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Abstract—Microgrids are industrial technologies that can pro-
vide energy resources for the Internet of things (IoT) demands in
smart grids. Hybrid microgrids supply quality power to the IoT
devices and ensure high resiliency in supply and demand for PV-
based grid-tied microgrids. In this system, the usage of predictive
energy management systems (EMS) is essential to dispatch power
from different resources, whilst the battery energy storage system
(BESS) is feeding the loads. In this work, we deploy a one-day-
ahead prediction algorithm using a deep neural network for a
fast-response BESS in an intelligent energy management system
(I-EMS) that is called SIEMS. The main role of the SIEMS is
to maintain the state of charge at high rates based on the one-
day-ahead information about solar power, which depends on me-
teorological conditions. The remaining power is supplied by the
main grid for sustained power streaming between BESS and end-
users. Considering the usage of information and communication
technology components in the microgrids, the main objective of
this paper is focused on the hybrid microgrid performance under
cyber-physical security adversarial attacks. Fast gradient sign,
basic iterative, and DeepFool methods, which are investigated for
the first time in power systems e.g. smart grid and microgrids, in
order to produce perturbation for training data. To secure the
microgrid’s SIEMS, we propose two Defence algorithms based
on defensive distillation and adversarial training strategies for
the first time in EMSs. We apply and evaluate these benchmark
adversarial attack and Defence methods against the proposed
machine learning models to increase the robustness of the models
in the system against adversarial attacks.

Index Terms—Energy Management, Internet of things (IoT),
Machine Learning, Hybrid Microgrid, Adversarial Attacks,
Cyber-Physical Security.

I. INTRODUCTION

H IGH demand resiliency of both AC or DC microgrids
relies on how low the risk of instability is. One popular

microgrid architecture is the grid-tied or hybrid, in which
the main energy sources are renewables (PV, wind) along
with the main grid. Due to the intermittent nature of wind
velocity, solar irradiation, and other environmental parameters
such as relative humidity, partial shadings, and air temperature,
the green power generation can meet uncertainties [1], [2].
Hybrid energy generation and distribution systems require
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management strategies for optimal power flow distribution,
in which the centralized [3], [4], decentralized [5], [6], and
hybrid energy management systems (EMSs) using coupled
dynamic programming and model predictive control (MPC)
algorithms [7], intelligent optimization algorithms, such as
particle swarm optimization (PSO) [8] and mixed integer
linear programming (MILP) [9] are among the most popular
schemes. Energy storage system as a flexible grid asset offer
resiliency and stability in hybrid microgrids [10]. The state
of charge (SOC) in battery energy storage systems (BESS)s
which are supplied by the hybrid energy resources, such
as solar power and the main grid, highly reduce the risk
of instability towards meteorological variables such as solar
irradiance, temperature, humidity, optoelectronic anemometer
and digital weather vane for any type of microgrids. In PV-
tied microgrids, balancing the power supply and demand
is a challenge because of frequent changes in the weather
conditions. The power unbalance (supply and demand) results
in lack of power quality (varying voltage, frequency instability,
sudden blackouts, etc.) until the grid power dispatched by the
system operators and fully streamed in the microgrid. During
the power dispatching from the main grid streaming to the end-
users, the operation time is approximately a few minutes, the
network instability can critically damage the grid resiliency.
The demand resiliency advantages of microgrids have widely
been studied in the literature, however, the analytical and
empirical modeling of microgrids for resiliency targets based
on BESS is limited. There have been a few significant works
on dynamic energy management systems for autonomous mi-
crogrids [11], [12] for enhancing the resiliency can be found
in the bibliography. Due to time-dependent solar irradiation
fluctuations, a self-supporting intelligent microgrid is needed
to continuously support the I-EMS. Such smart microgrids use
predictive algorithms, i.e. daily-ahead, weekly-ahead, etc., to
ensure that the BESS is well supplied and can satisfy the
non-critical and critical load connected. While this review
focuses on I-EMSs and their corresponded demand resiliency
effects, closely related works include: T. Pippia et al. [13],
studied a single-level rule-based model predictive control
(RBMPC) scheme for optimization of the EMS of a hybrid
microgrid, considering a range of different sampling times
to observe how fast the dynamic of the proposed RBMPC
is, and also validated the RBMPC algorithm’s performance
with the popular MILP method. In another work [12], the
authors investigated a coordinated energy dispatch based on a
multi-level distributed model predictive control (DMPC) for an
autonomous microgrid, where the upper level offers an optimal
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scheduling for energy exchange between the distribution net-
work operator and microgrids, while the lower level provides
tracking between supply and demand. They presented how the
proposed DMPC balanced the supply and end-user demand in
a cost-effective approach.
Motivations. In this study, an intelligent EMS (I-EMS) is
implemented using deep neural networks (DNN)s algorithm
for daily-ahead prediction, which influences demand resiliency
through tracking the predictive supply and usage of both
energy resources, i.e. the solar photovoltaic (PV) and the main
grid. For this reason, an algorithmic-based cost-effective, in
terms of accuracy and reliability, I-EMS is used to study the
behavior of the local non-critical and critical AC loads, where
solar PV and the main grid are the main energy resources
of the network. The predictive I-EMS has deployed DNN
which balances the SOC of the BESS based on the daily-ahead
weather conditions, thereby the power availability of the BESS
always remains in a safe mode condition to serve the critical
loads with a very fast lead-in time power streaming. As the
developed I-EMS is highly depended on the smart communi-
cation components and sensors employed in the microgrid,
therefore, the microgrid is found vulnerable toward cyber-
physical attacks, i.e. adversarial attacks, where data poisoning
can significantly damage the performance of the microgrid,
its integrity and safety. The main objective of this study is
focused on the hybrid microgrid performance under cyber-
physical security [14] adversarial-related attacks, such as fast
gradient sign, basic iterative, and DeepFool methods, in order
to produce perturbation for training data. The performance of
the adversarial-based Defence is evaluated using widely used
in the bibliography error indexes. Recent studies highlighted
the eminent importance of FDI attacks on the vulnerable
smart microgrids [15], [16], which can castrate the role of
physical units such as power control [17]. To deal with FDI
attacks, most of the proposed detection systems envisage the
spoofed signals at the actual power electronic and control
units such as sensors and PMUs [18] which might exacerbate
disruptions in the microgrids before the attacks are detected.
Against FDI attacks, advanced detection systems reported in
[19] have inspired the authors to develop SIEMS for securing
predictive I-EMS for hybrid microgrids. Due to the potential
for widespread use of DNN in a wide range of applications,
ambiguities have been raised about the trustworthiness of this
technique. One component that influences the trustworthiness
of the system is the use of adversarial samples. In this paper,
we study the effect of adversarial examples in DNN. Thus,
in this study, the proposed detection system uses two layers
of observation against the adversarial attacks, (1) one-day
ahead prediction of the voltage and power in the system
and (2) online observation at the time of operation in the
intelligent electronic devices (IED)s. This way, the first layer
continuously learns from the second layer to improve its pre-
diction accuracy alongside security thresholds validations. The
proposed SIEMS is validated under sophisticated adversarial-
related attacks, such as fast gradient sign, basic iterative,
and DeepFool methods, to produce perturbation for training
data. The SIEMS’s adversarial-based Defence strategy relies
on two AI-based methods known as defensive distillation

and adversarial training strategies. The detection performance
of the proposed SIEMS is evaluated using widely used in
the bibliography error indexes and precision/ recall (or FPR)
matrix.
Contribution of the paper. The main contributions of the
paper are:
• We provide a full scheme of a SIEMS for a secured grid-

tied, PV-based microgrid model of IoT devices. Building
a supply-based prediction system using long short-term
memory (LSTM) on real-time meteorological weather data
acquired by a weather station installed in the location of
a solar PV plant associated with IoT data traffic. In the
first layer (one-day ahead prediction system), the LSTM is
chosen because of its unique memory cells that can carry
information for a longer time. Compared to the traditional
recurrent neural network (RNN) and gated recurrent unit
(GRU) architectures, which has been used in [17], the
LSTM gates can enter, out or delete information and they do
not suffer from vanishing and exploding gradient problems;

• We present the role of BESS and SIEMS for a hybrid
microgrid under instantaneous boost and reduction of AC
loads. The network is limited to 5kW controllable (plug-
and-play) AC/DC loads, and critical load of 10kW. In the
communication network of the studied hybrid microgrid, the
I-DEMS and IEDs are determined as prime targets;

• We define adversarial algorithmic cyber-physical security
attacks using fast gradient sign, basic iterative, and Deep-
Fool methods on the SIEMS. Their data poising lead to
failures of the LSTM’s predictions and therefore, supply and
demand imbalance. The deficiency of adversarial attacks on
the SIEMS are presented;

• We develop two AI-based algorithmic Defence strategies,
such as defensive distillation and adversarial training meth-
ods against the pre-defined random attacks. The perfor-
mance of the proposed Defence algorithms is evaluated
using fitness-based indexes and a precision/ recall (or FPR)
matrix. The adversarial attacks and Defence software asso-
ciated with the paper’s achievements is available upon this
publication;

• We validate the security features of the proposed security
system for the SIEMS, including the efficiency of the De-
fense algorithms designed in this work.

Paper organization. In Section II, we give a survey of
existing CPS energy management unit methods. The intelligent
architecture devised for the CPS energy management hybrid
microgrid is proposed in Section III. In Section IV, we
present the attack mechanisms, and in Section V we present
our Defence algorithms. The security model imposed for the
machine learning (ML) algorithm is analyzed in Section VI.
Finally, in Section VII we conclude the paper and present
future plans.

II. RELATED WORK

The use of grid-connected microgrids is offering advantages
such as backup during utility outages which bring resiliency
and reliability, voltage sags’ reduction, energy-saving via peak
shaving, and sustainability [20]. Modern microgrids benefit
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from new information and communication technologies (ICT)s
for enabling the power system units, such as BEES, to
work with the intelligent infrastructures (e.g., I-DEMS) for
bi-directional power flows and balancing supply and power
demands [21]. Such modern ICT-based networks (i.e., intel-
ligent electronic devices (IED)s, BESSs, phasor measurement
unit (PMU), and smart meters) satisfy the need of sharing
information among all distributed energy resources (DER)s
and loads (or end-users) [22], [23]. However, these DER
units are well identified vulnerable to the cyber-attack in
much related research papers [22], [24]–[26]. In another
study [27], the researchers proposed data manipulation attack
detection and mitigation techniques to increase the resilience
of distributed control of microgrids concerning FDI attacks,
based on Kullback-Liebler (KL) divergence to measure the
discrepancy between the Gaussian distributions of the actual
and expected local frequency/active power and voltage/reactive
power neighborhood tracking errors. They also demonstrated
an attack mitigation algorithm based on KL detectors, utiliz-
ing self-belief and trust values to modify distributed control
protocols. Similarly, in [28], they employed FDI-based attacks
and detection in cyber-physical DC microgrids. The detection
of FDI in power electronics-intensive DC microgrids has been
investigated, which involves spoofing a signal (sensor and/or
communication network) via the attack vector to manipu-
late the microgrid’s operation. To detect FDI-based attacks,
the researchers have investigated various techniques such as
machine- learning-based detectors [29], Kalman filters detec-
tors [30], KL detectors [27], jamming [31], sparse algorithm
detector [32], and generalized likelihood detectors [33]. The
data corruptions made by FDI-related attacks may also result
in denial-of-service (DoS) conditions [34], [35]. The result
of any poisoning (or faulty) changes in the base parameters,
such as voltage, current, frequency, etc., can create problems
in most kinds of prediction algorithms for supply and demand
power streaming and balancing in the microgrids, which
are today working mostly based on ML methods. Among
the AI-based attack defence systems, different methods to
detect and defend the power systems against FDI attacks
have been proposed in the literature [36], [37]. Defending
methods focuses on the techniques, which make the use of
mathematical tools like ML algorithms to detect the attacks
in the system or make it harder for the attacker. However,
there are limitations such as complex formulations, and non-
linearity in the model. Following the recent findings, two new
AI algorithms are selected to detect and defend the SIEMS,(1)
defensive distillation and adversarial training strategies (2).
Both algorithms are promising in detecting adversarial samples
for smart microgrids, where a wide versatility of models
is generated for information misclassifications in the system
in a well-organized and competent way. They are also able
to detect iteratively computed adversarial perturbations by
linearizing the attacked model’s decision boundaries near
the input samples. Interestingly, the misclassified adversarial
samples and their predictions have shown an incorrectly still
highly confident rate in many cases. In this work, we have
reported how our proposed detection system can deal and
perform against such intelligent attackers.

III. I-DEMS: INTELLIGENT DYNAMIC ENERGY
MANAGEMENT STRATEGY

In this section, we explain our proposed method named
Intelligent Dynamic Energy Management Strategy or I-DEMS.

A. The Grid-Tied Microgrid Operational Scenario

The grid-tied microgrid with hybrid energy sources is pre-
sented in Fig. 1, in which 3.2 kWp solar PV generation and a
lead acid battery energy storage system, connected to both
critical and non-critical controllable loads. The PV system
consists of 18 modules Suntech STP175S-24/Ac. Modules
individually wired to reconfigure the photovoltaic field from
the laboratory. Two battery packs from Hewlett-Packard Power
Trust II A1357A, each with 12 units of 12 V, 8 Ah batteries.

~ 
= 

STC 

Breaker 
AC main grid 

= 
= 

= 
= 

= 
= 

AC/DC Electronic
Loads 

BESS 

Converter1 Converter2 

Converter3 

Inverter 

DC bus 

AC bus 

SCADA 

Meteorological
Station 3.2kWp PVs 

I-DEMS 

ILD(t) PG(t) 

SOC(t) G(t) 
RH(t) Tair(t) 

Vwind(t) 

GS(t) 

PPV(t) 

PBESS(t) 

Critical Load 

PCLD(t) PNCLD(t) PCLS(t) PNCLS(t) 

Fig. 1: SIEMS: A secure I-EMS-based architecture of the grid-tied
microgrid connected to hybrid resources.

In Fig. 1 presents the I-DEMS-based architecture of the
grid-tied microgrid connected to hybrid resources.

supervisory control and data acquisition (SCADA) unit
detects faults, their diagnosis and absorption of them through
structural redundancies. The server is a Data Logger Meteo-
40 of Ammonit, ADC of 12 bit and 22 channels, with con-
figuration to WEB interface and HTTPS connection, ethernet
output through RS485, data encryption, and compatibility with
SCADA system. The I-DEMS block communicates by receiv-
ing and sending states (shown in green) and dispatch (in pur-
ple) parameters from three sources, DC bus, AC bus, and the
meteorological station, in which the green parameters such as
output PV power PPV (t), PBESS(t), and SOC(t) of the BESS
(from the DC bus); critical load power demand PCLD(t),
non-critical load power demand PNCLD(t), critical load
total supplied power PCLS(t), non-critical total supplied
power PNCLS(t), inverter demand current to load ILD(t),
the main grid power PG(t), and grid statues GS(t) are stated
by the AC bus; solar irradiance G(t), wind speed V wind(t),
relative humidity RH(t), and air temperature Tair(t) are the
data provided by meteorological station to the I-DEMS. All
these twelve parameters are inputs of the DNN implemented
in I-DEMS block. The logic operational scenario behind the
I-DEMS is summarized as follows:
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1) The BESS always dispatches power to the loads, where
the SOC(t) remains higher than half of the battery
capacity. The PV power as primary source charges the
BESS, and the main grid as secondary source ensures
the SOC rate to be higher than the defined minimum rate
over time. The equations (1) and (2) present how the
power delivery process is done whether the BESS power
PBESS(t) is higher than PL(t) or not.

PBESS(t) = PPV (t)− PL(t), SOC(t) ≥ SOCmin (1)

PBESS(t) = PPV (t) + PG(t)− PL(t), SOC(t) ≤ SOCmin
(2)

where the total power demand PL(t) ← PCLD(t) +
PNCLD(t).

2) Always the critical and non-critical total power supplies
must satisfy the power demands over time, equations (3)
and (4):

PCLS(t) = PCLD(t), (3)

PNCLS(t) = PNCLD(t), (4)

Otherwise the GS(t) becomes on.
3) If the SOCi(t) ≥ SOCmin(t), the breaker turns GS(t)

to off which disconnects use of PG(t), while PPV (t) is
powering the BESS until the maximum thresholds rate of
SOCmax(t) has been satisfied.

4) If the SOCi(t) ≤ SOCmin(t), and the following equa-
tions. 1 and 2 breach. Then, the GS(t) is on, and thus,
PG(t) directly powers the loads by meaning that power
dispatch rate of main grid.

5) The environmental parameters G(t), Vwind(t), RH(t),
and Tair(t) are measured and stored in cloud at all time.
Using predictive modelling updates SOC(t) for the one-
hour-ahead estimation of SOC(t) and its related PPV (t).

6) Maximizing controllable load dispatch offers demand
response capability by means of faster lead-in power
streaming. In addition, the power dispatched to discharge
the BESS should not exceed the total load demand
(including critical and non-critical loads).

7) Harvesting maximum power available from the PV sys-
tem and minimizing the use of main grid.

A dynamic programming derives the I-DEMS to minimize
the cost function J(t), its network and weight computation is
presented in Fig. 1. As presented, there are fourteen inputs,
ten green states and four purple as dispatch parameters. After
a multiple three hidden layers, these dispatch parameters
are updated to equilibrate other controllable parameters. For
updating the weights, a standard back-propagation DDNN
computes the Hamilton–Jacobi–Bellman equation of optimal
control, as follow:

J(S) =
∞∑
t=0

(
w1(t)× f

(
PCLS(t)

)
+ w2(t)× f

(
PNCLS(t)

))
+

∞∑
t=0

(
w3(t)× f

(
SOC(t)

)
+ w4(t)× f

(
PG(t)

))
+

∞∑
t=0

(
w5(t)× f

(
PBESS(t)

)
+ w6(t)× f

(
NBESS(t)

))
+

σ · J(t)− J(t− 1)

(5)

where NBESS(t) is the total charge and discharge continu-
ous number of states in the BESS. The multiple-layer DNN
has two sets of controllable parameters, the nonlinear and
linear parameters in the basis of equation. (5) and its weights,
where the supervised learning offers a continues optimization
solver to balance all the dispatch parameters for the J(t)
minimization.

B. Intelligent Agent Architecture
In this paper, we present the following architecture for

intelligent data classification, in which a classifier is used to
classify the collected data.

There are three general parts to this proposed architecture.
After collecting the data and performing prepossessing opera-
tions, an LSTM-based classification algorithm is used to pre-
dict the values in this work. Compared to the traditional RNN
and gated GRU architectures, which has been used in [17],
the LSTM gates can enter, out or delete information and they
do not suffer from vanishing and exploding gradient problems.
GRUs bags have two gates (reset, update) while LSTMs have
three (input, output, forget). GRU has less training parameters
than LSTM and thus is preferred in small datasets. However,
microgrids work with big datasets where LSTM is usually
performing better. Also, LSTMs are better than GRUs in
modelling and remembering long duration patterns, but GRUs
are trained faster. RNNs are trained faster than GRUs and
LSTM but cannot model long-term dependencies. This part of
the architecture, marked in black and numbered 1 in Fig. 2,
belongs to the time when the goal was to predict values for
unseen samples.

Data Preprocessing

DatasetAdversary

LSTM Dense.   .   . Training Data
Test Data

Generating 

Adversarial 

Samples

2

Defender

Modifying 

Adversarial 

Samples
.
.
.

1

3

Classifier

Model

1 : No Attack

2 : Adversarial Attack

3 : Defense

Fig. 2: The proposed LSTM-based architecture

The second part of the architecture is when the adversary
tries to add perturbation to the training data by accessing
the training data and therefore reducing the accuracy of the
prediction algorithms. In this architecture, the production of
adversarial examples is shown in red and numbered with 2.
It is clear to expect that the accuracy of prediction operations
will be reduced by using adversarial attacks.

The third part of the architecture, highlighted in green and
numbered with the number 3, shows a Defence algorithm
against adversarial attacks. In this part of the architecture,
methods are proposed to modify the data attacked by adversar-
ial methods. These methods try to replace perturbed samples
with more appropriate values.
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TABLE I: Settings and hyperparameters for both classifiers
Symbol Value/Description
Learning Rate 0.005
Activation Function(non˙last layers) Relu
Activation Function(last layer) Softmax
Dropout Rate 0.2
Loss Function Mean Square Error

1) LSTM3-Dense Classifier : In the first classifier, three
LSTM structures are placed in sequential, with dropout layers
used between them. The input to the first LSTM layer is from
the data set, and the output of the last LSTM is given to a
Dense layer responsible for predicting values.
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Fig. 3: LSTM3-Dense classifier architecture used to generate model

2) LSTM-Dense3 Classifier : In the second classifier,
one LSTM layer and three sequential Dense layers are
used. Similar to the first classifier, dropout layers are placed
between the layers. The input from the data set is used as
input to the LSTM layer, and the LSTM output enters the
next Dense layers.

LSTM
Dense

D
ro

p
o

u
t

Dense Dense

D
ro

p
o
u

t

D
ro

p
o

u
t

P_PV

PL_NCLS

PL_CLS

L_CLS

P_BESS

P_G

f11 f12 f13 … f1k

f21 f22 f23 … f2k

f31 f32 f33 … f3k

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

fn1 fn2 fn3 … fnk

Features

S
a
m

p
le

s

Classifier 2

Fig. 4: LSTM-Dense3 classifier architecture used to generate model

Table I demonstrates some of the settings and hyperparame-
ters used for both classifiers.The pseudocode of both classifiers
are shown Alg. 1.

IV. ATTACK ALGORITHMS

This section introduces three algorithms for generating
adversarial samples, which are used in this work to add
perturbation to training data before developing an ML model.
In the attack methods, perturbations are generated based on
changes in the data. In the detection system, both defense
algorithms utilized adversarial training, the model is trained
based on the changed data.

Algorithm 1 Classifiers: LSTM3-Dense , LSTM-Dense3
Input: Input shape Classifier ID
Output: Model

1: if (Classifier ID==1) then
2: Model=Sequential(LSTM((Input shape) + Dropout) + (LSTM +

Dropout) + (LSTM + Dropout) +Dense)
3: end if
4: if (Classifier ID==2) then
5: Model=Sequential(LSTM((Input shape) + Dropout) + (Dense +

Dropout) + (Dense + Dropout) +Dense)
6: end if
7: return Model

A. Attack 1:Fast Gradient Sign Method

The Fast Gradient Sign Method (FGSM) is a straightfor-
ward, effective method for generating adversarial samples.
Goodfellow et al. [38] proposed FGSM, which works as
follows:

In this method, a trained classifier is utilized to generate a
prediction on each input sample. The prediction loss is then
computed using the true class label. The gradients of the loss
concerning the input sample are calculated next. Finally, the
gradient’s sign is derived, and the signed gradient is used to
generate the output adversarial sample. Using the gradients of
the neural network, the fast gradient sign method creates an
adversarial example. Based on the gradients of the loss for
the input sample for an input sample, the approach generates
a new sample that maximizes the loss. This new sample has
been given the term adversarial sample. The FGSM idea can
be represented by equation (6):

advx = x+ ε ∗ sign(∇xJ(θ, x, y)) (6)

In equation (6), x is the original input sample correctly clas-
sified , y is the ground truth label for x, θ represents the model
parameters, and J(θ, x, y) is the loss that is used to train the
network. The attack backpropagates the gradient back to the
input data to calculate ∇xJ(θ, x, y). Then, it adjusts the input
data by a small step in the direction (i.e. sign

(
∇xJ(θ, x, y)

)
) that will maximize the loss. The resulting perturbed sample,
advx, is then misclassified by the target network as a different
sample when it is still clearly same as first sample.

The fact that the gradients are taken with the input sample
is an intriguing feature. The goal is to create a sample that
minimizes loss. It is also one method for determining how
each feature in the sample contributes to the loss value,
thus adding a perturbation. This works very fast because it
is simple to apply the chain rule and obtain the gradients
required to determine how each input feature contributes
to the loss. As a result, the gradients about the sample are
computed. Furthermore, because the model is no longer
trained, the model parameters remain consistent (and the
gradient is no longer calculated compared to the trainable
variables, i.e., the model parameters). The only goal is to
deceive an already trained model.

Time Complexity of FGSM: To compute the time com-
plexity of this method, we must note that equation (6) is
repeated for all samples. If we consider the number of samples
as n, the time complexity of this method will be O(n). In
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equation (6), there is a derivative part that must be considered.
Therefore, we can say that the time complexity related to
FGSM is: O(n)×O(Derivation part)

B. Attack 2: Basic Iterative Method(BIM)

We use a simple method to extend the ”fast” approach.
We repeat the process with small step sizes several times,
clipping feature values of intermediate results after each step
to ensure that they are within a reasonable distance of the
original sample. [39]:

The BIM from adversarial examples in the Physical World is
a simple extension of the FGSM, where instead of taking one
large step, it takes an iterative approach by applying FGSM
multiple times to a sample with step size α, the change in
sample value per iteration. The resulting adversary can then
be clipped to limit the maximum perturbance for each sample.

All iterative methods like the BIM are slower, but generally
produce more successful and subtle perturbation to samples.
First, a clean sample X is used for initialization in iteration
n = 0. Then, using this sample a step similar from the FGSM
is performed as equations (7) and (8):

xadv0 = x (7)

xadvN+1 = Clipsx,ε (x
adv
N + αsign(∇xJ(xadvN , ytrue))) (8)

The adversarial example is then clipped to ensure that all
sample values are within the bounds of epsilon and the
maximum and minimum sample intensities.

Repeat these steps for N iterations to get the final adversary.
α is chosen to be one sample intensity value and the number
of iterations is calculated to ensure enough steps to allow a
sample to reach the maximum adversarial perturbance, ε.
Time Complexity of BIM:Similar to the FGSM method the
time complexity of the BIM method, equation (7) is repeated
for all samples. If we consider n samples, the time complexity
of this method will be O(n). Also, in equation (8), there is a
derivative section and a Clips section that must be considered.
So we can say that time complexity related to FGSM isO(n)×
O(Derivation part)×O(Clips).

C. Attack 3: DeepFool

The main contributions of the DeepFool [40] method are
listed below. First, a simple and accurate method is presented
to calculate the strength of different classifiers for adverse per-
turbations. Then DeepFool calculates an adversarial disruption
more effectively. Adversary training ultimately improves the
robustness of the system. Suppose the input is X , each class is
divided into a hyperplane. X is divided into a class based on
its location in space. This algorithm locates and projects the
next hyperplane and drives it a bit further, misclassifying it as
little disturbance as possible.The formulation is illustrated in
this closed-form equation (9):

r∗ (x0) := argmin‖r‖2
subject to sign

(
f (x0 + r)

)
6= sign

(
f (x0)

)
= −f (x0)

‖w‖22
w

(9)

Assuming now that f is a general differentiable classifier,
we adopt an iterative procedure to estimate the robustness
∆ (x0; f). Specifically, at each iteration, f is linearized around
the current point xi and the minimal perturbation of the
linearized classifier is computed as equation (10):

argmin
ri

‖ri‖2 subject to f (xi) +∇f (xi)T ri = 0 (10)

The perturbation ri at iteration i of the algorithm is computed
using this closed-form solution, and the next iterate xi+1 is
updated.
Time Complexity of DeepFool: Regarding the time complex-
ity of this method, we must consider equation (10), where
the derivation and minimization are calculated. Given that
the number of times to check the condition in minimization
is equal to the number of samples,n, so time complexity is
O(n)×O(Derivation part).

V. DEFENSE ALGORITHMS

This section proposes our two proposed defense algorithms,
as a part of the proposed detection system, to mitigate attacks
provided in the previous section.

A. Defence 1: Adversarial Training

Adversarial training [38] is a simple Defence against ad-
versarial samples that attempts to improve the robustness of
a neural network by training it with adversarial samples.
The concept of adversarial training was initially introduced,
in which neural networks are trained on a combination of
adversarial and clean samples. Following that, other papers
advocated using FGSM to generate adversarial samples during
training. Their trained models, however, are still sensitive
to repeated assaults since they used a linear function to
approximate the loss function, which resulted in high curvature
around data points on the decision surface of the associated
deep models. The formulation is illustrated as equation (11):

min
θ

E(x,y)∼D

[
max

δ∈B(x,ε)
Lce(θ, x+ δ, y)

]
(11)

(x, y) ∼ D represents training data sampled from distribu-
tion D and B(x, ε) is the allowed perturbation set, expressed
as B(x, ε) :=

{
x+ δ ∈ Rm | ‖δ‖p≤ ε

}
.

Time Complexity of Adversarial Training: In this defense
algorithm, in each step an operational set is made to select the
best samples to train the model, and because n samples are
examined, the time complexity is O(n).

B. Defence 2: Defensive Distillation

Defensive distillation [41] is an adversarial training ap-
proach that increases the flexibility of an algorithm’s catego-
rization process, making it less subject to abuse. To emphasize
accuracy, one model is trained to predict the output probabili-
ties of another model that was previously trained on a baseline
standard during distillation training. It is trained in three steps:
1. Train a network (the teacher) using standard techniques. In
this network, the output is given by equation (12):

F (θ, x) = softmax(Z(θ, x)/T ) (12)
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Algorithm 2 Scenarios 1-3: Prediction, Adversarial Attacks, Ad-
versarial defenses.
Input: x, ClassifierID
Output: accuracy

Scenario 1: Prediction of parameters
Model ← Algorithm 1(x , ClassifierID)

1:
Accuracynoattack ← Use Model to Predict results before attack
Scenario 2(Attacker side): Select one of
adversarial attacks
FGSM Attack: apply equation (3)
BIM Attack: apply equations (4) and (5)
DeepFool Attack: apply equation (6)
Model ← Algorithm 1(Perturbed x , ClassifierID)

2:
Accuracywithattack ← Use Model to Predict results after attack
Scenario 3(Defender side): Select adversarial
Defence
Adversarial Training Defence: apply equation (7)
Defensive Distillation Defence: apply equation (8) and related Steps
Model ← Algorithm 1(Corrected x , ClassifierID)

3:
Accuracyafterdefense ← Use Model to Predict results after Defence

4:
5: return Accuracynoattack, Accuracywithattack, Accuracyafterdefense

for some temperature T . As T → ∞ the distribution ap-
proaches uniform; as T → 0+the distribution approaches the
hard maximum; standard softmax uses T = 1
2. Evaluate the teacher network on each instance of the training
set to produce soft labels. These soft labels contain additional
information. 3. Train a second network (the distilled network)
on the soft labels again using temperature T . By training on
the soft labels, the model should overfit the data less and try
to be more regular.

Finally, to classify an input, run the distilled network using
temperature T = 1. By training at temperature T the logits (the
inputs to the softmax) become on average T times larger in
absolute value to minimize the crossentropy loss. This causes
the network to become significantly more confident in its
predictions.
Time Complexity of Defensive Distillation: In this defense
algorithm, similar to the adversarial training method, in each
step an operational set is made to select the best samples to
train the model, and because n samples are examined, the time
complexity is also O(n). However, because each part involves
several different operations, which are described by numbering
above, the execution time is somewhat longer than standard
adversarial training. The pseudocode of the proposed methods
are shown in Fig. 2.

VI. PERFORMANCE EVALUATION

This section is devoted to comparing the proposed algorithm
in various datasets. In this way, we shape the communication
SG model that is presented in Fig. 5. Fig. 5 illustrates a
simplified smart hybrid microgrid cyber-physical layout with
both wired, in red, and wireless connectivity (shown in dashed
blue). The studied hybrid microgrid has different domains and
subdomains, where multiple smart components are employed,
such as IEDs and smart power measurement units (PMU)s.
These components transfer data via wireless communications,
which is demonstrated by dashed blue, as presented Fig. 5.

The data exchanges between themselves and all will be stored
in the data acquisition unit of the PC for prediction and
decision-making purposes. Both intelligent IED and PMU
components are, the highlighted parts, vulnerable in cyber-
physical security systems. These areas are targetable for cyber-
physical attackers; this work has mainly focused on targets 1
and 2, in which target one manipulates the weather-related data
and/ or the PC’s data. While target 2 can be sub versioned
by adding/ or removing the number of local loads and/ or
the data exchange through feeders (or IEDs). The Python
implementation of SIEMS is available in [42].

A. Simulation Setup

Our experiments have been performed on a Win10 64-bit OS
server with Python 3.6.4, an eight-core Intel Core i7 4 GHz,
RAM 16 GB. We use Tensorflow 2 and Keras 2 to adopt our
method.
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Fig. 5: Communications architecture of the studied grid-tied micro-
grid with wire (in red) and wireless (dashed blue) connections.

B. Results

In this part we explain the results. Fig. 6 illustrates the
accuracy of training models 1 and 2 on six-months and one-
year data. This figure shows the better success of model 1
because the data volume is higher in six-months and one-year
intervals, and it is expected that the model will be trained
with higher accuracy, which according to the figure shows
that model 1 has higher accuracy in the training phase.

The next part of the results is related to creating a model
based on two classifiers designed to predict the parameters.
In these figures, the training steps related to creating models
from classifiers are shown. Fig. 7 shows the accuracy of
the training step for generating model 1 from classifier 1 in
different months of the year for 200 epochs. As can be seen,
the accuracy of making model 1 is almost 96% in all months
of the year after reaching a steady-state, which indicates that
classifier 1 has high quality. The same results are shown in
Fig. 8 for training Model 2 from Classifier 2, which shows
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(a) Model 1 (b) Model 2

Fig. 6: Accuracy for both models in training (No attack-Compare
for 6 months).

that the accuracy of the Model from this method is lower, and
in April, February and March, it could not reach an accuracy
of more than 95%.

In the proposed model, the settings presented in Figs. 3
and 4 are used. In Fig. 3, we set three LSTM layers and one
dense layer, and in Fig. 4, we consider one LSTM layer with
three dense layers. In Table II, we present the accuracy of the
model for some of the other settings. This table indicates that
LSTM-Dense3 and LSTM3-Dense are reasonable options.

TABLE II: Accuracy results in different settings
Period LSTM3-Dense LSTM2-Dense LSTM-Dense LSTM-Dense2 LSTM-Dense3
January 99.14 97.98 95.39 96.93 96.68

February 96.98 93.28 87.12 75.92 76.80
March 98.20 92.17 80.57 85.11 84.53
April 96.39 85.54 80.11 79.45 79.25
May 99.47 94.29 96.41 98.11 97.22
June 99.62 96.54 94.18 95.67 96.48M

on
th

s

July 96.29 93.49 93.87 95.12 96.29
August 99.25 98.61 96.57 96.34 97.03

September 99.25 96.29 97.01 98.32 99.08
October 98.40 97.92 98.14 97.84 97.58

November 98.76 99.21 99.02 97.98 98.06
December 99.33 97.71 94.63 96.39 96.10

(a) Jan-Mar (b) Apr-Jun

(c) July-Sep (d) Oct-Dec

Fig. 7: Accuracy for model 1 in training for one year.
As can be seen in Figs. 7 and 8, in some months of the

year, the accuracy of modeling based on the data used is sig-
nificantly different from other months and has decreased. This
can be for various reasons and is somewhat common because
the user data are collected from real-world environments, and
noise and climate change are possible, which can affect data.

1) Results related to 6 months and year: Fig. 9 presents
the accuracy of the first proposed model before and after

(a) Jan-Mar (b) Apr-Jun

(c) July-Sep (d) Oct-Dec

Fig. 8: Accuracy for model 2 in training for one year.

the use of three types of attack and two types of Defence
used at six-month intervals. It is clear that in each of the six-
month intervals before the attack, the ML model predicted the
values with high accuracy, while after the attack, the accuracy
was severely reduced. In the first six months, BIM was more
successful, reducing accuracy by about 40%. In this scenario,
it can be seen that BIM has been more successful in the first
six months than the second six months and the whole year
and has drastically reduced the accuracy. Among the Defence
methods used, it can be seen that Defence number 1 has been
able to have more robustness against all three types of attacks.
After applying this Defence method against all three attacks,
the prediction accuracy in model number 1 has increased. With
this explanation, it can be said that in model number 1, from
the attacker’s point of view BIM, and the Defence system’s
point of view, defensive distillation had the best performance.

Similarly, Fig. 10 compares the accuracy of the second
proposed model before and after the use of three types of
attack and two types of Defence used at six-month intervals.
As can be seen, in each of the six-month intervals before the
attack, the ML model was able to predict the values with high
accuracy, while after the attack, the accuracy was severely
reduced. In the first six months, BIM was more successful,
reducing accuracy by about 40%. In this scenario, it can
be seen that BIM has been more successful in the first six
months than the second six months and the whole year and has
drastically reduced the accuracy. Among the Defence methods
used, it can be seen that Defence number 1 has been able to
have more robustness against all three types of attacks. After
applying this Defence method against all three attacks, the
prediction accuracy in model number 1 has increased. With
this explanation, it can be said that in model number 1, from
the attacker’s point of view, BIM, and the Defence system’s
point of view, defensive distillation had the best performance.

Table III shows the results of using the Defensive Distil-
lation method against all attacks1, BIM, and DeepFool. In
scenario 0 in this table, the prediction results of the five-
goal variables are shown by Model 1 without an attacker’s
presence. As can be seen, Model 1 has been very successful,
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(a) FGSM Attack (b) BIM Attack (c) DeepFool Attack

Fig. 9: Accuracy results for model 1 for the scale of 6 months (comparing no attack state, applying attacks and defenses against each attack)

(a) FGSM Attack (b) BIM Attack (c) DeepFool Attack

Fig. 10: Accuracy results for model 2 for the scale of 6 months(comparing no attack state, applying attacks and defenses against each
attack)

with a prediction accuracy of over 99% for most months of the
year and a minimum accuracy of 96.29 in July. In scenario 1,
the results of using FGSM and Defensive Distillation against
this attack are shown. It can be seen that after FGSM, the
accuracy of prediction has decreased drastically, reaching less
than 38% accuracy in all months of the year. If we want to
look at it from the attacker’s point of view, the most successful
attack has been made on the February data, in which the
forecast accuracy is only 24.87%, and in fact, the accuracy has
decreased by 72.11%. Table IV shows the accuracy results for
using the proposed methods based on model 1. In this table,
scenario 0 indicates the state in which an attack has not yet
taken place. In this case, the prediction accuracy of the five
values P PV and PL NCLS, PL CLS, P BESS, and P G are
shown. It can be seen that model 1 has been able to predict
these five values with great accuracy for different months of
the year. The other three scenarios are the combination of
Defensive Distillation against FGSM, BIM, and DeepFool. As
can be seen, after using each of the attacks, the accuracy of the
prediction method is greatly reduced. Of course, the decrease
in accuracy varies for different months of the year. Each of the
three scenarios 1 to 3 is used against the defensive distillation
method. By using the Defence method, the accuracy of the
prediction process increases to an acceptable level.

Similarly, in Scenario 2, the results of BIM and Defensive
Distillation against this attack are shown on Tables VIand
V. It can be seen that after BIM, the accuracy of prediction
has decreased drastically, reaching less than 40% accuracy in
all months of the year. From the attacker’s point of view, the
most successful attack has been made on the March data, in
which the forecast accuracy is only 29.53%, and in fact, the
accuracy has been reduced by 68.67%.

One of the important metrics in comparing adversarial
methods is FPR, which increases its value due to adversarial

TABLE III: Accuracy results for model 1, scenarios 1-3 (Using
Defensive Distillation as defence method against all attacks)

Scenario 0 Scenario 1 Scenario 2 Scenario 3
Period No Attack FGSM DD BIM DD DeepFool DD
January 99.14 32.62 80.65 31.89 81.52 32.26 82.13
February 96.98 24.87 67.6 29.23 77.36 25.39 78.98
March 98.20 29.71 75.88 29.53 79.43 31.24 80.35
April 96.39 28.05 74.11 29.45 71.59 27.96 75.54
May 99.47 34.92 85.5 32.76 83.48 35.49 83.74
June 99.62 36.45 88.81 35.18 88.95 36.14 89.06M

od
el

1

July 96.29 33.94 86.13 32.78 81.58 35.11 81.63
August 99.25 32.23 79.75 39.17 80.07 34.39 80.79

September 99.25 33.83 80.9 34.71 79.37 32.97 79.69
October 98.40 37.29 81.03 37.61 82.7 34.59 82.66

November 98.76 29.91 82.75 32.58 83.24 31.53 83.64
December 99.33 30.47 81.56 31.91 83.48 30.29 83.01

TABLE IV: Accuracy results for model 1, scenarios 4-6 (using
Adversarial Training as defense method against all attacks)

Scenario 0 Scenario 4 Scenario 5 Scenario 6
Period No Attack FGSM AT BIM AT DeepFool AT
January 99.14 32.62 83.11 31.89 81.25 32.26 81.96
February 96.98 24.87 71.9 29.23 78.93 25.39 75.69
March 98.20 29.71 75.31 29.53 78.68 31.24 81.32
April 96.39 28.05 7371 29.45 78.82 27.96 76.26
May 99.47 34.92 80.39 32.76 84.21 35.49 83.42
June 99.62 36.45 89.45 35.18 87.59 36.14 88.61M

od
el

1

July 96.29 33.94 87.32 32.78 86.39 35.11 83.35
August 99.25 32.23 80.32 39.17 81.19 84.39 79.86

September 99.25 33.83 81.87 34.71 82.24 32.97 81.58
October 98.40 37.29 80.96 37.61 81.39 34.59 80.91

November 98.76 29.91 81.93 32.58 82.11 31.53 83.43
December 99.33 30.47 81.09 31.91 83.26 30.29 82.74

attacks and decreases after using defence methods [43]. In
Table VII, the FPR values for the proposed attack and defence
methods are presented, which confirms the results of the
comparison based on accuracy. The results shown in Table VII
for each scenario are based on when the attack took place,
and this table does not report the results after applying the
defense to keep the paper short. Given the above results and
according to the findings of this study, adversarial attacks
increase adversarial samples in the system, and as discussed
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TABLE V: Accuracy results for model 2, scenarios 1-3 (using
Defensive Distillation as defense method against all attacks)

Scenario 0 Scenario 1 Scenario 2 Scenario 3
Period No Attack FGSM DD BIM DD DeepFool DD
January 96.68 32.47 82.8 35.11 81.03 34.16 81.07
February 76.80 23.85 61.45 20.39 60.56 23.4 61.31
March 84.53 29.45 68.92 26.74 64.95 21.94 65.08
April 79.25 16.37 44.03 22.91 56.16 23.79 68.88
May 97.22 39.34 84.3 37.29 85.95 40.02 81.11
June 96.48 36.35 86.02 33.06 81.26 34.11 81.31M

od
el

2

July 96.29 35.53 85.36 31.71 80.09 29.92 80.01
August 97.03 31.49 75.99 24.16 80.49 26.12 80.48

September 99.08 35.61 87.77 31.49 82.34 32.16 82.35
October 97.58 36.4 86.17 30.91 82.18 29.98 82.24

November 98.06 32.55 87.53 33.12 82.43 32.01 82.54
December 96.10 34.53 85.38 32.21 80.93 32.43 80.73

TABLE VI: Accuracy results for model 2, scenarios 4-6 (using
Adversarial Training as defense method against all attacks)

Scenario 0 Scenario 4 Scenario 5 Scenario 6
Period No Attack FGSM AT BIM AT DeepFool AT
January 96.68 32.47 81.76 35.11 81.39 34.16 80.79
February 76.80 23.85 63.01 20.39 62.21 23.4 63.24
March 89.53 29.45 67.94 26.74 65.92 21.94 66.37
April 79.25 16.37 43.29 22.91 54.36 23.79 70.06
May 97.22 39.34 82.16 37.29 84.29 40.02 83.24
June 96.48 36.35 85.11 33.06 79.98 34.11 82.91M

od
el

2

July 96.29 35.53 84.92 31.71 80.74 29.92 82.54
August 97.03 31.49 77.35 24.16 81.35 26.12 81.19

September 99.08 35.61 85.64 31.49 79.68 32.16 82.64
October 97.58 36.4 86.23 30.91 80.93 29.98 82.41

November 98.06 32.55 86.71 33.12 81.31 32.01 83.49
December 96.10 34.53 84.93 32.21 82.57 32.43 81.02

TABLE VII: FPR, Precision and Recall values for different attacks;
F:= FPR; P:= Precision; R:= Recall

No Attack FGSM BIM DeepFool
Month F P R F P R F P R F P R
January 0.49 94.67 95.95 64.20 3.57 14.17 65.13 3.32 13.71 65.00 3.7 15.32
February 2.44 75.00 89.55 70.64 2.54 7.26 66.98 2.35 8.63 69.92 1.76 5.42

March 1.35 86.25 93.24 68.17 6.73 20.69 66.71 2.35 8.82 66.76 7.98 23.20
April 2.56 72.00 83.08 68.85 4.91 14.94 65.73 0.60 2.24 68.34 2.51 8.97
May 0.25 97.26 95.25 61.99 4.29 16.54 64.55 4.31 17.19 62.68 6.35 24.81
June 0.25 97.22 98.59 60.71 4.74 19.01 61.80 3.46 14.78 61.10 3.25 15.53
July 2.69 72.15 85.07 63.78 6.35 22.38 65.14 6.04 21.68 63.21 6.30 25.4M

od
el

1

August 0.37 95.65 94.29 64.72 3.75 14.62 57.88 4.27 18.18 65.59 8.82 34.06
September 0.49 94.20 95.59 63.73 6.18 21.53 63.33 6.96 24.31 63.78 4.65 16.08

October 0.62 93.15 88.31 60.10 5.18 20.83 60.38 6.28 25.00 63.47 7.39 25.00
November 0.62 93.33 92.11 67.08 5.96 17.51 63.92 4.25 14.69 66.57 8.37 24.18
December 0.25 97.22 94.59 66.71 6.35 18.75 66.03 7.84 23.30 67.30 6.21 19.41

January 2.34 77.11 86.49 65.79 5.32 22.05 62.93 4.49 21.50 62.76 3.83 15.32
February 22.87 15.86 72.00 71.89 2.49 7.14 75.79 2.23 6.32 72.51 2.68 7.69

March 15.46 32.26 84.51 69.47 6.22 23.97 60.67 6.61 23.02 73.09 2.31 5.69
April 20.60 19.34 77.36 79.51 1.08 2.82 72.96 2.67 7.57 72.41 2.45 7.65
May 2.34 78.89 92.21 60.00 12.45 36.53 59.17 5.09 17.83 59.34 8.89 36.07
June 2.68 72.15 86.36 62.98 8.33 32.82 62.97 3.09 11.19 62.92 2.82 13.21
July 3.41 68.54 92.42 61.19 5.85 19.18 65.58 5.30 18.24 66.71 5.40 15.88M

od
el

2

August 2.85 76.53 96.15 65.32 3.95 14.29 71.92 3.87 10.26 73.92 6.34 26.62
September 0.62 93.75 96.15 61.03 5.45 18.06 64.88 7.45 18.56 64.17 4.46 14.38

October 0.99 89.19 83.54 60.76 4.54 18.33 67.57 5.32 22.40 68.17 7.10 21.89
November 1.24 88.24 91.46 64.17 7.41 20.00 63.49 4.25 15.22 65.53 7.35 21.71
December 2.60 75.00 81.82 61.45 6.67 18.08 65.80 7.82 23.84 65.13 4.33 17.69

in [44] and [45], destroy trustworthiness in the system. It
is anticipated that the application of the provided defensive
mechanisms would boost trustworthiness.

VII. CONCLUSION AND FUTURE DIRECTIONS

This paper designed a hybrid, grid-tied microgrid to in-
troduce the role of active ICT-based components, such as
IEM, PMU, PC, for information communication purposes. In
this autonomous microgrid, the developed SIEMS receives the
weather information and uses LSTM for one-day-ahead pre-
dictions. The problem with such SIEMS is its data streaming

resources and nodes, which cyber-physical security threats like
adversarial attacks can poison. We study the impact of several
adversarial-based attacks, which have raised the vulnerability
of the whole system’s performance and safety. The paper also
tests the targeted SIEMS under FGSM, BIM, and DeepFool
attacks, where the microgrid’s integrity was downgraded by
these methods to about 30% in best cases from attacker
view. The development of Defence algorithms, is the main
contribution of this work, is successfully done using defensive
distillation and Adversarial training algorithms. Considering
all scenarios used in this paper, it shows that in almost all
cases, the prediction accuracy of the proposed models is
above 95% and often above 98%. Although after applying the
proposed attacks on training data, the prediction accuracy of
these models are reduced to about 30% to 40%, but Defence
methods play a significant role in the robustness of the system
and by applying them to the case data that attacks are taking
place, the prediction accuracy of the models increases to over
80%. In fact, it can be said that by using the proposed models
and Defence methods, the accuracy of prediction does not
decrease to less than 80% even in the presence of an attacker.
In future, we plan to extend the SIEMS and generate a real-
time cyber-physical security software model by increasing the
development of distributed systems. In this way, we will apply
distributed ML methods such as federated learning to make a
robust and reliable prediction model. We also plan to consider
using generative methods such as GAN and Autoencoder to
generate adversarial samples and the same methods to defend
against attacks.
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