represents the animat, black circles
represent the uncollected targets, black circles represent the uncollected targets, white circles
represent the collected targets and the continuous line represents the path of the animat during

the simulation

(b) The thrust forward generated by actuators
during the simulation.

(c) The thrust right generated by actuators dur-
ing the simulation.

Figure 6.12: The right and the forward thrusts generated by the actuators during the
simulation of the best animat evolved using unary coding and (V −Vth) thrust with 20

targets on the map.

Chapter 6. Real Time Control of Foraging Behaviours 82

6.3.2.2 Using the constant thrust

The second method I used to update the force of the actuators was using a constant

thrust. When an output neuron fired a spike in a given simulation step, the correspond-

ing actuator was active and a constant force (thrust) was applied to the animat in the

direction shown in Fig. 6.1. I used equation 6.3 with β = 2.5. This value was close to

the average thrusts at the left and right actuators when (V − Vth) thrust was used.

The best animat out of the 10 champions had ferr 0.075. When this animat was sim-

ulated for 6 s (the same simulation time used during the evolution) it was not able to

collect all the targets.

Figure 6.13: The behaviour of the evolved animat using unary coding and constant
thrust using simulation time 6 s. The gray circle represents the animat, black circles
represent the uncollected targets, white circles represent the collected targets and the

continuous line represents the path of the animat during the simulation.

Nonetheless, when this animat was simulated for 12 s (Fig. 6.14), it was able to collect

all the targets.

The average ferr of the best evolved animats of the 10 champions was 0.32 with standard

deviation 0.16. The change direction reward was not added here. Adding the change

direction reward would improve the results as 5 out of the 10 best evolved animats

suffered from suboptimal behaviour with moving in circles.

Chapter 6. Real Time Control of Foraging Behaviours 83

Figure 6.14: The behaviour of the evolved animat using unary coding and constant
thrust using simulation time 12 s. The gray circle represents the animat, black circles
represent the uncollected targets, white circles represent the collected targets and the

continuous line represents the path of the animat during the simulation.

When the 10 evolved animats were re-evaluated on 100 random maps using 20 targets

for 12 s, the average (over the 10 animats) of the average (over the 100 evaluation) of

ferr was 0.18 with standard deviation 0.096. The difference in the ferr tended to be

about 0.1, when the animats were re-evaluated using 100 random maps again.

The best animat was tested with larger number of targets to check its ability to cope

with high food density. The animat managed to collect all targets when 40 targets was

presented during the simulation. When 80 targets were presented, the animat was able

to collect 34 targets during the first 6 s, then the animat started moving in a circle,

which prevented it from collecting more food.

The animat was successfully able to collect all the targets when it was simulated with

44 targets (40 × 1.1), however, when it was simulated with 48 targets (44 × 1.1) it

managed to collect only 17 and then it moved in circles again without being able to

collect any more. So for this animat, the maximum number of targets it managed to

cope with was 44. In other words, by this measure, using constant thrust resulted in

obtaining an animat more fragile comparing to the best animats discussed in section

6.3.2.1 and section 6.3.1.

Again here I saved the thrusts at the right and left actuators during two simulation.

The thrust at any of the two actuator can take only one value of two possible values (0

Chapter 6. Real Time Control of Foraging Behaviours 84

(a) The trajectory of the best animat evolved using unary coding and constant thrust when it
was simulated for 1 s with only 1 target. The gray circle represents the animat, white circle
represents the collected target and the continuous line represents the path of the animat during

the simulation

(b) The thrust forward generated by actuators
during the simulation.

(c) The thrust right generated by actuators dur-
ing the simulation.

Figure 6.15: The right and the forward thrusts generated by the actuators during
the simulation of the best animat evolved using unary coding and constant thrust with

1 target on the map.

or 2.5). As a result, the thrust forward L+R√
2

and the thrust right L−R√
2

can take only

three values (0, β√
2
, and 2β√

2
; β√

2
, 0, and - β√

2
, respectively).

The values of the forward and the right thrusts, when only one target was used (Fig.

6.15), were slightly less than the values when 20 targets were used (Fig. 6.16).

Chapter 6. Real Time Control of Foraging Behaviours 85

(a) The trajectory of the best animat evolved using unary coding and constant thrust when
it was simulated for 1 s with 20 targets. The gray circle represents the animat, black circles
represent the uncollected targets, black circles represent the uncollected targets, white circles
represent the collected targets and the continuous line represents the path of the animat during

the simulation

(b) The thrust forward generated by actuators
during the simulation.

(c) The thrust right generated by actuators dur-
ing the simulation.

Figure 6.16: The right and the forward thrusts generated by the actuators during
the simulation of the best animat evolved using unary coding and constant thrust with

20 targets on the map.

6.3.2.3 Using the sliding window thrust

The third method I used to update the force of the actuators was using a sliding window

thrust presented in equation 6.4 using γ = 15. At each step, the number of spikes

generated by the output neuron during the last 60 ms was counted, divided by the γ

factor, and used as a thrust for the force at the corresponding actuator.

The number of spikes generated in a period of 60 ms lies in the range [0,30]. Using γ

= 15 allowed the thrust at each step to lie in the range [0,2]. The thrust affects the

Chapter 6. Real Time Control of Foraging Behaviours 86

actuators here every step not like in the case of using the (V − Vth) and the constant

thrusts which only affect the actuators if the corresponding output neurons fire spikes.

The best animat out of 10 champions using this setup had ferr = 0.34. When this

animat was simulated using simulation time 6 s (same time used during the evolution)

(Fig. 6.17), it managed to collect only 11 targets out of 20 targets.

Figure 6.17: The behaviour of the best evolved animat using unary coding and sliding
window thrust using simulation time 6 s. The gray circle represents the animat, black
circles represent the uncollected targets, white circles represent the collected targets

and the continuous line represents the path of the animat during the simulation.

However when this animat was simulated for 12 s, it managed to collect all the food

(Fig. 6.18).

The average ferr of the best animat out of the 10 champions was 0.47 with standard

deviation 0.087. Eight animats out of the 10 animats suffered from the circling movement

so using the reward here would be helpful as well.

When the 10 champions were re-evaluated on 100 random maps each contained 20 targets

for a simulation time 12 s, the average of average ferr was 0.27, while the standard

deviation of the average was 0.12. The difference in the ferr tended to be about 0.02,

when the animats were re-evaluated using 100 random maps again.

I tested the ability of the best evolved animat to cope with high food density. As

explained before, I started with doubling the number of targets. When 160 targets were

present during the simulation, the animat managed to collect all of them. When the

Chapter 6. Real Time Control of Foraging Behaviours 87

Figure 6.18: The behaviour of the best evolved animat using unary coding and sliding
window thrust using simulation time 12 s. The gray circle represents the animat, black
circles represent the uncollected targets, white circles represent the collected targets

and the continuous line represents the path of the animat during the simulation.

targets were doubled to 320 using the same simulation time, the animat broke down and

stopped moving after around 1 s. It was able to collect only 9 targets.

When I reduced the targets to 176 (160 × 1.1), the animat stopped moving after around 2

s, after collecting only 7 targets. The maximum number of targets this animat was able to

cope with was 160 targets, therefore, using sliding window results in obtaining an animat

more fragile than the animat evolved with conductance injection coding (described in

6.3.1) and the animat evolved with unary coding and (V − Vth) thrust (described in

6.3.2.1) and less fragile than the animat evolved with unary coding and constant thrust

(described in 6.3.2.2).

The values of the thrust at the right and left actuators have more variance using the

sliding window rather than using the constant thrust. This variance allowed the animat

to have a smooth motion. The range of the thrust forward and the thrust right depends

on the number of targets presented during the evaluation. For example, when the best

animat was tested for 1 s with 1 target (Fig. 6.19), the range of the thrusts was less

than the range of the thrusts when 20 targets were used (Fig. 6.20).

Chapter 6. Real Time Control of Foraging Behaviours 88

(a) The trajectory of the best animat evolved using unary coding and sliding window thrust
when it was simulated for 1 s with only 1 target. The gray circle represents the animat, white
circle represents the collected target and the continuous line represents the path of the animat

during the simulation

(b) The thrust forward generated by actuators
during the simulation.

(c) The thrust right generated by actuators dur-
ing the simulation.

Figure 6.19: The right and the forward thrusts generated by the actuators during the
simulation of the best animat evolved using unary coding and sliding window thrust

with 1 target on the map.

Note that although thrusters work more often for sliding window thrust than in the

setup explored previously in sections 6.3.2.1 and 6.3.2.2 (where they could work only

when output neurons spiked, and they could not spike more often than every 2 ms),

they give smaller thrust each time (Fig. 6.19b vs. 6.15b and 6.11b), and the latter effect

overrides the former resulting in slower speed, evidenced by shorter trajectories covered

in one second (6.19a vs. 6.15a and 6.11a).

Chapter 6. Real Time Control of Foraging Behaviours 89

(a) The trajectory of the best animat evolved using unary coding and sliding window thrust
when it was simulated for 1 s with 20 targets. The gray circle represents the animat, black
circles represent the uncollected targets, black circles represent the uncollected targets, white
circles represent the collected targets and the continuous line represents the path of the animat

during the simulation

(b) The thrust forward generated by actuators
during the simulation.

(c) The thrust right generated by actuators dur-
ing the simulation.

Figure 6.20: The right and the forward thrusts generated by the actuators during the
simulation of the best animat evolved using unary coding and sliding window thrust

with 20 targets on the map.

Chapter 6. Real Time Control of Foraging Behaviours 90

6.3.3 Encoding the sensory information at sensors as current injection

The third and the most biologically realistic encoding I implemented is encoding the

strength of the food smell at the two sensors as current injection to the input neurons.

Because the network should be able to calculate the difference between the strength of

the food smell at the right and the left sensors, the direct strengths of smell are used (SR

and SL). In the work done before in evolving GRNs for animat foraging in GReaNs, the

attempts of using the direct strengths of smell (SR and SL) were not successful (Borys

Wróbel, personal communication)

I used the sliding window method described by equation 6.4 to calculate the thrust

during the simulation of the animat. As shown in section 6.3.2.3, when the sliding

window was used to calculate the thrusts at the actuator, eight out of 10 animats

suffered from circling movement. For this reason, the change direction reward was used

for the evaluation of the animats during the evolution.

The most important task in this coding is to find a suitable model to map the strength

of food smell to input current. I aimed for a linear relationship between the strength of

the food smell at the sensors and the firing rate of the input neurons so that the animat

can detect the small differences of concentrations between the right and the left sensors

[22]. The following Hill function was used to map the strength of food smell at the two

sensors to current injection to the two input neurons:

I = K1
Cm

K2
m + Cm

(6.10)

where K1 is the scaling factor, K2 is the average strength of smell at the sensors , and

m is the Hill coefficient. K1 = 30, K2 = 1.5 (average strength of smell), and m = 2.5

were used.

I introduced some modifications in GReaNs so that the current injection encoding would

work properly:

• In all the previous tasks using GReaNS, the simulation step duration was 1 ms.

Using this step duration did not result in suitable variance of firing rate (Fig. 6.21 -

6.23) using the Hill function (Equation 6.10). The reason behind this is that using

a refractory of 1 ms and a simulation step duration of 1 ms, the input neurons

can only generate a spike every 2 ms (500 Hz is the maximum frequency), 1 spike

every 3 ms (333 Hz), 1 spike every 4 ms (250 Hz) etc.

In order to solve this problem I decreased the step duration to 25 µs using the

same refractory period (1 ms or 40 steps). If it takes 20 steps for the input neurons

Chapter 6. Real Time Control of Foraging Behaviours 91

with constant food concentration to reach the threshold, then the input neurons

will fire spikes after steps: 20, 20+40+20=80, 80+40+20=140, ... etc which is

spiking every 60 steps. This will result a spike every 1.5 ms (at about 666 Hz).

Input neurons will fire with maximum firing rate when it takes only 1 step to reach

threshold. This will lead to a spike every 41 steps (at about 975 Hz).

Decreasing the step period allowed a wider variance of input neurons firing rate

(Fig. 6.24 - 6.26) in response to the current injection.

Figure 6.21: The relation between the strength of smell at the sensors and the injected
current at the input neurons using the Hill function (Equation 6.10) using a step period

1 ms.

Figure 6.22: The relation between the strength of smell at the sensors and the firing
rate of the input neurons using the Hill function (Equation 6.10) using a step period 1

ms.

• I increased the radius of the animat (Fig. 6.27) and made the sensors further

apart. These modifications will allow a longer physical distance between the right

and the left sensors, therefore a bigger difference between the strength of smells

at the right sensor and the left sensor (Fig. 6.28).

Chapter 6. Real Time Control of Foraging Behaviours 92

Figure 6.23: The relation between the injected current at the inputs and the firing
rate of the input neurons using the Hill function (Equation 6.10) using a step period 1

ms.

Figure 6.24: The relation between the strength of smell at the sensors and the injected
current at the input neurons using the Hill function (Equation 6.10) after decreasing

the step period to 25 µm.

Figure 6.25: The relation between the strength of smell at the sensors and the firing
rate of the input neurons using the Hill function (Equation 6.10) after decreasing the

step period to 25 µm.

Chapter 6. Real Time Control of Foraging Behaviours 93

Figure 6.26: The relation between the injected current at the inputs and the firing
rate of the input neurons using the Hill function (Equation 6.10) after decreasing the

step period to 25 µm.

Figure 6.27: The difference between the animat before modifications (on the right)
and after modifications (on the left).

Figure 6.28: The difference between the strength of smell at the right sensor and the
left sensor before increasing the radius of the animat and the length of the sensors (left)
and after increasing the radius of the animat and the length of the sensors (right). This
data was recorded when the animat moved randomly on a map with 20 targets. Note

that the vertical scale differs by a factor 2.

Chapter 6. Real Time Control of Foraging Behaviours 94

I applied these modifications and I reduced the number of food resources to only 6

particles to lower the density of targets on the map. This also allowed for shorter

simulation times at the beginning of the evolutionary run (when 6 targets were used,

collecting 1 on average on random maps had a larger effect on fitness than collecting 1

out of 20).

The evolution mechanism I used here was different than the one used in the previous

sections in this chapter. First, I used 1.5 s as a simulation time with 6 targets and 4

random maps for 1000 generations. I ran the evolution for 100 generations more using

eight random maps for evaluation. Each animat was evaluated on four maps using again

1.5 s as a simulation time with 6 targets, and on the other four maps using 3 s as a

simulation time with 20 targets.

Reducing the number of targets at the beginning of the evolution helped in avoiding

random animat movement. This random movement was likely to happen after increasing

the size of the animat. On the other hand, with only 6 targets the animat can by unlucky

end up far away from the targets on a particular map.

After running 10 independent evolutionary runs for 1000 generations on 4 random maps

and with 6 targets, the best animat I obtained had ferr = 0.27. This animat managed

to collect 4 targets when it was simulated for 1.5 s (Fig. 6.29).

After the last 100 generations in which the number of random maps was increased to

8 and the animat was evolved with 6 targets on 4 of them and with 20 targets on the

other 4, the best animat had ferr = 0.12. Fig. 6.30 shows the evolutionary history of

this animat. This animat was not able to show good behaviour when it was simulated

with 20 targets for 3 s (Fig. 6.31). It collected 7 targets during the the simulation but

it ignored some targets in its way.

The average ferr of the 10 champions was 0.32 with standard deviation 0.1.

When these animats were re-evaluated on 100 random maps with 20 targets using sim-

ulation time 24 s, the average of the average of ferr was 0.52 with standard deviation

0.18. The change direction reward was disabled during the re-evaluation of the animats,

so that the values obtained allow for easy comparison with the ferr values reported for

the animats I have described previously in this chapter.

The best animat after re-evaluation had average of ferr = 0.28, this animat had ferr

= 0.17 after the evolution. When this animat was simulated for 3 s, it managed to

collect only 4 targets out of 20. This animat managed to detect the positions of the

targets and was able to move towards them. The reason this animat was not able to

collect more targets was that this animat moved slowly, however the best animat after

Chapter 6. Real Time Control of Foraging Behaviours 95

Figure 6.29: The behaviour of the best evolved animat using current injection coding
after 1000 generations on a map for 6 targets. The gray circle represents the animat,
black circles represent the uncollected targets, white circles represent the collected
targets and the continuous line represents the path of the animat during the simulation.

Figure 6.30: The evolution history of the best animat evolved using current injection
coding.

Chapter 6. Real Time Control of Foraging Behaviours 96

Figure 6.31: The behaviour of the best evolved animat using current injection coding
after 1100 generations. The gray circle represents the animat, black circles represent
the uncollected targets, white circles represent the collected targets and the continuous

line represents the path of the animat during the simulation.

evolution showed in Fig. 6.31 was moving faster and got benefits from its large size to

collect targets.

In order to make sure that this animat would be able to continue collecting targets,

I increased the simulation time during evaluation to 30 s. Fig. 6.33 showed that the

animat was able to collect 17 targets.

Chapter 6. Real Time Control of Foraging Behaviours 97

Figure 6.32: The behaviour of the best animat after re-evaluation using current
injection coding simulated for 3 s. The gray circle represents the animat, black circles
represent the uncollected targets, white circles represent the collected targets and the

continuous line represents the path of the animat during the simulation.

Chapter 6. Real Time Control of Foraging Behaviours 98

Figure 6.33: The behaviour of the best animat after re-evaluation using current
injection coding simulated for 30 s. The gray circle represents the animat, black circles
represent the uncollected targets, white circles represent the collected targets and the

continuous line represents the path of the animat during the simulation.

Chapter 6. Real Time Control of Foraging Behaviours 99

6.4 Conclusion

I have successfully used GReaNs to evolve SNNs able to control animats so that they

can detect targets and collect them. I have presented three different coding strategies for

the sensory neurons and three different ways of calculating the thrusts at the actuators.

The first setup I had used was using synaptic conductance injection to encode the sensory

information and the (V − Vth) thrust to calculate the thrust at the actuators. The 10

champions evolved using this setup had the least average value for ferr and none of them

suffered from circling movement problem. When these champions were re-evaluated

on 100 maps using longer simulation time, these champions managed to collect all the

targets in most of the cases. The best animat among these champions was the least fragile

animat when it was simulated on a map with very high food density when compared

with animats used other encodings for sensory information explored in this chapter.

When I replaced the synaptic conductance injection coding with the unary coding using

the same method of calculating the thrust, the evolved animats had almost the same

properties. These animats did not suffer form the circling movement as well. They had

the same average value for ferr (0.14) but the champions evolved using unary coding had

higher standard deviation (0.12 in case of conductance injection coding and 0.18 in case

of unary coding). They almost had the same average for ferr as the champions using

synaptic conductance injection when both of them were re-evaluated on 100 maps (0.07

in case of conductance injection coding and 0.06 in case of unary coding). However, the

networks evolved using unary coding had a higher standard deviation again (0.06 in case

of conductance injection coding and 0.09 in case of unary coding). These results suggest

slightly lower evolvability of the setup with unary coding in comparison to conductance

injection. The best network of these champions showed high robustness when it was

tested on a map with high food density, however it was less robust than the best animat

evolved using the conductance injection encoding.

When the unary coding was used again but using a constant thrust instead of (V −Vth),

there was a drop in the efficiency in the evolved animats. The 10 evolved champions

had a higher average for ferr after evolution and after re-evaluation comparing to the

previous champions. The main reason behind this drop was that using the constant

thrust method decreased the variance of the values of the thrusts at the actuators. The

decrease in the variance made it harder for the animats to change direction. As a result,

50% of the evolved animats suffered from the circling movement problem. Beside that,

the best network among these 10 champions was the most fragile network comparing to

animats used other encodings for sensory information explored in this chapter.

Chapter 6. Real Time Control of Foraging Behaviours 100

When the sliding window was used to calculate the thrust beside using unary coding

for sensory information, there was another drop in the efficiency. The animats evolved

using this setup had smoother movement comparing to other animats. On the other

hand, these animats had problems in changing direction and 80% of them suffered from

the circling movement. It was necessary to add the reward for changing direction in this

task. The best animat evolved using sliding window thrust and unary coding was less

fragile than the best animat evolved using constant thrust and unary coding when both

of them were simulated on a map with high food density. However, it was more fragile

than the best animat evolved using (V − Vth) thrust.

The hardest in terms of evolvability but the most biologically realistic task that was

done in this chapter was using the current injection coding for sensory information and

the sliding window to calculate the thrust at the actuators. The most difficult part of

this task was using the direct concentration of the food instead of their summation and

difference. First I decreased the simulation step to 25 µs and used a Hill function in order

to have a linear-like relationship between the concentration of the food and the firing

rate of the input neurons. In order to make the difference between the concentration

at the right sensor and the left sensor, I increased the size of the animat and made the

sensors further apart.

Increasing the size of the animat helped in increasing the difference between the conce-

tration at the right and left sensor, however, it increased the chance of having an animat

which could move randomly with high speed using its size to collect food. This is exactly

what happened with the best evolved animat. After re-evaluating the evolved champi-

ons, the best animat after re-evaluation showed a very good behaviour in detecting the

position of targets and was able to collect them.

At the beginning of the chapter, I started from the task of evolving animat using synaptic

conductance injection, the artificial variables which represent the summation and the

difference of the concentration, and (V − Vth) thrust. This task was very easy as it

was already proved to be working. On the other hand, this task was not biologically

realistic. Starting from the easiest task which was the least biologically realistic helped

me to develop the reality of the model across the chapter until I achieved the most

biologically realistic and the hardest setup at the end of the chapter.

The work I have done in this chapter can be considered as the first step towards evolving

spiking neural networks that control animats so that they can detect and move towards

specific temporal sequences of simulated sounds.

Chapter 7

Temporal Pattern Recognition in

Animats

7.1 Introduction

After evolving SNNs able to detect temporal patterns of inputs and evolving SNNs

able to control animats for directional movement in a concentration gradient, it was

interesting then to check the complexity of evolving SNNs which able to do both tasks

together.

The idea of this task is to evolve a SNN able to control an agent able to distinguish one

sound source type out of several sound source types and collect all sound sources from

this type.

Each sound source is represented as a pattern of three different frequencies. The animats

are simulated on 2D map with six different sound source types each with unique order

of the three frequencies. In this task, animats have three sensors, each of this sensor

detects one frequency of the sound sources. Based on the order of the frequencies read

by each animat, the animat should be attracted by only one sound source type and

ignore the others.

The goal of the evolution is to obtain an animat able to collect the sound sources with

a pattern of three different frequencies (1-2-3) and to ignore (not to collect) the sound

sources with the other permutations of the three frequencies.

101

Chapter 7. Temporal Pattern Recognition in Animats 102

7.1.1 The description of the animat and its simulation environment

The same animat explored in section 6.3.1 was used in this task (conductance injection

for sensory information, with (V − Vth) when the output neurons spike to determine

thrust). This animat used the synaptic conductance injection coding to encode the

sensory information representing the distance between the animat and the sound sources.

As in the previous task, the animat had two sensors: one sensor was located on the right

front of the animat and the other on the left front of it. Additional three inputs were

added to the network to support the network with the temporal pattern information of

each sound source (Fig. 7.1).

Figure 7.1: A simplified description of the task of collecting sound sources. Each
animat has five sensors, the outer two sensors for sound source position detection.
Each sensor from the other three sensors is responsible for detecting one frequency
from the three sound frequencies. Each sound source has a unique pattern of sound

tones.

The animat was simulated on 2D map with 6 sound resource types. Each type of them

streams different temporal pattern information (pattern of different frequencies). Each

animat was simulated six times to be evaluated during every generation. For each

simulation, the animat was initially reset and only one type of sound resources were

active and the others were silent. The temporal pattern consisted of 3 inputs one of

which produced one spike 5 ms into each 100 ms, one of which 10 ms into each 100 ms,

and finally one 15 ms into each 100 ms. So during each simulation, only one pattern

was presented and was repeated every 100 ms.

Chapter 7. Temporal Pattern Recognition in Animats 103

7.1.2 Genetic algorithm

The same genetic algorithm used in the real time control of foraging behaviours task

was used here. The following function was used to calculate the fitness value of each

animat:

ferr = 1− collectedtarget
totaltarget

+ 0.2

5∑
i=1

collectedi
totali

(7.1)

collectedtarget is the number of the collected sound sources from the first type with the

pattern 1-2-3, totaltarget is the total number of the sound sources from the first type

with the pattern 1-2-3, collectedi is the number of the collected sound sources from the

ith type with the other (1-3-2, 2-1-3, etc), totali is the total number of the sound sources

from the ith type with the other patterns (1-3-2, 2-1-3 ..etc).

The goal for the genetic algorithm is to minimize ferr. ferr can be any value in the

interval [0,2] where 0 is the best value and 2 is the worst value. The second term in the

equation
collectedtarget
totaltarget

is used to reward the animat that collects the sound sources from

the target type.

The third term in the equation 0.2
5∑
i=1

collectedi
totali

is used in order to penalize the animat

which collects the sound sources from the others types. The summation is multiplied by

0.2 in order to treat the contribution to fitness of the 5 trials with wrong source type

the same as the contribution of the trial with the correct source type.

The simulation time used for each animat with one particular sound type is 2 s (12 s in

total) and during every simulation 10 sound sources from only one type were presented.

As I mentioned before, each animat is simulated six times each with different temporal

pattern, then the ferr is calculated based on the number of sound sources collected in each

simulation. This operation is repeated four times with random maps (24 simulations

in total) and the ferr is calculated as the average over the four random maps. The

simulation time of the animat is 1 s with each temporal pattern on each map (24 s for

every animat).

7.1.3 Results for this task

After running the evolutionary algorithm for 1000 generations, the evolutionary algo-

rithm was not able to do proper improvement 7.2. The animat tended to collect all the

sound sources regardless of their type.

Chapter 7. Temporal Pattern Recognition in Animats 104

Figure 7.2: The evolution history of the evolved animat to collect sound sources with
pattern 1-2-3 and ignore sound sources with other patterns.

7.1.4 Using two sound source types

In order to analyse and understand the failure of the animat to distinguish between the

sound sources, I made the task less complex by reducing the number of sound source

types to only two types. The animat should be able to collect only the sound sources

from the first type and ignore the sound sources from the other type. I changed the

fitness function to be as following:

ferr = 1− collectedtarget
totaltarget

+ 0.5
collectedneg
totalneg

(7.2)

collectedtarget is the number of the collected sound sources from the first type with the

pattern 1-2, totaltarget is the total number of the sound sources from the first type with

the pattern 1-2, collectedneg is the number of the collected sound sources from the type

the animat should neglect with the pattern 2-1, totalneg is the total number of the sound

sources from the type the animat should neglect with the pattern 2-1.

I multiplied the term
collectedneg
totalneg

by 0.5 in order to give the behaviour of the animat with

the first sound source type the double weight of the behaviour of the animat with the

second sound source type. I used 10 sound sources from each type same as I did in the

previous section.

After 1000 generations I got an animat with ferr = 0.78. Fig. 7.3 shows the evolutionary

history of the best animat in the population. The history shows that the evolutionary

Chapter 7. Temporal Pattern Recognition in Animats 105

algorithm managed to make improvement during the last the last 100 generations, how-

ever, when I ran it for 9000 more generations (10000 generations in total), the least ferr

was 0.78 as well.

Figure 7.3: The evolution history of the best animat in the population to collect
sound sources with pattern 1-2 and ignore sound sources with pattern 2-1.

After analysing the behaviour of the animat with the sound sources from the first type

(Fig. 7.4) and the second type (Fig. 7.5), we can see that the animat collected the

sound sources from both types. The evolutionary algorithm was not able to establish

the pattern recognition part of the fitness function.

In the pattern recognition tasks presented in chapter 5, the reward for the pattern

recognition was clear in the fitness function that allowed the SNNs to evolve. At the

beginning of the evolution, the SNNs were either active or silent with all the patterns.

However, the number of spikes generated by the output neuron with each pattern was

part of the fitness function. This allowed the evolutionary algorithm to increase the

number of spikes for the first pattern and decrease the number of spikes for the other

patterns until I got the final SNNs presented in chapter 5.

One suggestion that could help the evolutionary algorithm to establish the pattern recog-

nition part is to add to the fitness function a term that reward the SNNs which have an

interneuron which performs temporal pattern recognition. The interneuron will act as

the output neuron of the SNNs presented in chapter 5. Having an interneuron that could

distinguish between pattern will allow the animat to show different behaviour based on

the pattern of the sound source type.

Chapter 7. Temporal Pattern Recognition in Animats 106

Figure 7.4: The behaviour of the evolved animat when the sound sources with the first
pattern were presented. The gray circle represents the animat, green circles represent
the uncollected sound sources with the first pattern, white circles represent the collected
sound sources with the first pattern and the continuous line represents the path of the

animat during the simulation.

Chapter 7. Temporal Pattern Recognition in Animats 107

Figure 7.5: The behaviour of the evolved animat when the sound sources with the
second pattern were presented. The gray circle represents the animat, yellow circles
represent the uncollected sound sources with the second pattern, white circles represent
the collected sound sources with the second pattern and the continuous line represents

the path of the animat during the simulation.

Chapter 7. Temporal Pattern Recognition in Animats 108

7.2 Conclusion

After merging the temporal pattern recognition task and the animat foraging task, the

new task was complex that did not allow the evolutionary algorithm to be able to

improve the behaviour of the evolved animats. Using only the number of the sound

sources collected from each type as the main and the only parameter in the fitness

function ,without adding a more direct term for the pattern recognition behaviour,

made it impossible for the SNNs to evolve. However, I believe that this complex task

can still be achieved especially if we change the fitness function to add a direct reward

for ability of SNNs to distinguish between input temporal patterns.

Chapter 8

Integrating GReaNs with

SpiNNaker

8.1 Introduction

SpiNNaker [28] (Spiking Neural Network Architecture) is a massively parallel comput-

ing system which is designed to support large scale spiking neural networks simulations.

SpiNNaker was built at University of Manchester in order to afford real-time simulation

for a strongly connected network of thousands of neurons. Each SpiNNaker machine

consists of a number of SpiNNaker multicore chips.

I integrated the evolutionary software, GReaNs, with SpiNNaker in order to use the

computational power of this multiprocessor system for real-time simulation of the SNNs

during the evaluation step in the genetic algorithm. I used two types of the SpiNNaker

board: the board with four chips, and the board with 16 chips. Each chip on SpiN-

Naker board is a Globally Asynchronous Locally Synchronous (GALS) system. Each

chip includes 18 ARM968 processor nodes and each processor can simulate up to 1000

neurons.

SpiNNaker supports both LIF and AdEx models which are the models I implemented

in GReaNs. One of the advantages of SpiNNaker is that it can be used as a simulation

backend for PyNN [34] scripts, which made the integration easier. Most of the work

done in the integration was carried out during the CapoCaccia Cognitive Neuromor-

phic Engineering Workshop in collaboration with Dr. Sergio Davis from University of

Manchester.

109

Chapter 8. Integrating GReaNs with SpiNNaker 110

8.2 The integration model

The first necessary step in the integration was to find the most efficient protocol for

GReaNs and SpiNNaker to allow communication between them. The genetic algorithm

experiments described in this chapter follow the setup formulated in chapter 4 and 5,

with the same settings. To remind the reader, the first step of the genetic algorithm was

to initialize the whole population of 300 SNNs, then the simulation of the SNNs started.

Based on the result of the simulation, the fitness values were calculated. Finally, the

new generation was formed after applying tournament selection, crossover and mutation.

The new generation was simulated again and so on.

In the simulations described in this chapter, the simulation step was carried on using

SpiNNaker, and the rest of the genetic algorithm was completed on GReaNs. For this

reason, the spikes are collected, and received by the GReaNs software running on the

CPU, which will thus be responsible for calculating the fitness value for each individual,

applying mutations, applying crossover, and build the new generation.

Figure 8.1 shows the communication protocol between GReaNs and SpiNNaker. First, a

random population of individuals (here, 300) is initialized, each individual with number

of regulatory units (here, 5). GReaNs exports the all population as a PyNN script

which is sent to SpiNNaker. A software is used to configure SpiNNaker with the PyNN

script and the simulation starts. Another software is used to output the spike times of

all individuals to a file. This file is saved on the hard disk. GReaNs reads the output

file and the fitness value for each individual is calculated based on the current task of

the evolution. The new generation is formed by selecting the best individuals in the

selection step to be used for the crossover and the mutation part. GReaNs exports the

new generation as a PyNN script again to be sent to SpiNNaker and so on.

In all the experiments I ran on SpiNNaker, each generation had 300 individuals (SNNs)

each with only 1 output. It was important to know the place where the output neuron of

each individual resides in order to record the spikes generated by each neuron. I divided

the 300 output neurons into 5 groups each with 60 neurons; each group was sent to a

separate processor of the first chip on the board. The main neurons of each individual

were grouped together and all the input neurons of each individual were also grouped

together. The distribution of the 300 groups of the main neurons and the 300 groups of

the input neurons over the processors were handled by the SpiNNaker built-in software

which is responsible for configuring the board (Fig. 8.2). An example of the PyNN

script generated by GReaNs is shown in Appendix A.

Chapter 8. Integrating GReaNs with SpiNNaker 111

Figure 8.1: The communication protocol between GReaNs and SpiNNaker. The tasks
in the blue oval were executed on the CPU, while the tasks in the orange oval were

executed on the SpiNNaker board.

8.3 Results

I implemented 2 versions of the integration between GReaNs and SpiNNaker, each ver-

sion with a different evolutionary task and on a different SpiNNaker machines.

8.3.1 Initial communication protocol with the small SpiNNaker board

The first version of the integration was done with the small SpiNNaker board with

4 chips (Fig. 8.3). In this version I run the task of evolving a LIF SNNs to match

the spike train of a single AdEx neuron shifted by 5 ms described in chapter 4. As

I mentioned before, GReaNs generates a PyNN script for the current generation and

sends it to SpiNNaker which runs the simulations and sends the result back to GReaNS

in the form: individualnumber → spiketime. The period of the simulation of this task

is 1 second. Using a laptop with Core 2 Due processor each with frequency 2.66 GHz,

each generation takes around 2 seconds for this task. Using SpiNNaker as a backend

simulator, each generation takes around 1.5 minutes. Most of the computation time was

taken in configuring the board at the beginning of the simulation, so no improvement

was achieved at all.

Chapter 8. Integrating GReaNs with SpiNNaker 112

Figure 8.2: The distribution of the neurons of the 300 SNNs over SpiNNaker board.
Using both the small and big SpiNNaker boards, the neurons of each network was
divided to 3 categories: input neurons, interneurons, and output neurons. The distri-
bution of the input neurons and the interneurons over the board was handled by the
built-in software in SpiNNaker. The output neurons were distributed on only the first
chip. The order of the processor on the first chip where each output neuron resided was
given in the configuration file. The placement of the output neurons on the SpiNNaker
board allowed recording the membrane potential of each output neuron, accordingly
the spikes of each neurons were written in the output file. An example of the PyNN

script generated by GReaNs is shown in Appendix 6.

Chapter 8. Integrating GReaNs with SpiNNaker 113

To sum up, integration of GReaNs with SpiNNaker using this protocol for the task of

evolving a LIF SNNs to match the spike train of a single AdEx neuron shifted by 5 ms

results in much slower performance.

Figure 8.3: The small SpiNNaker board with only 4 chips which was used in the first
version of the integration.

8.3.2 Communication protocol with the big SpiNNaker board

In this version a different task was run and a bigger board with 48 chips (Fig. 8.4)

was used to support more computational power for the simulation. I ran the Temporal

Pattern Recognition task (described in chapter 5) with the presence of noise during the

evolution. Each SNN contained 10 neurons and a Gaussian noise with 10 ms standard

deviation was used. The simulation time of each network with each input pattern and

a random noise was 1 second. Each network should be simulated with 6 different input

patterns and this should be repeated 100 times each with random noise (600 simulations

or 600 seconds).

In the experiment described in section 8.3.1, the configuration time was the bottleneck of

the integration. So it was important to find a suitable way of configuring the SpiNNaker

board in order to avoid sending the same SNN 600 times to be simulated on SpiNNaker.

For this reason, each network was sent only one time and was simulated with all the

input patterns. I concatenated the different input patterns together in a long input

Chapter 8. Integrating GReaNs with SpiNNaker 114

stream with 1 second gap between each pattern to allow the activity in the network to

die out. The patterns were randomly ordered. The out of the network should only fires

with highest frequency when it receives the input pattern 1-2-3 and be silent for other

patterns. The behaviour of the SNNs during the 1 second gaps was not neither rewarded

nor penalized. This task is harder than the task presented in chapter 5. The activity

of each network should be inhibited by the end of the 1 second in which it receives the

pattern 1-2-3 (or in the 1 gap second after it).

I only used 100 random patterns for each network so the total simulation time of each

network was 199 seconds (100 for the patterns and 99 for the gaps). Using my laptop

again for simulation, each generation took around 1 minute. Using SpiNNaker for simu-

lation, each generation took around 7 minutes (2:19 for the real time simulation and the

rest for the configuration and generating the output file). As we can see, the simulation

time of this task using my laptop (1 minute) is even less than the real time simulation

(2:19 minutes), so it is impossible to get any improvement using SpiNNaker with this

task.

8.4 Conclusion

After comparing the simulation time on my laptop and on SpiNNaker we can say that

by using this protocol of communication between GReaNs and SpiNNaker we will not

be able to get any improvement with SpiNNaker unless we use more individuals per

generation or if larger networks are needed. Another possible way to get improvements

in the simulation time is to run more than one task on SpiNNaker independently. One

more suggestion that could dramatically improve the performance is to perform all

the genetic algorithm steps on a SpiNNaker board so that we do not waste time in

the communication between GReaNS and SpiNNaker. But in this case we will have to

endure the hardship of implementing the genetic algorithm with a low level programming

language.

Chapter 8. Integrating GReaNs with SpiNNaker 115

Figure 8.4: The big SpiNNaker board with 48 chips which was used in the second
version of the integration.

Chapter 9

General Conclusion and Future

Work

This chapter presents the general conclusion of the research work which I have done

during my PhD studies. There is already a conclusion at the end of each chapter.

Here I will go beyond the short conclusion sections of chapters 3-8 and merge all these

conclusions together to give a big picture of the work I have done in all these chapters.

The second section in this chapter presents the future work that could be done from my

point of view. This work could be an expansion for the model I have used for evolving

Spiking Neural Networks (SNNs), more tasks in temporal pattern recognition, expanding

the animat control tasks, and protocol for integration with more neuromorphic hardware.

9.1 General Conclusion

We can conclude from the work I had done during my PhD studies the following:

1. Due to some similarities in the structure of Gene Regulatory Networks (GRNs)

and SNNs, it is possible to extend the GRNs to behave as a SNN. Furthermore,

the evolutionary algorithm which was used for evolving the GRNs could be used

for evolving the SNNs for simple tasks like matching spike trains (chapter 4) or

even more difficult tasks like temporal pattern recognition (chapter 5) and animat

control (chapters 6 and 7).

2. As shown in chapter 5, evolving the topology and the synaptic weights of SNNs

using fixed synaptic delays is sufficient to obtain SNNs able to perform temporal

116

Chapter 9. General Conclusion and Future Work 117

pattern recognition. These SNNs also showed robustness when Gaussian noise was

added to the spike times of the inputs.

Results showed that the evolved SNNs were more robust to noise when the noise

was present during the evolution. Positive feedback loops were playing an im-

portant role in moving the interneurons of the SNNs from one plateau state to

another, until it became active. This plateau behaviour could only be observed

when the SNNs have at least 2 interneurons, for this reason the SNNs with only 1

interneuron showed less robustness to noise.

3. Using the same evolutionary algorithm which depends on evolving the topology

and the synaptic weight of the SNNs, SNNs can be evolved to control an animat

for directional movement in a concentration gradient. The concentration gradi-

ent could be simply a smell of food, or furthermore could be a sound which is

represented by a pattern of of inputs with various frequencies.

4. I managed to integrate the SNN evolutionary software that I extended to integrate

with the SpiNNaker neuromorphic hardware. Despite the computational power of

SpiNNaker which affords real time simulation for large SNNs, I did not manage

to get any improvement in the time of the evolution. The main reason was that

the tasks I used for the integration were too simple and did not require such

computational power. The simulation time of the SNNs on CPU took less than

the real time simulation of the SNNs. One more reason was that the configuration

of SpiNNaker took long time and it was required to configure SpiNNaker for every

generation during the evolutionary algorithm even when only the weights of the

SNNs were updated.

In order to get improvement in the simulation time with SpiNNaker, other tasks

which require more computation power should be used. This tasks may require

simulating SNNs with more neurons, or have more individuals in each generation.

One more suggestion is to move the all genetic algorithm in SpiNNaker. This will

help in avoiding configuring the SpiNNaker board for each generation.

Chapter 9. General Conclusion and Future Work 118

9.2 Future Work

The future work that could be done based on my work is divided to three categories as

following:

9.2.1 SNNs model and the evolutionary algorithm

More work can be done in extending the SNNs models I used. I have implemented only

two SNNs models (Leaky Integrate-and-fire and Adaptive Exponential LIF), but more

models could be implemented. One of these models could be Hodgkin-Huxley model

[49].

Neuromorphic hardware systems, especially the analogue hardware systems, suffer from

noise as a result of the mismatch of the electrical connections in the circuits on their

boards. This noise can lead to unexpected behaviour of the SNN when it is simulated

using these hardware systems. In order to avoid having different behaviour between

simulating SNNs on a CPU and simulating them on neuromorphic hardware systems,

this noise could be added to the SNNs when they are simulated on a CPU. These noises

could include noise for the neuron parameters and the synaptic weight.

This work includes presenting more types of noise like noise for the neuron parameters

and the synaptic weight. This noise will be also useful for integrating with neuromorphic

hardware especially analogue hardware devices as they are more noisy. Adding this noise

will simulate the mismatch of the electrical connections in the circuits on the board.

Furthermore, I had only implemented one type of AdEx neurons which corresponds to

tonic spiking, but more types with other parameters could be added. This will allow the

AdEx model to produce various realistic behaviours like phasic spiking, tonic bursting,

and phasic bursting. These behaviours will enrich the genetic algorithm and will lead

to more realistic behaviours for the SNNs.

The evolutionary algorithm could also be extended by allowing the evolution of the

delays of the synapses between the neurons. Moreover, mutations could also be done

on the changing the types of the LIF and AdEx neurons which I just presented in the

previous paragraph.

9.2.2 Temporal pattern recognition

The temporal pattern recognition task is also considered an opened door for more work.

One task that could be done is exploring the ability of SNNs to distinguish between

Chapter 9. General Conclusion and Future Work 119

different temporal patterns but all are presented at the same input stream during the

same simulation. I have tried this task when I integrated with SpiNNaker system, but I

was more interested in comparing the simulations times rather investigating the ability

of evolving SNNs for this task.

The temporal pattern recognition task can be extended for general pattern recognition

tasks. For example, SNNs can be evolved to control an animat for maze navigation.

Imagine that we have an animat located in a maze and it is required to control this

animat for course correction based on the pattern of signs (could be colours) it observes.

A finite state machine (FSM) can be used to recognize input patterns. FSM can be used

to describe languages or to represent regular expressions. When the FSM receives an

input, this input changes the state of the FSM until it reaches the final or the accepting

state. The way FSM works is quite similar to the behaviour of the SNNs described in

chapter 5 which were used for temporal pattern recognition. Thomas Natschläger and

Wolfgang Maass presented an approach for using SNNs as finite state machines [87].

They used a learning algorithm based on training the synaptic weights of the SNNs to

obtain finite state machines.

The temporal pattern recognition task can be extended in order to obtain finite state

machine that could for example represent regular expressions. Each letter can be en-

coded as a temporal pattern. The training set of the SNNs should include both valid

and invalid strings. The SNN should be trained so that the output neuron should be

active with only the valid strings.

9.2.3 Evolving SNNs for animat control

I have presented in chapter 7 a model of evolving SNNs which control animats in order

to distinguish between sound source types and to collect one of them. Each sound

type was represented as a pattern of inputs with different frequencies. The evolutionary

algorithm was not able to evolve an animat to achieve this task. The main reason behind

this failure was that the evolutionary algorithm was not able to establish the temporal

pattern recognition sub-problem and the animat tended to collect all the sound sources

regardless their type.

One suggestion that could help the evolutionary algorithm to establish the pattern recog-

nition part is to add to the fitness function a term that reward the SNNs which have an

interneuron which performs temporal pattern recognition. The interneuron will act as

the output neuron of the SNNs presented in chapter 5. Having an interneuron that could

Chapter 9. General Conclusion and Future Work 120

distinguish between pattern will allow the animat to show different behaviour based on

the pattern of the sound source type.

This work can be extended for more interesting tasks. These tasks could include evolving

SNNs to control simulated birds that have the characteristics of males and females. The

females are flying and producing patterns of sounds (singing), and the males trying to

follow and catch them. One further task is to co-evolve several simulated species of

animats with a complex prey-predator relationship.

Bibliography

[1] Louis Lapicque. Recherches quantitatives sur l’excitation electrique des nerfs traitée

comme une polarization. Journal de Physiologie et de Pathologie Générale, 9:620–

635, 1907.

[2] Peter Dayan and Laurence F. Abbott. Theoretical neuroscience. MIT Press, 2005.

ISBN 0262541858.

[3] Wulfram Gerstner and Romain Brette. Adaptive exponential integrate-and-fire

model as an effective description of neuronal activity. In J Neurophysiol, volume 94,

pages 3637–3642, 2005.

[4] Borys Wróbel and Micha l Joachimczak. Using the genetic regulatory evolving arti-

ficial networks (greans) platform for signal processing, animat control, and artificial

multicellular development. In Taras Kowaliw, Nicolas Bredeche, and Doursat René,

editors, Growing Adaptive Machines. Springer Berlin Heidelberg, Berlin, 2014.

[5] William Bialek, Fred Rieke, Robert Raimond de Ruyter van Steveninck, and David

Warland. Reading a neural code. Science, 252:1854–1857, 1991.

[6] Wulfram Gerstner, Richard Kempter, J Leo van Hemmen, and Henry Wagner.

A neuronal learning rule for sub-millisecond temporal coding. Nature, 383:76–78,

1996.

[7] Gilles Laurent. Dynamical representation of odors by oscillating and evolving neural

assemblies. Trends in Neurosciences, 19:489–496, 1996.

[8] Fred Rieke, David Warland, Robert Raimond de Ruyter van Steveninck, and

William Bialek. Spikes: Exploring the Neural Code. MIT Press, 1997.

[9] R Christopher deCharms and Anthony Zador. Neural representation and the cor-

tical code. Neuroscience, 23:613–647, 2000.

[10] Ehud Ahissar and Amos Arieli. Figuring space by time. Neuron, 32:185–201, 2001.

[11] John Huxter, Neil Burgess, and John O’Keefe. Independent rate and temporal

coding in hippocampal pyramidal cells. Nature, 425:828–832, 2003.

121

Bibliography 122

[12] Philip Joris and Tom C T Yin. A matter of time: Internal delays in binaural

processing. Trends in Neurosciences, 30:70–78, 2007.

[13] Jeffry Isaacson. Odor representations in mammalian cortical circuits. Current

Opinion in Neurobiology, 20:328–331, 2010.

[14] John Hopfield. Pattern recognition computation using action potential timing for

stimulus representation. Nature, 376:33–36, 1995.

[15] Thomas Natschläger and Berthold Ruf. Spatial and temporal pattern analysis via

spiking neurons. Network: Computation in Neural Systems, 9:319–332, 1998.

[16] Volker Steuber and David Willshaw. Adaptive leaky integrator models of cerebellar

purkinje cells can learn the clustering of temporal patterns. Neurocomputing, 26:

271–276, 1999.

[17] Volker Steuber and Erik De Schutter. Rank order decoding of temporal parallel

fibre input patterns in a complex purkinje cell model. Neurocomputing, 44:183–188,

2002.

[18] Volker Steuber and David Willshaw. A biophysical model of synaptic delay learning

and temporal pattern recognition in a cerebellar purkinje cell. Journal of Compu-

tational Neuroscience, 17:149–164, 2004.

[19] Tristram D. Wyatt. Pheromones and Animal Behaviour: Communication by Smell

and Taste. Cambridge University Press, 2003.

[20] Ryohei Kanzaki. How does a microbrain generate adaptive behavior? In Interna-

tional Congress Series, volume 1301, pages 7–14. Elsevier, 2007.

[21] Nicolas Oros, Volker Steuber, Neil Davey, Lola Cañamero, and Rod Adams. Op-

timal noise in spiking neural networks for the detection of chemicals by simulated

agents. In Proceedings on the Eleventh International Conference on Artificial Life,

2008.

[22] Nicolas Oros, Volker Steuber, Neil Davey, Lola Cañamero, and Rod Adams. Adap-

tive olfactory encoding in agents controlled by spiking neural networks. In Lecture

Notes in Computer Science: From Animals to Animats 10, pages 148–158, 2008.

[23] Nicolas Oros, RG Adams, Neil Davey, Lola Cañamero, and Volker Steuber. Encod-

ing sensory information in spiking neural network for the control of autonomous

agents. 2008.

[24] Nicolas Oros, Volker Steuber, Neil Davey, Lola Cañamero, and Rod Adams. Evo-

lution of bilateral symmetry in agents controlled by spiking neural networks. In

Artificial Life, 2009. ALife’09. IEEE Symposium on, pages 116–123. IEEE, 2009.

Bibliography 123

[25] Nicolas Oros. An Artificial Life Perspective on Olfactory Systems: Evolving Neural

Coding, Developmental Symmetry and Odour Recognition in Agents. PhD thesis,

University of Hertfordshire, 2010.

[26] Micha l Joachimczak and Borys Wróbel. Evolving gene regulatory networks for real

time control of foraging behaviours. In Artificial Life XII: Proceedings of the Twelfth

International Conference on the Simulation and Synthesis of Living Systems, pages

348–355. MIT Press, 2010.

[27] Borys Wróbel, Micha l Joachimczak, Alberto Montebelli, and Robert Lowe. The

search for beauty: Evolution of minimal cognition in an animat controlled by a

gene regulatory network and powered by a metabolic system. volume 7426, pages

198–208. Springer Berlin Heidelberg, 2012.

[28] Alexander D. Rast, Xin Jin, Francesco Galluppi, Luis A Plana, Cameron Patterson,

and Steve Furber. Scalable event-driven native parallel processing: the spinnaker

neuromimetic system. In Proceedings of the 7th ACM international conference on

Computing frontiers, pages 21–30, 2010.

[29] Jonathan Touboul. Bifurcation analysis of a general class of nonlinear integrate-

and-fire neurons. SIAM Journal on Applied Mathematics, 68:1045–1079, 2008.

[30] Micha l Joachimczak and Borys Wróbel. Evo-devo in silico: a model of a gene

network regulating multicellular development in 3D space with artificial physics.

In Artificial Life XI: Proceedings of the Eleventh International Conference on the

Simulation and Synthesis of Living Systems, pages 297–304. MIT Press, 2008.

[31] Micha l Joachimczak and Borys Wróbel. Evolution of the morphology and patterning

of artificial embryos: Scaling the tricolour problem to the third dimension. In

Advances in Artificial Life. Darwin Meets von Neumann: Proceedings of the Tenth

European Conference on Artificial Life (ECAL 2009), volume 5777 of Lecture Notes

in Computer Science, pages 35–43. Springer, 2011.

[32] Micha l Joachimczak and Borys Wróbel. Open ended evolution of 3d multicellular

development controlled by gene regulatory networks. In Artificial Life XIII: Pro-

ceedings of the Thirteenth International Conference on the Simulation and Synthesis

of Living Systems, pages 67–74. MIT Press, 2012.

[33] Micha l Joachimczak and Borys Wróbel. Processing signals with evolving artificial

gene regulatory networks. In Artificial Life XII: Proceedings of the Twelfth In-

ternational Conference on the Simulation and Synthesis of Living Systems, pages

203–210. MIT Press, 2010.

Bibliography 124

[34] Andrew P. Davison, Daniel Brüderle, Jochen Eppler, Jens Kremkow, Eilif Muller,

Dejan Pecevski, Laurent Perrinet, and Pierre Yger. Pynn: A common interface

for neuronal network simulators. Frontiers in neuroinformatics, 2, 2008. ISSN

1662-5196.

[35] Dan Goodman and Romain Brette. Brian: a simulator for spiking neural networks

in python. Frontiers in Neuroinformatics, 2, 2008. ISSN 1662-5196.

[36] Suzana Herculano-Houzel, Kamilla Avelino, Kleber Neves, Jairo Porfirio, Debora

Messeder, Larissa Mattos Feijó, José Maldonado, and Paul Manger. The elephant

brain in numbers. Frontiers in Neuroanatomy, 8(46), 2014.

[37] Alois Herzig, Ramesh D Gulati, Christian D Jersabek, and Linda May. Rotifera X:

Rotifer Research: Trends, New Tools and Recent Advances, volume 181. Springer

Science & Business Media, 2006.

[38] Frederico AC Azevedo, Ludmila RB Carvalho, Lea T Grinberg, José Marcelo Farfel,

Renata EL Ferretti, Renata EP Leite, Roberto Lent, Suzana Herculano-Houzel,

et al. Equal numbers of neuronal and nonneuronal cells make the human brain

an isometrically scaled-up primate brain. Journal of Comparative Neurology, 513:

532–541, 2009.

[39] Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons,

populations, plasticity. Cambridge University Press, 2002.

[40] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in

nervous activity. The Bulletin of Mathematical Biophysics, 5:115–133, 1943.

[41] John J Hopfield. Neural networks and physical systems with emergent collective

computational abilities. Proceedings of the national academy of sciences, 79:2554–

2558, 1982.

[42] G Joya, MA Atencia, and F Sandoval. Hopfield neural networks for optimization:

study of the different dynamics. Neurocomputing, 43(1):219–237, 2002.

[43] Wulfram Gerstner and Werner M. Kistler. Spiking Neuron Models. Cambridge

University Press, 2002.

[44] Wolfgang Maass. Networks of spiking neurons: The third generation of neural

network models. Neural Networks, 10:1659–1671, 1997.

[45] Wolfgang Maass and Christopher M Bishop. Pulsed neural networks. MIT press,

1999.

Bibliography 125

[46] Samanwoy Ghosh-Dastidar and Hojjat Adeli. Spiking neural networks. Interna-

tional journal of neural systems, 19:295–308, 2009.

[47] W. Gerstner and R. Brette. Adaptive exponential integrate-and-fire model. Schol-

arpedia, 4:8427, 2009.

[48] E.M. Izhikevich. Dynamical Systems in Neuroscience: The Geometry of Excitability

and Bursting. MIT press, 2007.

[49] Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane

current and its application to conduction and excitation in nerve. The Journal of

physiology, 117:500, 1952.

[50] AL Hodgkin and AF Huxley. The components of membrane conductance in the

giant axon of loligo. The Journal of physiology, 116(4):473–496, 1952.

[51] Allan L Hodgkin and Andrew F Huxley. Currents carried by sodium and potassium

ions through the membrane of the giant axon of loligo. The Journal of physiology,

116(4):449–472, 1952.

[52] Allan L Hodgkin and Andrew F Huxley. The dual effect of membrane potential on

sodium conductance in the giant axon of loligo. The Journal of physiology, 116(4):

497–506, 1952.

[53] Ao L Hodgkin, AF Huxley, and B Katz. Measurement of current-voltage relations

in the membrane of the giant axon of loligo. The Journal of physiology, 116(4):

424–448, 1952.

[54] Eugene M Izhikevich. Which model to use for cortical spiking neurons? IEEE

Transactions on Neural Networks, 15(5):1063–1070, 2004.

[55] Marc-Oliver Gewaltig and Markus Diesmann. Nest (neural simulation tool). Schol-

arpedia, 2:1430, 2007.

[56] T. Carnevale. Neuron simulation environment. 2:1378, 2007. revision 91576.

[57] Rae Silver, Kwabena Boahen, Sten Grillner, Nancy Kopell, and Kathie L Olsen.

Neurotech for neuroscience: unifying concepts, organizing principles, and emerging

tools. The Journal of Neuroscience, 27:11807–11819, 2007.

[58] Antoine Joubert, Bilel Belhadj, Olivier Temam, and Rodolphe Heliot. Hardware

spiking neurons design: Analog or digital? In The 2012 International Joint Con-

ference on Neural Networks (IJCNN), pages 1–5. IEEE, 2012.

[59] Simon J. Thorpe, Arnaud Delorme, and Rufin VanRullen. Spike-based strategies

for rapid processing. Neural Networks, 14:715–725, 2001.

Bibliography 126

[60] Vernon B Mountcastle. Modality and topographic properties of single neurons of

cat’s somatic sensory cortex. Journal of Neurophysiology, 20:408–434, 1957.

[61] David H Hubel and Torsten N Wiesel. Receptive fields of single neurones in the

cat’s striate cortex. The Journal of Physiology, 148:574, 1959.

[62] Edgar D Adrian. The basis of sensation. WW Norton & Company, 1928.

[63] Edgar D Adrian and Yngve Zotterman. The impulses produced by sensory nerve-

endings part ii. the response of a single end-organ. The Journal of physiology, 61:

151–171, 1926.

[64] Simon Thorpe, Denis Fize, and Catherine Marlot. Speed of processing in the human

visual system. Nature, 381:520–522, 1996.

[65] Volker Steuber. Computational Models of Intracellular Signalling in Cerebellar

Purkinje Cells. PhD thesis, The University of Edinburgh, 1998.

[66] Volker Steuber, David Willshaw, and Arjen Van Ooyen. Generation of time delays:

Simplified models of intracellular signalling in cerebellar purkinje cells. Network:

Computation in Neural Systems, 17:173–191, 2006.

[67] Eric Kandel, James H. Schwartz, and Thomas Jessell. Principles of Neural Science

4th Edition. McGraw-Hill, 2000.

[68] Valentino Braitenberg. Vehicles: Experiments in Synthetic Psychology. MIT Press,

Cambridge, MA, 1984.

[69] George E Uhlenbeck and Leonard Salomon Ornstein. On the theory of the brownian

motion. Physical review, 36:823–841, 1930.

[70] Michael Rudolph and Alain Destexhe. Characterization of subthreshold voltage

fluctuations in neuronal membranes. Neural Computation, 15:2577–2618, 2003.

[71] John H Holland. Adaptation in natural and artificial systems: An introductory

analysis with applications to biology, control, and artificial intelligence. 1975.

[72] Lawrence Davis. Genetic algorithms and simulated annealing. 1987.

[73] Lawrence Davis. Handbook of genetic algorithms. 1991.

[74] John J Grefenstette. Optimization of control parameters for genetic algorithms.

Systems, Man and Cybernetics, IEEE Transactions on, 16(1):122–128, 1986.

[75] David E Goldberg and John H Holland. Genetic algorithms and machine learning.

Machine learning, 3(2):95–99, 1988.

Bibliography 127

[76] Zbigniew Michalewicz. Genetic algorithms+ data structures= evolution programs.

Springer Science & Business Media, 2013.

[77] Guy Karlebach and Ron Shamir. Modelling and analysis of gene regulatory net-

works. Nature Reviews Molecular Cell Biology, 9(10):770–780, 2008.

[78] Michael Levine and Eric H Davidson. Gene regulatory networks for development.

Proceedings of the National Academy of Sciences of the United States of America,

102(14):4936–4942, 2005.

[79] Jeff Hasty, David McMillen, Farren Isaacs, and James J Collins. Computational

studies of gene regulatory networks: in numero molecular biology. Nature Reviews

Genetics, 2(4):268–279, 2001.

[80] Micha l Joachimczak, Taras Kowaliw, Rene Doursat, and Borys Wróbel. Brainless

bodies: Controlling the development and behavior of multicellular animats by gene

regulation and diffusive signals. In Artificial Life XIII: Proceedings of the Thirteenth

International Conference on the Simulation and Synthesis of Living Systems, pages

349–356. MIT Press, 2012.

[81] Micha l Joachimczak and Borys Wróbel. Co-evolution of morphology and control of

soft-bodied multicellular animats. In Proceedings of the Fourteenth International

Conference on Genetic and Evolutionary Computation, GECCO ’12, pages 561–568.

ACM, 2012.

[82] Micha l Joachimczak. Evolution of gene regulatory networks and artificial embryoge-

nesis in a simulated 3D environment. PhD thesis, Gdansk University of Technology,

2012.

[83] Borys Wróbel, Ahmed Abdelmotaleb, and Micha l Joachimczak. Evolving spik-

ing neural networks in the greans (gene regulatory evolving artificial networks)

platform. pages 19–22. EvoNet2012: Evolving Networks, from Systems/Synthetic

Biology to Computational Neuroscience Workshop at Artificial Life XIII, 2008.

[84] Borys Wróbel, Ahmed Abdelmotaleb, and Micha l Joachimczak. Evolving networks

processing signals with a mixed paradigm, inspired by gene regulatory networks

and spiking neurons. In The 7th International Conference on Bio-Inspired Models

of Network, Information, and Computing Systems (BIONETICS), 2012.

[85] Ahmed Abdelmotaleb, Neil Davey, Maria Schilstra, Volker Steuber, and Borys

Wróbel. Evolving spiking neural networks for temporal pattern recognition in the

presence of noise. pages 965–972. Artificial Life 2014, MIT Press, 2014.

Bibliography 128

[86] John Carew Eccles, P Fatt, and K Koketsu. Cholinergic and inhibitory synapses in

a pathway from motor-axon collaterals to motoneurones. The Journal of Physiology,

126:524–562, 1954.

[87] Thomas Natschläger and Wolfgang Maass. Spiking neurons and the induction of

finite state machines. Theoretical Computer Science, 287:251–265, 2002.

An example of a PyNN script

generated by GReaNS

#——————————————————————————————————

#———————————–The Header———————————————————

#——————————————————————————————————

import pacman103.front.pynn as p

p.setup(timestep=1.0, min delay = 1.0, max delay = 1.0)

#——————————————————————————————————

#———————-Output populations part——————————————————

#——————————————————————————————————

output population params0 = {’v rest’:[-70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70,

-70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70,

-70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70,

-70, -70, -70, -70, -70, -70, -70, -70, -70,],

’tau m’:[20, 20,

20, 20,

20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,],

’i offset’:[0, 0,

0,],

’v thresh’:[-50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50,

-50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50,

-50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50,

-50, -50, -50,],

’tau syn E’:[5, 5,

5,],

’tau syn I’:[5, 5,

5,],

129

Appendix A. An example of a PyNN script generated by GReaNS 130

’v reset’:[-70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70,

-70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70,

-70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70, -70,

-70, -70,],

’cm’:[20, 20,

20, 20,

20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,]}
output population0 = p.Population(60, p.IF curr exp, output population params0, la-

bel=’output pop0’)

output population0.set mapping constraint({’x’:0, ’y’:0, ’p’:2})
#——————————————————————————————————

#——The rest of the output populations are written here——————

#——————————————————————————————————

#——————————————————————————————————

#———————-Main populations part——————————————————

#——————————————————————————————————

main population params0 = {’v rest’:[-70,-70,-70,-70,-70,],

’tau m’:[20,20,20,20,20,],

’i offset’:[0,0,0,0,0,],

’v thresh’:[-50,-50,-50,-50,-50,],

’tau syn E’:[5,5,5,5,5,],

’tau syn I’:[5,5,5,5,5,],

’v reset’:[-70,-70,-70,-70,-70,],

’cm’:[20,20,20,20,20,]}
main population0 = p.Population(5, p.IF curr exp, main population params0, label=’main pop0’)

main population params1 = {’v rest’:[-70,-70,-70,-70,-70,],

’tau m’:[20,20,20,20,20,],

’i offset’:[0,0,0,0,0,],

’v thresh’:[-50,-50,-50,-50,-50,],

’tau syn E’:[5,5,5,5,5,],

’tau syn I’:[5,5,5,5,5,],

’v reset’:[-70,-70,-70,-70,-70,],

’cm’:[20,20,20,20,20,]}
main population1 = p.Population(5, p.IF curr exp, main population params1, label=’main pop1’)

#——————————————————————————————————

#——The rest of the main populations are written here——————

Appendix A. An example of a PyNN script generated by GReaNS 131

#——————————————————————————————————

#——————————————————————————————————

#———————-Input populations part ——————————————————

#——————————————————————————————————

spike times0 = [[50,],[150,],[250,],]

spike source0 = p.Population(3, p.SpikeSourceArray,{’spike times’: spike times0})
spike times1 = [[50,],[150,],[250,],]

spike source1 = p.Population(3, p.SpikeSourceArray,{’spike times’: spike times1})
#——————————————————————————————————

