Layered Polyelectrolyte Films as Selective, Ultrathin Barriers for Anion Transport

Stair, Jacqueline (2000) Layered Polyelectrolyte Films as Selective, Ultrathin Barriers for Anion Transport. pp. 1941-1946. ISSN 1520-5002
Copy

Synthesis of high-flux composite membranes requires methods for deposition of ultrathin, defect-free films on highly permeable supports. Layer-by-layer deposition of polyelectrolytes on porous alumina (0.02 µm pore diameter) produces such membranes. Electron microscopy shows that five bilayers (<25 nm) of poly(allylamine hydrochloride) (PAH)/poly(styrenesulfonate) (PSS) are sufficient to cover porous alumina and that underlying pores are not clogged during the deposition process. The selectivity of anion transport through these membranes increases with the number of bilayers until the substrate is fully covered. Fivebilayer PAH/PSS membranes have Cl-/SO4 2- and Cl-/Fe(CN)6 3- selectivity values of 7 and 310, respectively. PAH/poly(acrylic acid) membranes show selectivity values similar to those of PAH/PSS membranes but with a 3-fold decrease in anion flux. Selectivity in both of these systems likely results from Donnan exclusion.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads