A Herschel study of YSO evolutionary stages and formation timelines in two fields of the Hi-GAL survey

Elia, D., Schisano, E., Molinari, S., Robitaille, T., Anglés-Alcázar, D., Bally, J., Battersby, C., Benedettini, M., Billot, N., Calzoletti, L., Di Giorgio, A. M., Faustini, F., Li, J. Z., Martin, P., Morgan, L., Motte, F., Mottram, J.C., Natoli, P., Olmi, L., Paladini, R., Piacentini, F., Pestalozzi, M., Pezzuto, S., Polychroni, D., Smith, M., Strafella, F., Stringfellow, G. S., Testi, L., Thompson, M.A., Traficante, A. and Veneziani, M. (2010) A Herschel study of YSO evolutionary stages and formation timelines in two fields of the Hi-GAL survey. ISSN 0004-6361
Copy

We present a first study of the star-forming compact dust condensations revealed by Herschel in the two 2 \times 2 \degr Galactic Plane fields centered at [l;b] = [30\degr; 0 \degr] and [l;b] = [59\degr; 0 \degr], respectively, and observed during the Science Demonstration Phase for the Herschel infrared Galactic Plane survey (Hi-GAL) Key-Project. Compact source catalogs extracted for the two fields in the five Hi-GAL bands (70, 160, 250, 350 and 500 $\mu$m) were merged based on simple criteria of positional association and spectral energy distribution (SED) consistency into a final catalog which contains only coherent SEDs with counterparts in at least three adjacent Herschel bands. These final source lists contain 528 entries for the l = 30\degr field, and 444 entries for the l = 59\degr field. The SED coverage has been augmented with ancillary data at 24 $\mu$m and 1.1 mm. SED modeling for the subset of 318 and 101 sources (in the two fields, respectively) for which the distance is known was carried out using both a structured star/disk/envelope radiative transfer model and a simple isothermal grey-body. Global parameters like mass, luminosity, temperature and dust properties have been estimated. The Lbol/Menv ratio spans four orders of magnitudes from values compatible with the pre-protostellar phase to embedded massive zero-age main sequence stars. Sources in the l = 59\degr field have on average lower L/M, possibly outlining an overall earlier evolutionary stage with respect to the sources in the l = 30\degr field. Many of these cores are actively forming high-mass stars, although the estimated core surface densities appear to be an order of magnitude below the 1 g cm$^{-2}$ critical threshold for high-mass star formation.

picture_as_pdf

picture_as_pdf
1005.1783v1
Available under Creative Commons: 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads