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Coverage Probability of STAR-RIS assisted Massive
MIMO systems with Correlation and Phase Errors

Anastasios Papazafeiropoulos, Zaid Abdullah, Pandelis Kourtessis, Steven Kisseleff, Ioannis Krikidis

Abstract—In this paper, we investigate a simultaneous transmit-
ting and reflecting reconfigurable intelligent surface (STAR-RIS)
assisting a massive multiple-input multiple-output (mMIMO)
system. In particular, we derive a closed-form expression for the
coverage probability of a STAR-RIS assisted mMIMO system
while accounting for correlated fading and phase-shift errors.
Notably, the phase configuration takes place at every several
coherence intervals by optimizing the coverage probability since
the latter depends on statistical channel state information (CSI)
in terms of large-scale statistics. As a result, we achieve a
reduced complexity and overhead for the optimization of passive
beamforming, which are increased in the case of STAR-RIS
networks with instantaneous CSI. Numerical results corroborate
our analysis, shed light on interesting properties such as the
impact of the number of RIS elements and the effect of phase
errors, along with affirming the superiority of STAR-RIS against
reflective-only RIS.

Index Terms—Reconfigurable intelligent surface (RIS), simul-
taneous transmission and reflection, spatial correlation, coverage
probability, 6G networks.

I. INTRODUCTION

Reconfigurable intelligent surface (RIS) is a promising
technology, enabling a smart radio environment (SRE) to meet
the challenges of sixth-generation (6G) wireless networks [1].
It consists of a number of low-cost nearly passive elements
that can modify the phase shifts and even the amplitude of
the impinging signals to realize an SRE through a backhaul
controller. RIS favorable characteristics have led recently the
research interest in meeting certain significant targets such
as maximization of the spectral and energy efficiencies [2],
[3], and maximization of the coverage probability [4], [5].
Notably, given that 6G will be built upon existing technologies
in 5G such as massive multiple-input multiple-output (mMIMO)
systems, the latter suggests a promising architecture for
amalgamation with RIS [6].

Thus far, there has been a considerable amount of research
on RISs. However, most of the existing works in the literature
assume independent Rayleigh fading such as [3], [7]. In
contrast, it was shown in [8], it was shown that RIS correlation
should be taken into account in practice. On this ground, several
recent research efforts have considered RIS correlation in their
analysis [5], [9]. Furthermore, aiming at realistic modeling,
many works have taken into account phase-shift errors coming
from the finite precision of phase-shifts configuration [2], [10].

Recent advancements on metasurfaces have brought to the
forefront the concept of simultaneous transmitting and reflecting
RISs (STAR-RISs). In particular, the STAR-RIS can provide a
full space coverage by not only reflecting in the half space, but
also refracting to space behind the RIS [11], [12]. In particular,
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in [11], a general hardware model and two-channel models
for the near-field region and the far-field region of STAR-RIS
have been presented while showing that their diversity gain
and coverage are greater than conventional RIS (i.e. reflective-
only RIS) assisted systems. Moreover, in [12], three operating
protocols for STAR-RIS were suggested, which are known as
energy splitting (ES), mode switching (MS), and time switching
(TS). However, none of the existing works on STAR-RIS
have considered correlated fading, phase errors, and mMIMO
systems.

Against the above background, we provide in closed form
the only work obtaining the coverage probability for STAR-RIS
assisted mMIMO systems with practical channel and phase
models. In particular, contrary to existing works on STAR-
RIS such as [11], [12], we formulate a model that embodies
correlated fading and phase errors to identify the realistic
prospects of STAR-RIS before its final implementation. In
this respect, we derive the coverage probability for mMIMO
systems for both ES and MS protocols. Especially, compared to
[11], which assumed a single-antenna transmitter, and required
no special phase-shifts optimization, we also consider a large
number of antennas at the base station (BS). For this reason, we
follow the methodology in [2], [5] based on statistical channel
state information (CSI) to optimize the passive (reflecting and
refracting) beamforming matrix (PBM) of each user equipment
(UE) at every several coherence intervals, which brings lower
overhead compared to optimizations relying on instantaneous
CSI. To the best of our knowledge, this is the only work on
STAR-RIS, where both beamforming matrices for reflection
and refraction are optimized based on statistical CSI, and
thereby reducing the amount of required overhead, which can
be considered as one of the main challenges for STAR-RIS.

Notation: Vectors and matrices are described by boldface
lower and upper case symbols, respectively. The notations (·)T,
(·)H, and tr(·) denote the transpose, Hermitian transpose, and
trace operators, respectively. Moreover, the notations arg (·),
E [·], and Var(·) denote the argument function, the expectation,
and variance operators, respectively. The notation diag (A)
denotes a vector with elements equal to the diagonal elements
of A, while b ∼ CN (0,Σ) denotes a circularly symmetric
complex Gaussian vector with zero mean and covariance matrix
Σ.

II. SIGNAL AND SYSTEM MODELS

This section presents the signal and system models of the
STAR-RIS assisted system.

A. Signal Model
Regarding the description of the signal model of the STAR-

RIS, let sn describe the incident signal on element n ∈ N ,
where N = {1, . . . , N} is the set of RIS elements. Two
independent coefficients, denoted as the transmission and the
reflection coefficients, configure the transmitted and reflected
signals in respective modes. Especially, the transmitted (t)
and reflected (r) signals by the nth element can be modelled
as tn = (

√
βt
ne

jϕt
n)sn and rn = (

√
βr
ne

jϕr
n)sn, respectively,

where βk
n ∈ [0, 1] and ϕkn ∈ [0, 2π) express the independent

amplitude and phase-shift response of the nth element, and
k ∈ {t, r} corresponds to the UE found in the transmission (t)
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or reflection (r) region [11].1 Note that the choice of ϕtn and ϕrn
is independent from each other, but the amplitude adjustments
are correlated based on the law of energy conservation as

βt
n + βr

n = 1,∀n ∈ N . (1)
Operation Protocols: Herein, we present briefly the main points
of the ES/MS protocols [12]. The study of the TS protocol is
left for future work.

ES protocol: All RIS elements serve simultaneously t and r
UEs, and the corresponding PBM for k ∈ {t, r} is expressed
as ΦES

k = diag(
√
βk
1 e

jϕk
1 , . . . ,

√
βk
Ne

jϕk
N ) ∈ CN×N , where

βt
n, β

r
n ∈ [0, 1], βt

n + βr
n = 1, and ϕtn, ϕ

r
n ∈ [0, 2π),∀n ∈ N .

MS protocol: The elements are divided into two groups
of Nt and Nr elements serving UE t or r, respectively,
i.e., Nt + Nr = N . In such case, the PBM for k ∈ {t, r}
is ΦMS

k = diag(
√
βk
1 e

jϕk
1 , . . . ,

√
βt
Ne

jϕk
N ) ∈ CN×N , where

βt
n, β

r
n ∈ {0, 1}, βt

n + βr
n = 1, and ϕtn, ϕ

r
n ∈ [0, 2π),∀n ∈ N .

Basically, this protocol can be considered as a special case of
ES by restricting the amplitude coefficients for transmission
and reflection to binary values. Thus, the MS protocol cannot
provide the full-dimension transmission and reflection beam-
forming gain as ES, however, it requires less computational
complexity in terms of PBM design.

B. System Model
We consider a STAR-RIS-assisted mMIMO communication

system, where a BS with a large number of antennas, denoted
by M , communicates with 2 single-antenna UEs, as shown in
Fig 1.2 Especially, the incident signals on the RIS are divided
simultaneously into transmitted and reflected signals to create
full-space coverage that are received by UE t located behind
the RIS, and UE r located in front of the RIS, i.e., the BS
and UE r are found at the same side. Notably, we assume that
the UEs operate at orthogonal frequency bands of equal sizes
similar to [11]. Also, we account for no direct links between
the BS and the users due to blockages, which is one of the
main challenging practical scenarios that justifies the use of a
RIS. The phase shifts of both transmitted and reflected signals
are adjusted by a controller that exchanges information with
the BS through a backhaul link. We rely on perfect CSI, which
means that the results play the role of upper bounds of practical
scenarios with imperfect CSI. This is a common assumption
on works studying coverage to allow more direct mathematical
manipulations and to focus on the transmission and reflection
beamforming gain of STAR-RIS,

We assume narrow-band quasi-static fading channels. Specif-
ically, hk ∈ CN×1 describes the channel between the RIS and
UE k ∈ {t, r} while G = [g1 . . . ,gN ] ∈ CM×N , expresses
the LoS channel between the BS and RIS with gi, i = 1 ∈ N
corresponds to the ith column vector of G. In particular, the
(m,n)th entry of G can be expressed as

[G]m,n =
√
βg exp

(
j
2π

µ
(m− 1) dBS sin θ1,n sinψ1,n

+ (n− 1) dRIS sin θ2,m sinψ2,m

)
. (2)

Note that G could be obtained by several techniques, e.g.,
see [13]. The parameters βg and λ are the path-loss of the
BS-RIS link and the carrier wavelength. Also, dBS and dRIS
are the inter-antenna separation at the BS and inter-element
separation at the RIS, respectively [2]. In addition, θ1,n, ψ1,n
and θ2,m, ψ2,m describe the elevation and azimuth LoS angles
of departure at the BS and arrival at the RIS with respect to
RIS element n, respectively.

1In practical applications, the amplitude and phase-shifts are correlated and
result in a performance loss. The study of this correlation is left for future
work.

2This model can be easily extended to the multi-user scenario as in typical
mMIMO, where all UEs are divided into multiple groups of two UEs located
at the opposite sides of RIS.

Fig. 1. A STAR-RIS assisted mMIMO model.

1) RIS correlation: Instead of assuming independent
Rayleigh fading as in existing STAR-RIS works [11], [12], we
consider spatial correlation, appearing in practice [8].3 Hence,
the channel vector between the RIS and UE k with k ∈ {t, r}
can be written as

hk =
√
βkR

1/2
RISzk, (3)

where βk expresses the path-loss, and RRIS ∈ CN×N

with tr (RRIS) = N expresses the deterministic Hermitian-
symmetric positive semi-definite correlation matrix at the RIS.
In particular, if N = NHNV elements with NH the number of
elements per row and NV the number of elements per column,
while dH and dV are horizontal and vertical dimensions of
each elements, the (i, j)th element of the RIS correlation is
given by

rij = dHdVsinc (2∥ui − uj∥/λ) , (4)

where uϵ = [0, mod (ϵ− 1, NH)dH, ⌊(ϵ− 1)/NH⌋dV]T, ϵ ∈
{i, j}.

Note that the path-losses and the correlation matrices are
assumed known after being obtained by practical methods,
e.g., see [14]. Moreover, zk ∼ CN (0, IN ) describes the
independent and identically distributed (i.i.d.) fast-fading vector
in the kth link.

2) Phase-shift errors: The configuration of the RIS elements
with infinite precision is not possible in practice. Hence,
phase errors appear, which result from imperfections in phase-
estimation and/or phase quantization that cannot be avoided
[10]. Specifically, we denote ϕ̃kn, with n ∈ N , k ∈ {t, r}
the i.i.d. randomly distributed phase error in [−π, π) of the
nth phase-shift aiming at the kth UE. Hence, the random
phase error matrix corresponding to the PBM Φk is diagonal
and described by Φ̃k = diag

(
ejϕ̃1 , . . . , ejϕ̃N

)
∈ CN×N . The

probability density function (PDF) of ϕ̃kn is assumed symmetric
with its mean direction equal to zero, i.e., arg

(
E[ejϕ̃k

n ]
)
= 0

[10].
In general, the Uniform and the Von Mises distributions are

the main PDFs that can describe the phase noise affecting
the RIS [10]. Notably, the Uniform PDF of phase-noise
has a characteristic function (CF) equal to zero, and thus it
cannot provide any knowledge regarding the phase-estimation
accuracy. In contrast, the Von Mises PDF has a zero-mean and
concentration parameter κϕ̃, which captures the accuracy of

3The consideration of Rician fading, which includes an LoS component, is
the topic of future work.



3

the estimation. In particular, the CF of the Von Mises noise CF

is m =
I1(κϕ̃)
I0(κϕ̃)

, where Iv

(
κϕ̃

)
is the modified Bessel function

of the first kind and order v.
The received signal by UE k ∈ {t, r} through the STAR-RIS

assisted network is described by

yk =
√
ρdlh

H

kΦ̃
H,X
k ΦH,X

k GHfkqk + zk, (5)

where ρdl ≥ 0 is the transmit power at BS to UE k, and qk
is the data symbol with E[|qk|2] = 1, while fk ∈ CM×1 is the
linear precoding vector, and zk ∼ CN (0, N0) is the additive
white Gaussian noise with zero mean and variance of N0.

Notably, the cascaded channel vector including the phase-
shift errors between the large BS and UE k ∈ {t, r}
can be expressed as h̄k = GΦX

k Φ̃
X
k hk ∈ CM×1, where

X = ES,MS. It is distributed as CN (0, R̄k), where R̄k =
βkGΦX

k R̃
X
RISΦ

H,X
k GH. Note that R̃X

RIS = E[ΦX
kRRISΦ

H,X
k ] =

m2RRIS+
(
1−m2

)
IN , where m denotes the CF of the phase

error [2, Eq. 13]. In the case of the Uniform distribution, i.e,
m = 0, Rk does not depend on the phase-shifts and RIS
cannot be optimized. A similar observation is met when RIS
optimization is based on statistical CSI [2]. Hence, apart from
its practical meaning, RIS correlation should be taken into
account to exploit RIS.

III. MAIN RESULTS

This section presents the signal-to-noise ratio (SNR), the
coverage probability, and its optimization for STAR-RIS
assisted systems. Generally, the coverage probability for kth
UE, P k

c with k ∈ {t, r}, is the probability that the received
SNR is greater than a threshold T , i.e., it is described by
P k
c = Pr (γk > T ), where Pr(·) denotes probability.

A. SNR
First, we take advantage of channel hardening, because UEs

do not have any knowledge of the instantaneous CSI in practice,
but they are aware of their statistics [15]. Note that channel
hardening appears in mMIMO systems as the number of BS
antennas increases. Hence, by resorting to the application of
the use-and-then-forget bounding technique [15], we write (5)
as

yk =
√
ρdl

(
E[h̄H

kfk]qk + h̄H

kfkqk − E[h̄H

kfk]qk
)
+ zk. (6)

Next, by assuming that (6) represents a single-input single-
output (SISO) system, where the BS treats the unknown terms
as uncorrelated additive noise, the achievable SNR of the link
between the BS and UE k ∈ {t, r} is written as

γk =

∣∣E[h̄H

kfk]
∣∣2

E[
∣∣h̄H

kfk
∣∣2]− ∣∣E[h̄H

kfk]
∣∣2 + σ0

, (7)

where σ0 = N0/ρdl [15]. Regarding the selection of precoding,
we apply the simple maximum ratio transmission (MRT)
precoding because it allows the derivation of closed-from
expressions and extraction of fundamental properties together
with its optimality for the single UE case, i.e., fk = h̄k√

E[∥h̄k∥2]
.

4

Proposition 1: The downlink SNR of a STAR-RIS assisted
mMIMO system with correlated Rayleigh fading and phase-
shift errors at UE k ∈ {t, r} is given by

γk=
tr2(R̄k)

tr
(
R̄2

k

)
+ σ0 tr

(
R̄k

) . (8)

4Another common choice could be the more robust regularized zero-
forcing (RZF) precoder, but that could be applicable in a multi-user scenario
with interference, and it would result in intractable expressions. Hence, the
application of RZF could be the topic of future work.

Proof: See Appendix A.
Remark 1: As can be seen, the SNR in (8) depends only on

the PBM and the statistical CSI by means of the correlation
matrix, the path-losses, and the phase-shift errors. Also, there
is a dependence on the location of UE k, i.e., if it is found
behind or in front of the RIS.

B. Coverage Probability
Having obtained the SNR, the following proposition provides

the coverage probability.
Proposition 2: The coverage probability of a mMIMO STAR-

RIS assisted system, accounting for RIS correlation and phase-
shift errors of UE k ∈ {t, r}, is tightly approximated as

P k
c ≈

L∑
n=1

(
L

n

)
(−1)n+1e

−η T
γk , (9)

where η = L (L!)
− 1

L with L being an approximation parameter.
Proof: See Appendix B.

The coverage depends on the threshold, the number L
defining the tightness of the approximation, and of course,
the downlink SNR with its involved parameters.

Conventional RIS: We assume a smart surface that consists
of transmitting-only or reflective-only elements, each with N/2
elements with N even for simplicity. Also, βt

n = 1 or βr
n =

1,∀n, respectively. In Sec. IV, we compare the performance
of the STAR-RIS with the conventional RIS and illustrate the
advantage of adopting STAR-RIS in wireless systems.

C. Passive beamforming matrix optimization
A STAR-RIS assisted system serves two regions simul-

taneously, where UEs t and r are found. We focus on the
optimization of the total coverage probability given by P t

c +P
r
c .

Given the difficulty in simultaneous optimization of both P t
c

and P r
c , we rely on alternating optimization by optimizing

first each of them with respect to its PBM while fixing the
other in an iterative manner until reaching the convergence,
i.e., we perform optimization of P k

c with respect to ΦX
k . Each

optimization is achieved in terms of the projected gradient
ascent until converging to a stationary point.

Hence, based on the common assumption of infinite-
resolution phase-shifters, the maximization algorithm for P k

c ,
k ∈ {t, r} UE with respect to the PBM is formulated as

(P1) max
ΦX

k

P k
c

s.t βt
n + βr

n = 1,∀n ∈ N
βt
n, β

r
n ∈ [0, 1], ϕtn, ϕ

r
n ∈ [0, 2π), ∀n ∈ N .

(10)

By replacing [0, 1] with {0, 1}, (P1) can be applied to the MS
scheme.

The optimization problem (P1) is non-convex regarding
ϕkn. The dependence on ϕkn is found on the covariance
matrices R̄k. Given that it is a constrained maximization
problem, we resort to the projected gradient ascent (PGA)
until convergence to a stationary point to provide its solution
[2]. The transmit power constraint guarantees its convergence.
It is worthwhile to mention that the complexity of P k

c is
O
(
G(MN2 +M3 + L)

)
. As can be seen, it is a function of

the fundamental system parameters M , N , and L with the
number of BS antennas having the higher impact. Since it has
to be performed twice for each k ∈ {t, r}, the complexity is
double, while, in the case of the conventional RIS scenario,
the complexity is half of the STAR-RIS setting.

Based on PGA, let sk,l = [ϕk,l1 , . . . , ϕk,lN ]T denote the vector
including the phases at step l, while the next iteration point
provides the increase of P k

c upon its convergence by projecting



4

the solution onto the closest feasible point as specified by
minϕk

n∈[0,2π), ∥sk − s̃k∥2. The next iteration is described by

s̃k,l+1 = sk,l + µvk,l, (11)
swk,l+1 = βt

n exp (j arg (s̃k,l+1)) , (12)

where the parameter µ is the step size obtained at each iteration
through the backtracking line search [16]. Moreover, vk,l is
the ascent direction at step l, which means vk,l =

∂Pk
c

∂s∗k,l
. The

following lemma provides this derivative.
Lemma 1: The derivative of the coverage probability P k

c for
UE k ∈ {t, r} with respect to s∗k,l is given by (17) at the top
of the next page, where γk is given by (8), and

Sk = tr2(R̄k), (13)
Ik = tr

(
R̄2

k

)
+ σ0 tr

(
R̄k

)
, (14)

∂Sk

∂s∗k,l
= 2βk tr

(
R̄k

)
diag(GHGΦX

k R̃
X
RIS), (15)

∂Ik
∂s∗k,l

= βk tr
(
GHR̄kGΦX

k R̃
X
RIS

)
+ σ0βk tr

(
GHGΦX

k R̃
X
RIS

)
. (16)

Proof: See Appendix C.

IV. NUMERICAL RESULTS

In this section, we provide the numerical results for the
coverage of the STAR-RIS assisted mMIMO system. We
consider a uniform planar array (UPA) of N = 60 elements
for the RIS, while a uniform linear array (ULA) with M = 40
antennas is assumed for the BS that serves UEs t and r. Unless
otherwise stated, we consider the following values. The path-
losses are generated according to the NLOS version of the
3GPP Urban Micro (UMi) scenario from TR36.814 for a carrier
frequency of 2.5 GHz, and noise level −80 dBm [17]. Specifi-
cally, we have βg = Cgd

−νg
g , and βk = Ckd

−νk

k , k ∈ {t, r}
with Cg = 26 dB, Ct = 26 dB, Cr = 28 dB, νg = 2.1,
νt = 2.5, and νr = 2.2. The variables dg and dk denote the
distances between the BS and RIS and between the RIS and UE
k ∈ {t, r}, respectively. We assume that the correlation matrix
for the RIS is given by [8], where the horizontal and vertical
dimension of each element is dH = λ/8 and dV = λ/8. Also,
we assume that βt

n = 0.4, βr
n = 0.6,∀n, ρdl = 6 dB, and

N0 = −174 + 10 log10Bc with Bc = 200 KHz. Monte-Carlo
(MC) simulations are carried out to verify our analysis.

In Fig. 2, we depict the coverage probability versus the target
rate for varying number of RIS elements N while studying other
key properties. We observe that a higher number of N , increases
P k
c as expected. Moreover, we study the impact of phase errors

for N = 25, and we see that, in the case of Uniform PDF,
where no knowledge on the errors is known, the RIS cannot be
optimized, since the covariance matrix does not depend on the
phase shifts. Thus, the coverage is lower. However, if the phase
errors follow the Von Mises PDF (m = 0.5), P k

c is higher
thanks to the possibility of performing phase-optimization
under such phase-noise distribution. Also, we make a similar
observation regarding the correlation for N = 100, i.e., we
notice that a RIS correlation allows the PBM optimization,
and P k

c increases in the case of statistical CSI modeling. In
addition, the ES scheme achieves higher coverage than the MS
scheme because the latter is a special case of ES. Furthermore,
we have added the impact of the phase error for both STAR-
RIS and conventional RIS for m = 0.5 and m = 0.7, and we
observe that a larger m increases the estimation accuracy, i.e.,
the coverage is higher in both cases, while the coverage for
the STR-RIS is generally higher compared to the conventional
RIS as expected.

Fig. 3 illustrates the coverage probability versus the target
rate for varying number of BS antennas M , i.e., M =
30, 60, 90. It is shown that P k

c increases with an increasing
number of BS antennas because of a higher beamforming gain.
Also, we notice that independent Rayleigh fading conditions
result in the worst coverage because no RIS exploitation can
be achieved in the case of statistical CSI. In this direction,
we observe that correlation should be taken into account to
benefit from the RIS, while a higher correlation leads to lower
coverage. For the sake of comparison, in the same figure, we
have included the coverage in the case of a conventional RIS
as presented in Sec. III-B with N = 30 elements. Notably, the
STAR-RIS system outperforms the conventional RIS-assisted
system because more degrees of freedom for transmission and
reflection can be harnessed.

V. CONCLUSION

In this paper, we obtained the coverage probability of
a STAR-RIS assisted mMIMO system under the realistic
assumptions of correlated Rayleigh fading and phase-shift
errors, while previous works on STAR-RIS did not account for
these inevitable effects. Especially, we derived the coverage
probability for both t and r UEs in terms of large-scale statistics
that change at every several coherence intervals, and thus,
reduce the increased overhead of STAR-RIS. Among others, we
depicted how the fundamental parameters affect the coverage,
and the outperformance of STAR-RIS compared to reflective-
only RIS. Future works could consider Ricean channels or
even millimetre-wave transmission.

APPENDIX A
PROOF OF PROPOSITION 1

Based on the property xHy = tr(yxH), the term in the
numerator of (8) is written as

|E[h̄H

kfk]|2=
∣∣∣tr(E[h̄kh̄

H

k]

E[∥h̄k∥2]

)∣∣∣2 (18)

=tr
(
R̄k

)
, (19)

where, in (18), we have substituted the precoder fk. Note that
R̄k = βkGΦX

k R̃
X
RISΦ

H,X
k GH.

Regarding the first term in the denominator, we have

E[
∣∣h̄H

kfk
∣∣2]=tr

(
R̄k

)
+

tr
(
R̄2

k

)
tr
(
R̄k

) , (20)

where (20) is obtained by [15, Lem. B.14]. The proof is
concluded by appropriate substitutions into (7).

B PROOF OF PROPOSITION 2
The proof follows similar lines with the technique in [18].

Specifically, based on the definition of the coverage probability
of UE k ∈ {t, r}, we have

P k
c ≈ P(g̃ >

T

γk
) (21)

≈ 1− (1− e
−η T

γk )L (22)

=

L∑
n=1

(
L

n

)
(−1)n+1e

−η T
γk . (23)

In (21), we have used the approximation [18], where the
constant number 1 can be replaced by a dummy Gamma
variable g̃, which has a unit mean and shape parameter L, i.e.,
its pdf is L−L

Γ(L) g̃
L−1e−Lg̃ . The tightness of this approximation

increases with increasing L. In (22), we have applied Alzer’s
inequality, where η = L (L!)

− 1
L [18], while in (23), we have

applied the Binomial theorem.
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∂P k
c

∂s∗k,l
=

∂Sk

∂s∗k,l
Ik − Sk

∂Ik
∂s∗k,l

γ2kI
2
k

L∑
n=1

(
L

n

)
(−1)

n+1
nηT e

−nη T
γk . (17)

Fig. 2. Coverage probability of a STAR-RIS assisted mMIMO system versus
the target rate T for varying N (M = 40, dH = dV = λ/8, m = 0.5).

Fig. 3. Coverage probability of a STAR-RIS assisted mMIMO system versus
the target rate T for varying M (N = 60, dH = dV = λ/8, m = 0.5).

C PROOF OF LEMMA 1

First, we apply the chain rule, which gives

∂P k
c

∂s∗k,l
=
∂P k

c

∂γk

∂γk
∂s∗k,l

. (24)

Regarding the first term in (24), we have

∂P k
c

∂γk
=

L∑
n=1

(
L

n

)
(−1)

n+1
nηT

γ2k
e
−nη T

γk . (25)

For the derivation of the second derivative in (24), i.e., ∂γk

∂s∗k,l
,

we define γk = Sk

Ik
, where Sk = tr2(R̄k) and Ik = tr

(
R̄2

k

)
+

σ0 tr
(
R̄k

)
. Hence, the derivative can be written as

∂γk
∂s∗k,l

=

∂Sk

∂s∗k,l
Ik − Sk

∂Ik
∂s∗k,l

I2k
. (26)

The computation of ∂Sk

∂s∗k,l
follows. In particular, we have

∂Sk

∂s∗k,l
= 2 tr

(
R̄k

)
tr
(
R̄′

k

)
, (27)

where (·)′ denotes the partial derivative with respect to s∗k,l.

Based on the property tr
(
Adiag(s∗k,l)

)
= (diag(A))T s∗k,l,

where A is a matrix independent of s∗k,l we can easily show

tr
(
R̄′

k

)
= βkdiag(GHGΦX

k R̃
X
RIS). (28)

Regarding ∂Ik
∂s∗k,l

, we obtain

∂Ik
∂s∗k,l

=2 tr
(
R̄′

kR̄k

)
+σ0tr

(
R̄′

k

)
. (29)

The derivative in (16), is obtained by (29) after exploiting the
property used in (28). Substitution of the derivatives in (26)
concludes the proof.
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