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ABSTRACT

Nuclear partition functions were calculated for a grid of temperatures from

1.2 × 1010 K to 2.75 × 1011 K (1 ≤ kT ≤ 24 MeV) within a Fermi-gas ap-

proach, including all nuclides from the proton-dripline to the neutron-dripline

with proton number 9 ≤ Z ≤ 85. The calculation is based on a nuclear level

density description published elsewhere, thus extending the previous tables of

partition functions beyond 1010 K. Additional high temperature corrections had

to be applied.

Subject headings: nuclear reactions, nucleosynthesis, abundances

1. Introduction

The knowledge of the nuclear partition function at high temperatures is essential in

understanding the nuclear equation of state used in the core collapse phase of massive stars.

In self-consistent simulations, the contraction of the core is explicitly followed up to nuclear

densities, giving rise to extreme temperatures and high mean excitation energies of the

nuclei. Ratios of high temperature partition functions are also ingredients in nucleosynthesis

networks in explosive scenarios, such as the r- and rp-processes. When employed in nuclear

statistical equilibria (NSE), they often have to be known at temperatures beyond 1010 K.

Recently, new sets of partition functions have been published along with astrophysical

reaction rates for nuclides from proton dripline to neutron dripline and charge number 10 ≤
Z ≤ 85 (Rauscher & Thielemann 2000). The sets include partition functions up to T9 = 10

(1010 K) based on two different level densities calculated within a shifted Fermi-gas approach

(Rauscher et al. 1997) utilizing two mass formulas. Here, the extension of these partition

functions to temperatures of T9 = 275 is presented. A straightforward extrapolation is not

valid because of additional effects acting at high temperatures.

http://arXiv.org/abs/astro-ph/0304047v1
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These effects have been a matter of discussion already about 20 years ago (Fowler,

Engelbrecht, & Woosley 1978; Mazurek, Lattimer, & Brown 1979). The recently improved

descriptions of nuclear level density and nuclear reaction rate predictions make it worthwhile

to reconsider these arguments and to publish a complete table of partition functions. In this

work, in addition to using the more recent level densities of Rauscher et al. (1997), the

corrections are treated by closely following Tubbs & Koonin (1979).

2. Procedure

The temperature-dependent partition function G(T ) normalized to the ground state

spin of the nucleus J0 is usually defined as (Fowler et al. 1967)

(2J0 + 1)G(T ) =

µm
∑

µ=0

(2Jµ + 1)e−Eµ/kT (1)

+

Emax

∫

Eµm

∑

Jµ,πµ

(2Jµ + 1)e−ǫ/kTρ(ǫ, Jµ, πµ)dǫ ,

with ρ being the level density and µm the label of the last included experimentally known

state. The sum over Boltzmann-weighted discrete states from the ground state to state µm is

performed using experimental levels as listed in Rauscher & Thielemann (2001). Above the

last known state an integration over the nuclear level density is used instead of a summation,

as also outlined in Rauscher & Thielemann (2000), employing the level density description

of Rauscher et al. (1997).

The upper limit Emax of the integration requires special consideration. Formally, the

integration procedure should encompass energies up to infinity. However, for all practical

purposes an energy cut-off can be introduced because the Boltzmann-factor e−ǫ/kT dominates

at high energies and suppresses any further contributions to the integral value. It is well

known that, for instance, the maximum excitation energy above which there are no more

significant contributions to the partition function is of the order of 20−25 MeV up to T9 = 10

(Rauscher & Thielemann 2000).

Due to the temperature dependence of the integrand in Eq. 1 its peak contribution is

shifted to higher energies for higher temperatures T , thus also requiring a larger cut-off Emax.

Up to now, there has been no systematic scrutiny of the behavior of the integrand, which also

weakly depends on the used level density. In Fig. 1, the integrands are plotted, also showing

the peak energies and the widths of the peaks for different energies. The shown energies are

in agreement with the mean excitation energies derived by Tubbs & Koonin (1979). In the
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same manner, the cut-off energy of 25 MeV, often used for calculating partition functions

up to T9 = 10, can be justified.

For T9 > 12, we extract a (nearly) quadratic dependence on temperature of the peak

energy Epeak and a linear dependence of the width ΓFWHM of the integrand:

Epeak = 0.0725T 2.055
9 MeV, (2)

ΓFWHM = 3T9 − 37.0 MeV.