#——The rest of the input populations are written here——————

#——————————————————————————————————

#—————————————————————————————–

#———–Setting the weights of all the synapses————-

#—————————————————————————————–

#—————————————————————————————–

#——–Synapses for the individual number 0 —————–

#—————————————————————————————–

#Weights of the excitatory synapses between the neurons in the same main network

mainPopExc0 = []

#Weights of the inhibitory synapses between the neurons in the same main network

mainPopInh0 = []

#Weights of the excitatory synapses between the neurons in the main network and the

spike source population

mainPopSpikeSourceExc0 = []

#Weights of the inhibitory synapses between the neurons in the main network and the

spike source population

mainPopSpikeSourceInh0 = []

#Weights of the excitatory synapses between the neurons in the main network and the

output population

mainPopOutputExc0 = []

#Weights of the inhibitory synapses between the neurons in the main network and the

output population

mainPopOutputInh0 = []

mainPopExc0.append((0,3, 0.001395, 1.0))

Appendix A. An example of a PyNN script generated by GReaNS 132

mainPopInh0.append((0,4, 0.111922, 1.0))

mainPopInh0.append((1,0, 0.001757, 1.0))

mainPopInh0.append((3,2, 0.018668, 1.0))

mainPopExc0.append((3,3, 0.060916, 1.0))

mainPopInh0.append((3,4, 0.084304, 1.0))

mainPopExc0.append((4,0, 0.006365, 1.0))

mainPopInh0.append((4,4, 0.057073, 1.0))

mainPopSpikeSourceExc0.append((1,1, 0.044086, 1.0))

mainPopSpikeSourceInh0.append((1,2, 0.074775, 1.0))

mainPopSpikeSourceExc0.append((1,3, 0.462100, 1.0))

mainPopSpikeSourceInh0.append((1,4, 0.021583, 1.0))

mainPopSpikeSourceInh0.append((2,1, 0.006121, 1.0))

mainPopSpikeSourceExc0.append((2,2, 0.031790, 1.0))

mainPopSpikeSourceInh0.append((2,3, 0.088703, 1.0))

mainPopSpikeSourceExc0.append((2,4, 0.069823, 1.0))

mainPopToMainPopExcProj0 = p.Projection (main population0, main population0,

p.FromListConnector (mainPopExc0), target = ’excitatory’)

mainPopToMainPopInhProj0 = p.Projection (main population0 , main population0,

p.FromListConnector (mainPopInh0), target=’inhibitory’)

spikeSourcePopToMainPopExcProj0 = p.Projection (spike source0, main population0,

p.FromListConnector (mainPopSpikeSourceExc0), target=’excitatory’)

spikeSourcePopToMainPopInhProj0 = p.Projection (spike source0, main population0,

p.FromListConnector (mainPopSpikeSourceInh0) , target = ’inhibitory’)

MainPopToOutputPopExcProj0 = p.Projection (main population0 , output population0,

p.FromListConnector (mainPopOutputExc0) , target = ’excitatory’)

MainPopToOutputPopInhProj0 = p.Projection (main population0 , output population0

, p.FromListConnector (mainPopOutputInh0) , target = ’inhibitory’)

#——————————————————————————————————

#——The weights of the rest of synapses are set here——————

#——————————————————————————————————

#——————————————————————————————————

#———————————–The Footer———————————————————

#——————————————————————————————————

output population0.record()

output population1.record()

output population2.record()

output population3.record()

Appendix A. An example of a PyNN script generated by GReaNS 133

output population4.record()

p.run(11000)

spikes 0 = populations[0].getSpikes(compatible output=True)

spikes 1 = populations[1].getSpikes(compatible output=True)

spikes 2 = populations[2].getSpikes(compatible output=True)

spikes 3 = populations[3].getSpikes(compatible output=True)

spikes 4 = populations[4].getSpikes(compatible output=True)

f = open(’spike times.txt’, ’w’)

for i in spikes 0:

f.write(str(int(i[1])) + ’;’ + str(int(i[0]) + 0) + ’\n’)

for i in spikes 1:

f.write(str(int(i[1])) + ’;’ + str(int(i[0]) + 60) + ’\n’)

for i in spikes 2:

f.write(str(int(i[1])) + ’;’ + str(int(i[0]) + 120) + ’\n’)

for i in spikes 3:

f.write(str(int(i[1])) + ’;’ + str(int(i[0]) + 180) + ’\n’)

for i in spikes 4:

f.write(str(int(i[1])) + ’;’ + str(int(i[0]) + 240) + ’\n’)

Published Papers

• Ahmed Abdelmotaleb, Neil Davey, Maria Schilstra, Volker Steuber, and Borys

Wrobel. Evolving spiking neural networks for temporal pattern recognition in the

presence of noise. pages 965-972. Artificial Life 2014, MIT Press, 2014.

• Borys Wrobel, Ahmed Abdelmotaleb, and Michal Joachimczak. Evolving network-

sprocessing signals with a mixed paradigm, inspired by gene regulatory networks

and spiking neurons. In The 7th International Conference on Bio-Inspired Models

of Network, Information, and Computing Systems (BIONETICS), 2012.

• Borys Wrobel, Ahmed Abdelmotaleb, and Michal Joachimczak. Evolving spik-

ing neural networks in the greans (gene regulatory evolving artificial networks)

platform. pages 19-22. EvoNet2012: Evolving Networks, from Systems/Synthetic

Biology to Computational Neuroscience Workshop at Artificial Life XIII, 2008.

134

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation and Goals
	1.2 Contribution to Knowledge
	1.3 Structure of the Thesis
	1.3.1 Chapter 2
	1.3.2 Chapter 3
	1.3.3 Chapter 4
	1.3.4 Chapter 5
	1.3.5 Chapter 6
	1.3.6 Chapter 7
	1.3.7 Chapter 8

	2 Literature Review
	2.1 Central Nervous System
	2.2 Neuron
	2.3 Spiking Neural Networks
	2.3.1 Leaky Integrate-and-Fire neural model
	2.3.2 Non-Linear Integrate-and-Fire models
	2.3.3 Hodgkin and Huxley model
	2.3.4 Simulation of Spiking Neural Networks

	2.4 Neural coding
	2.4.1 Rate code
	2.4.2 Population rate code
	2.4.3 Binary code
	2.4.4 Latency code
	2.4.5 Rank order code

	2.5 Temporal Pattern Recognition with Spiking Neural Networks
	2.5.1 Introduction
	2.5.2 Encoding and decoding mechanism for Temporal Pattern Recognition
	2.5.3 Training SNNs for Temporal Pattern Recognition

	2.6 Animat Foraging with Spiking Neural Networks
	2.6.1 Introduction
	2.6.2 The model
	2.6.3 The agent
	2.6.4 The environment
	2.6.5 Encoding strategies for the sensory information
	2.6.6 Adding noise to the neural network

	2.7 Genetic Algorithm
	2.8 Gene Regulatory Network

	3 Mapping GRNs to SNNs in GReaNs platform
	3.1 Introduction
	3.2 From genome to network
	3.3 Evolution of networks in GReaNs
	3.4 Mapping the GRN to the SNN
	3.4.1 LIF Model in GReaNs
	3.4.2 AdEx Model in GReaNs
	3.4.3 Validating the SNN implementation in GReaNs

	3.5 The Evolution of the SNN
	3.6 Conclusion

	4 Using GreaNs to Evolve a Spiking Neural Network which Generates Desired Spike Patterns
	4.1 Introduction
	4.2 Genetic algorithm
	4.3 Results
	4.3.1 Reproducing spike trains
	4.3.2 Double-shifting task

	4.4 Conclusion

	5 Temporal Pattern Recognition in GReaNs
	5.1 Introduction
	5.2 Genetic algorithm
	5.3 Temporal pattern recognition with a sequence of four inputs
	5.4 Temporal pattern recognition with a sequence of three inputs
	5.4.1 Pattern 1-2-3 recognition with a varying hard-coded limit on the size of the network
	5.4.2 The robustness to temporal noise
	5.4.3 Network analysis
	5.4.3.1 Category 1
	5.4.3.2 Category 2
	5.4.3.3 Category 3

	5.5 Conclusion

	6 Real Time Control of Foraging Behaviours
	6.1 Introduction
	6.2 The Model
	6.2.1 Spiking Neural Networks Model
	6.2.2 Animat Simulation
	6.2.3 Genetic algorithm

	6.3 Encoding sensory information in the SNNs in GReaNs
	6.3.1 The strength of food smell at sensors to synaptic conductance injection
	6.3.2 Unary coding
	6.3.2.1 Using the (V - Vth) thrust
	6.3.2.2 Using the constant thrust
	6.3.2.3 Using the sliding window thrust

	6.3.3 Encoding the sensory information at sensors as current injection

	6.4 Conclusion

	7 Temporal Pattern Recognition in Animats
	7.1 Introduction
	7.1.1 The description of the animat and its simulation environment
	7.1.2 Genetic algorithm
	7.1.3 Results for this task
	7.1.4 Using two sound source types

	7.2 Conclusion

	8 Integrating GReaNs with SpiNNaker
	8.1 Introduction
	8.2 The integration model
	8.3 Results
	8.3.1 Initial communication protocol with the small SpiNNaker board
	8.3.2 Communication protocol with the big SpiNNaker board

	8.4 Conclusion

	9 General Conclusion and Future Work
	9.1 General Conclusion
	9.2 Future Work
	9.2.1 SNNs model and the evolutionary algorithm
	9.2.2 Temporal pattern recognition
	9.2.3 Evolving SNNs for animat control

	Bibliography
	An example of a PyNN script generated by GReaNS
	Published Papers