The integration cut-off was then set to Emax = max (35, Epeak + ΓFWHM) MeV.

3. High temperature corrections

Due to the exponential increase of the nuclear level density with excitation energy, ex-

tremely large partition functions already result at temperatures of a few MeV (temperatures

given as energies and in T9 are related by E = T9/11.6045 MeV). However, it has been

realized that a straightforward integration over the level density might overestimate the par-

tition functions. High excitation energies of the nucleus permit the emission of nucleons and

therefore an appropriate fraction of the level density associated with such continuum states

should be neglected in the computation of the partition function.

Fowler, Engelbrecht, & Woosley (1978) introduced such high temperature corrections by

truncating the integration near the nucleon separation energy and by subtracting continuum

scattering states (which, however, do not act below T9 = 100). Mazurek, Lattimer, & Brown

(1979) accounted for the suppression of the partition functions by arbitrarily setting the

integral cut-off to 25 MeV. In a semi-classical calculation, Tubbs & Koonin (1979) showed

that Fowler, Engelbrecht, & Woosley (1978) and Mazurek, Lattimer, & Brown (1979) largely

overestimated the suppression, that a simple truncation of the integral is incorrect, and that

partition functions remain large for temperatures as high as T9 = 100. They find that the

corrections are much smaller than given by truncated level density integrals and that the

conventional partition functions (with full integration) are much closer to their values than

values obtained with any of the truncation methods.

The advantage of the description by Tubbs & Koonin (1979), which is based on the

independent particle model, is the natural inclusion of both bound and continuum nuclear

states. Here, we use a hybrid model by using the level density and partition function descrip-

tions as outlined in Sec. 2 and applying correction factors derived from the spherical square

well approximation of Tubbs & Koonin (1979) (Eqs. 7 and 9 in that reference) but using

the same nuclear properties (nucleon separation energies, nuclear radius) as in Rauscher &
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Thielemann (2000). This way, a continuous extension of the partition functions of Rauscher

& Thielemann (2000) is possible. While the simplicity of the equations is kept, the limita-

tions of the spherical square well approach are partially lifted because, e.g., the separation

energies are taken from experiment or from mass formulas employing more realistic nuclear

potentials and accounting for shell and deformation effects. Furthermore, this approach is

only used to obtain the relative corrections.

The correction factor C is extracted by comparing the uncorrected and the corrected

total nuclear partition function of Tubbs & Koonin (1979) computed in their spherical square

well formalism. While referring the reader to the paper of Tubbs & Koonin (1979) for a more

complete description of their approach, only the relevant equations are summarized here. The

total nuclear partition function Z = Zesw = (2J0
i + 1)Gesw(T ) is constructed as the sum of

two terms for protons and neutrons, respectively:

ln Z = ln Zp + ln Zn , (3)

with

ln Zx = ln qx − αX + βE0x −
1

2
ln(2πN) . (4)

The letter x stands for neutron (n) and proton (p), respectively, and X is the neutron number

N and the proton number Z, respectively. The ground state energy is denoted by E0x and

the inverse nuclear temperature by β = 1/kT with β = 11.6045/T9 MeV. The mean-square

number fluctuation N, the nuclear contribution qx (as opposed to the contribution of the

exterior nucleon gas) of the grand partition function, and the Lagrange multiplier α can

be found with and without continuum contributions, leading to nucleon partition functions

Zx, Z ′

x and total partition functions Z, Z ′ with and without corrections. In the following,

primed quantities are without corrections. Thus, we obtain

q′x = D(T )
[

F3/2 (α′ + βSx + 3βX/2ρF )
]

,

qx = D(T )
[

F3/2 (α + βSx + 3βX/2ρF ) − F3/2 (α)
]

, (5)

and

N
′ =

3

4
D(T )

[

F−1/2 (α′ + βSx + 3βX/2ρF )
]

,

N =
3

4
D(T )

[

F−1/2 (α + βSx + 3βX/2ρF ) − F−1/2 (α)
]

. (6)

Fermi integrals of the order η with argument θ are denoted by Fη (θ). The factor D(T ) is

D(T ) =
1

√
X

(

2ρFkT

3

)
3

2

. (7)
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For consistency, the same particle separation energy Sx is used as for the reaction rate

calculations of Rauscher & Thielemann (2000). It is taken either from experiment or from

a mass formula where no experimental information is available. The level density at the

zero-temperature Fermi surface is given as

ρF =

(

4
√

3π

)
2

3

X
1

3

mxR
2

~2
, (8)

using the nuclear radius R and the nucleon mass mx. With that definition the ground state

energy becomes

E0x = −
3

5

X2

ρF

− XSx . (9)

Before evaluating the above equations, the appropriate (temperature dependent) La-

grange multiplicators with and without corrections have to be determined. This is done by

requiring states in the grand canonical ensemble to have, on the average, the correct number

of nucleons, X, and therefore by finding the root of the following equations with respect to

α and α′:

3
2
D(T )

[

F1/2 (α′ + βSx + 3βX/2ρF )
]

− X = 0 ,
3

2
D(T )

[

F1/2 (α + βSx + 3βX/2ρF ) − F1/2 (α)
]

− X = 0 . (10)

The proper α or α′ found above has to be inserted also in Eq. 4, of course.

Finally, the relevant partition function G(T ) is then obtained by multiplying the previous

function (from Sec. 2) with the correction C:

G(T ) = C(T )G(T ) = exp (ln Z(T ) − ln Z ′(T ))G(T ) . (11)

Thus, the correction factor C found with the approach above is applied to the partition

function derived in the full computation described in Sec. 2. The corrections start to act at

temperatures T9 ≃ 50− 60 for light and intermediate nuclei and as low as T9 ≃ 14 for heavy

nuclei. Corrections are negligible for T9 ≤ 10, implying that the partition functions from

Rauscher & Thielemann (2000) can be used without further modifications. The magnitude

of the corrections ranges from a few percent at the lower end of the temperature range to

a suppression factor of 10−5 for the heaviest nuclides at T9 = 100 and 10−40 at T9 = 275,

respectively. The correction factors for a few selected cases are shown in Table 1.

4. Discussion and Conclusion

The corrected renormalized partition functions G calculated with level densities utilizing

input from the Finite Range Droplet Model (FRDM) (Möller et al. 1995) (see also Rauscher
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& Thielemann 2000) are given in Table 2. Results making use of the Extended Thomas-Fermi

mass formula with shell quenching effects (ETFSI-Q) (Pearson et al. 1996) (see also Rauscher

& Thielemann 2000) far from stability are given in Table 3. The properties of the mass

formulas can enter via the particle separation energies which are calculated from predicted

mass differences in case no experimental masses are known. Furthermore, they always enter

in the microscopic correction term used in the level density treatment of Rauscher et al.

(1997). The method to calculate the high temperature corrections is only applicable for

bound nucleons, therefore only those nuclides are given for which both the neutron and

proton separation energies are positive. The printed version of this paper contains only

example tables, showing which kind of information is available. Partition functions for the

full range of nuclides from proton dripline to neutron dripline for 10 ≤ Z ≤ 83 (FRDM) and

26 ≤ Z ≤ 85 (ETFSI-Q) are available as machine readable tables in electronic form. The

formatting is the same as used in Rauscher & Thielemann (2000), except for the different

temperature range. Thus, the partition functions presented here provide a smooth and

analytical extension of the previous tabulation, extending the range of temperatures to

0.1 ≤ T9 ≤ 275.

The new values for 56Ni can directly be compared to the ones from Tubbs & Koonin

(1979). Fig. 2 shows the partition function of this nucleus. By comparing to Fig. 1 in

Tubbs & Koonin (1979) it can be seen that the new value is higher by 45–50% around

kT = 10 MeV than their corrected value B. This is mainly due to the different level density

description (different effective level density parameter a) used since a similar treatment of

the high-temperature corrections is implemented in both calculations.

It has to be noted that the partition functions presented here are valid for low-density

conditions. In high-density regimes, modifications of nuclear properties (e.g., separation

energies) might have to be additionally applied. This is beyond the scope of the current

investigation.

The nuclear model for the corrections (and the one for the level density) assumes a

Fermi-gas of independent nucleons interacting only through a common, spin-independent

mean field. At nuclear temperatures beyond about 30 MeV (i.e. T9 ≥ 350), the momen-

tum dependence of the mean field, the excitation of mesonic degrees of freedom, and the

breakdown of the independent particle approximation become important. This is not rel-

evant for the temperature range explored here but will necessitate an altogether different

approach when expanding the temperature range beyond about 25–30 MeV. It is expected

that the exponential rise of the partition functions with temperature will finally be effectively

suppressed beyond those energies.
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Fig. 1.— Integrands from Eq. 1 for different temperatures T9 of 109Cd. The absolute values

are renormalized so that the area under the curves is the same. It can be seen that for

increasing temperature the location of the peak, arising from folding the Boltzmann factor

e−E/kT with the level density ρ(E), is shifted to increasingly higher excitation energies E.

At the same time, the width of the peak is increased, thus allowing significant contributions

to the integral at even higher energies.
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Fig. 2.— Partition function of 56Ni calculated with level densities including inputs from

FRDM (full line) and ETFSI-Q (dashed line). Both calculations include high-temperature

corrections which, however, become significant only at kT > 5 MeV for this nucleus. Differ-

ences between FRDM and ETFSI-Q partition functions are more pronounced for neutron-rich

nuclides. Also shown is a partition function without the continuum corrections (dotted line).
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Table 1. Correction factors C(T9) for selected cases. Numbers in square brackets denote

powers of ten.

Nuclide

C(12) C(14) C(16) C(18) C(20) C(22) C(24) C(26)

C(28) C(30) C(35) C(40) C(45) C(50) C(55) C(60)

C(65) C(70) C(75) C(80) C(85) C(90) C(95) C(100)

C(110) C(130) C(150) C(170) C(190) C(210) C(230) C(250)

16O

1.00[+00] 1.00[+00] 1.00[+00] 1.00[+00] 1.00[+00] 1.00[+00] 1.00[+00] 1.00[+00]

9.99[−01] 9.99[−01] 9.97[−01] 9.93[−01] 9.87[−01] 9.78[−01] 9.65[−01] 9.49[−01]

9.29[−01] 9.05[−01] 8.79[−01] 8.49[−01] 8.17[−01] 7.83[−01] 7.48[−01] 7.11[−01]

6.36[−01] 4.90[−01] 3.63[−01] 2.61[−01] 1.83[−01] 1.27[−01] 8.66[−02] 5.89[−02]
56Fe

1.00[+00] 1.00[+00] 1.00[+00] 1.00[+00] 9.99[−01] 9.98[−01] 9.96[−01] 9.93[−01]

9.88[−01] 9.82[−01] 9.60[−01] 9.24[−01] 8.75[−01] 8.14[−01] 7.42[−01] 6.64[−01]

5.83[−01] 5.03[−01] 4.26[−01] 3.55[−01] 2.90[−01] 2.34[−01] 1.86[−01] 1.46[−01]

8.69[−02] 2.71[−02] 7.50[−03] 1.90[−03] 4.56[−04] 1.06[−04] 2.40[−05] 5.43[−05]
56Ni

1.00[+00] 1.00[+00] 9.99[−01] 9.98[−01] 9.96[−01] 9.92[−01] 9.88[−01] 9.82[−01]

9.74[−01] 9.65[−01] 9.33[−01] 8.90[−01] 8.35[−01] 7.71[−01] 7.00[−01] 6.24[−01]

5.48[−01] 4.73[−01] 4.02[−01] 3.36[−01] 2.78[−01] 2.26[−01] 1.81[−01] 1.44[−01]

8.72[−02] 2.86[−02] 8.33[−03] 2.23[−03] 5.61[−04] 1.36[−04] 3.24[−05] 7.63[−06]
176Hf

9.99[−01] 9.97[−01] 9.93[−01] 9.85[−01] 9.72[−01] 9.52[−01] 9.26[−01] 8.92[−01]

8.51[−01] 8.04[−01] 6.61[−01] 5.05[−01] 3.57[−01] 2.33[−01] 1.42[−01] 8.07[−02]

4.29[−02] 2.15[−02] 1.01[−02] 4.54[−03] 1.93[−03] 7.88[−04] 3.08[−04] 1.16[−04]

1.49[−05] 1.77[−07] 1.55[−09] 1.12[−11] 7.28[−14] 4.51[−16] 2.79[−18] 1.77[−20]
208Pb

9.99[−01] 9.97[−01] 9.93[−01] 9.84[−01] 9.69[−01] 9.48[−01] 9.18[−01] 8.80[−01]

8.34[−01] 7.80[−01] 6.23[−01] 4.55[−01] 3.03[−01] 1.85[−01] 1.03[−01] 5.32[−02]

2.53[−02] 1.12[−02] 4.64[−03] 1.80[−03] 6.62[−04] 2.30[−04] 7.61[−05] 2.41[−05]

2.14[−06] 1.15[−08] 4.30[−11] 1.28[−13] 3.36[−16] 8.33[−19] 2.06[−21] 5.24[−24]

Note. — The values given here were calculated with separation energies based on experiment or FRDM

input (see text).
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Table 2. Renormalized partition functions G(T9) including high temperature corrections.

The values given here were calculated with level densities based on FRDM input (see text).

Each nuclide is characterized by its charge and mass numbers Z, A, and its ground-state

spin J0. Numbers in square brackets denote powers of ten.

Nuclide

Z A J0

G(12) G(14) G(16) G(18) G(20) G(22) G(24) G(26)

G(28) G(30) G(35) G(40) G(45) G(50) G(55) G(60)

G(65) G(70) G(75) G(80) G(85) G(90) G(95) G(100)

G(105) G(110) G(115) G(120) G(125) G(130) G(135) G(140)

G(145) G(150) G(155) G(160) G(165) G(170) G(175) G(180)

G(190) G(200) G(210) G(220) G(230) G(240) G(250) G(275)

56Ni

28 56 0.0

3.23[+00] 8.19[+00] 2.37[+01] 7.17[+01] 2.19[+02] 6.64[+02] 2.01[+03] 6.08[+03]

1.83[+04] 5.52[+04] 8.60[+05] 1.31[+07] 1.96[+08] 2.86[+09] 4.06[+10] 5.63[+11]

7.64[+12] 1.02[+14] 1.33[+15] 1.71[+16] 2.17[+17] 2.71[+18] 3.35[+19] 4.10[+20]

4.96[+21] 5.94[+22] 7.05[+23] 8.30[+24] 9.71[+25] 1.13[+27] 1.30[+28] 1.50[+29]

1.71[+30] 1.94[+31] 2.20[+32] 2.49[+33] 2.80[+34] 3.14[+35] 3.51[+36] 3.93[+37]

4.87[+39] 6.02[+41] 7.41[+43] 9.11[+45] 1.12[+48] 1.38[+50] 1.70[+52] 2.90[+57]

Note. — The complete version of this table can be found in the electronic edi-

tion of Astrophysical Journal Supplement. The printed edition contains only a sam-

ple of what kind of information is given. The full tables can also be downloaded from

http://ftp.nucastro.org/astro/fits/partfuncs/.
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Table 3. Renormalized partition functions G(T9) including high temperature corrections.

The values given here were calculated with level densities based on ETFSI-Q input (see

text). Each nuclide is characterized by its charge and mass numbers Z, A, and its

ground-state spin J0. Numbers in square brackets denote powers of ten.

Nuclide

Z A J0

G(12) G(14) G(16) G(18) G(20) G(22) G(24) G(26)

G(28) G(30) G(35) G(40) G(45) G(50) G(55) G(60)

G(65) G(70) G(75) G(80) G(85) G(90) G(95) G(100)

G(105) G(110) G(115) G(120) G(125) G(130) G(135) G(140)

G(145) G(150) G(155) G(160) G(165) G(170) G(175) G(180)

G(190) G(200) G(210) G(220) G(230) G(240) G(250) G(275)

56Ni

28 56 0.0

3.20[+00] 8.03[+00] 2.28[+01] 6.76[+01] 2.01[+02] 5.94[+02] 1.74[+03] 5.10[+03]

1.48[+04] 4.30[+04] 6.08[+05] 8.43[+06] 1.14[+08] 1.52[+09] 1.97[+10] 2.50[+11]

3.11[+12] 3.80[+13] 4.56[+14] 5.40[+15] 6.30[+16] 7.25[+17] 8.25[+18] 9.29[+19]

1.04[+21] 1.14[+22] 1.25[+23] 1.36[+24] 1.47[+25] 1.57[+26] 1.67[+27] 1.77[+28]

1.87[+29] 1.96[+30] 2.06[+31] 2.14[+32] 2.23[+33] 2.31[+34] 2.38[+35] 2.46[+36]

2.60[+38] 2.74[+40] 2.88[+42] 3.02[+44] 3.17[+46] 3.32[+48] 3.50[+50] 4.02[+55]

Note. — The complete version of this table can be found in the electronic edi-

tion of Astrophysical Journal Supplement. The printed edition contains only a sam-

ple of what kind of information is given. The full tables can also be downloaded from

http://ftp.nucastro.org/astro/fits/partfuncs/.


