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Abstract—Neural networks have been widely and deeply studied
in the field of computational neurodynamics. However, coupled
neural networks and their brain-like chaotic dynamics have not been
noticed yet. This paper focuses on the coupled neural network-based
brain-like initial boosting coexisting hyperchaos and its application
in biomedical image encryption. We first construct a memristive
coupled neural network (MCNN) model based on two sub-neural
networks and one multistable memristor synapse. Then we in-
vestigate its coupling strength-related dynamical behaviors, initial
states-related dynamical behaviors, and initial-boosted coexisting
hyperchaos using bifurcation diagrams, phase portraits, Lyapunov
exponents and attraction basins. The numerical results demonstrate
that the proposed MCNN can not only generate hyperchaotic
attractors with high complexity but also boost the attractor positions
by switching their initial states. This makes the MCNN more
suitable for many chaos-based engineering applications. Moreover,
we design a biomedical image encryption scheme to explore the
application of the MCNN. Performance evaluations show that the
designed cryptosystem has several advantages in the keyspace,
information entropy, and key sensitivity. Finally, we develop a
field-programmable gate array (FPGA) test platform to verify the
practicability of the presented MCNN and the designed medical
image cryptosystem.

Index Terms—Hopfield neural network, Hyperchaos, medical
image encryption, memristor, FPGA implementation

I. INTRODUCTION

IN 1984, a powerful artificial neural network model, known as
the Hopfield neural network (HNN) [1], was first presented.

Due to the intrinsic attributes of the HNN, including flexible
topology, strong nonlinearity, rich chaotic dynamics, and easy
circuit realization, the HNN is regarded as a typical paradigm
of theoretical and experimental research on brain nervous net-
works. As we all know, the brain nervous network which is
a complex nonlinear dynamical system has abundant chaotic
behaviors [2]. Numerous physiological and physical experiments
show that the chaotic behavior in the brain is highly related to
thinking, memory, and learning which play a crucial role in the
artificial intelligence field [3]. Indeed, brain-like chaos research
is conducive to better understand the neural functions of the
human brain and is also potentially useful for developing new
neuromorphic systems [4]. In view of this, the brain-like chaos
has become a research focus in academia and industrial fields
since the birth of the famous Hopfield neural network.

After nearly half a century of in-depth study, many important
achievements on the brain-like chaos have been made constantly.
For example, normal chaos, transient chaos, and hyperchaos
have been detected in some simple Hopfield neural networks
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with several neurons [5]. In particular, the study of coexisting
attractors in Hopfield neural networks has been of recent interest.
Coexisting attractors are a phenomenon that there are two or
more different chaotic attractors in the same dynamical system
under different initial states [6], [7]. Such special dynamics exists
in many biological neural systems, which reflects the diversity
and complexity of the brain’s nervous system [8]. Further studies
revealed that some memristive Hopfield neural networks can yield
coexisting attractors with independent basins of attraction [9]. For
instance, in [10], the phenomenon of coexisting two asymmetric
attractors is discovered in a memristive hyperbolic-type HNN
with three neurons. In [11], the behavior of coexisting multiple
attractors, namely multistability, is observed in the memristive
HNN with two neurons. Furthermore, a memristive multistable
four-neuron-based HNN with a more complex coexisting phe-
nomenon of coexisting infinite number of chaotic attractors is
revealed in [12]. Such a phenomenon means that the HNN
generates extreme multistability that plays a key role in biological
nervous systems. As it can be seen, in most of the previous
outcomes, the researchers primarily focused on simple neural
networks with few neurons. The complex neural networks with
multiple neurons, especially for the coupled neural networks and
their brain-like chaotic dynamics have not yet been explored.

Initial offset boosting behavior is a kind of new complex
dynamics following multistability and extreme multistability [13].
This behavior means the coexistence of infinitely many attrac-
tors with the same shape and different positions. Particularly,
the initial offset-boosted coexisting chaotic attractors can pro-
vide sustained and robust boosted chaotic sequences and their
oscillating amplitudes can be non-destructively controlled by
switching the initial states flexibly. These merits make them
more practical for chaos engineering applications [14]. Over
recent years, tremendous research efforts have been devoted to
the initial offset boosting behavior in several dynamical systems,
such as memristor-based continuous-time chaotic systems [15]
and sine function-based discrete-time chaotic systems [16], [17].
Although researchers found that many dynamical systems can
show the initial-boosted coexisting phenomenon, there are only
a few results on such complex dynamics in the field of com-
putational neurodynamics. Recently, Bao et al [18] discovered
initial offset boosting firing behavior in a memristive HR neuron
model with a sine memductance synapse. Moreover, Zhang et
al [19] constructed a memristive HNN with a multi-piecewise
cubic nonlinearity memristor autapse, from which initial offset
boosting coexisting chaos was analyzed. To our knowledge, the
phenomenon of initial boosting coexisting hyperchaos has not yet
been observed in neural networks.

With the rapid development of chaos theory and computer
technology, more and more scientists focus on brain-like chaos
applications in various industrial fields [20]. Thanks to its abun-
dant variety of bifurcations and chaos, the HNN has been used
for information protection [21]. As a combination of neural
networks and chaos, the chaotic Hopfield neural network has
both the characteristics of neural networks and chaos. Particularly,
compared with general dynamical systems, it has more complex
dynamical behaviors. So, it is more suitable for information
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protection and encryption, especially in biomedical applications.
Over the last few decades, the HNNs have been widely applied
in normal image encryption due to their chaotic characteristic
[22]. Nonetheless, the HNN-based biomedical image encryption
schemes are rarely reported in previous investigations. With the
development of information technology, medical images play an
important role, especially in the remote diagnosis and treatment
of patients [23]. However, since the medical images own some
intrinsic features such as large sizes and high correlation among
pixels, traditional encryption algorithms such as DES, IDEA,
and RSA are generally not suitable for practical medical image
encryption. Very recently, Njitacke et al [24] presented a chaotic
neural network-based medical image encryption scheme, and
the advantage of neural networks with chaos in medical image
encryption is well demonstrated. So far, however, the chaotic
coupled neural networks have not been applied in biomedical
image encryption. Indeed, coupling two neural networks in a
single network may achieve many advantages over the single
neural network like larger keyspace, uniform key distribution, ex-
traordinary randomness, distribution and amplified chaotic range.

Motivated by the above analysis, this paper researches the
brain-like chaotic dynamics of the coupled neural network and
its application in biomedical image encryption. To the best of
our knowledge, this is the first time that the brain-like chaotic
dynamics of the coupled neural network is investigated. The main
novelty and contributions of this study are summarized as follows:

1) We construct a memristive coupled neural network model
based on two sub-neural networks and one memristor
synapse.

2) The MCNN exhibits rich and complex brain-like initial-
boosted dynamics, where infinitely many coexisting hyper-
chaotic attractors sharing the same shape but with different
positions are generated. To the best of our knowledge, this
peculiar feature has rarely been detected in other neural
networks.

3) We design a biomedical image encryption cryptosystem by
using the initial-boosted coexisting hyperchaotic sequences
to show the practical application of the presented MCNN.
In comparison with the existing chaos-based image encryp-
tion schemes, the designed cryptosystem has many merits,
such as large keyspace, high information entropy, highly
sensitive key, and good robustness.

4) FPGA-based hardware experiments are performed to
demonstrate the existence of the initial-boosted coexisting
hyperchaos and the effectiveness of the biomedical image
cryptosystem.

The rest of the article is organized as follows. Section II
describes the mathematical model of the new MCNN. Section
III reveals the brain-like initial-boosted hyperchaotic dynamics of
the MCNN. Section IV designs a biomedical image cryptosystem
based on the MCNN and its security performances are analyzed.
Section V elaborates an FPGA hardware platform to implement
the MCNN and the medical image cryptosystem. Section VI
summarizes the paper.

II. MEMRISTIVE COUPLED NEURAL NETWORK

This section first proposes two small sub-neural networks.
Then we designed a new memristor model and verifies its
frequency/initial state-relied voltage-current loci. Finally, a mem-
ristive coupled neural network is constructed.

A. Sub-Neural Networks Description

Hopfield neural network with brain-like chaos can be used to
mimic the chaotic behaviors of the brain nervous system. The
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Fig. 1: Connection topologies of two sub-neural networks. (a)
Sub-neural network X . (b) Sub-neural network Y .

mathematical formula of the Hopfield neural network which is
composed of n neurons can be given by [1]

Civ̇i = −vi/Ri +

n∑
j=1

wij tanh(vj) + Ii (i, j ∈ N∗), (1)

where Ci, Ri, and vi are respectively capacitance, resistance, and
potential of the cell membrane in neuron i. wij is the synaptic
weight coefficient describing the connection strength from neuron
j to neuron i. Besides, tanh(.) represents the neuron activation
function, and Ii denotes an external input current. It should be
noted that the chaotic dynamics of the HNN highly depends
on wij . Therefore, based on the original HNN in (1), selecting
the appropriate synaptic weight coefficients by adopting the trial
and error method, two different sub-neural networks with four
neurons can be constructed, as shown in Fig.1. In Fig.1, Xi

and Yi are eight neurons, respectively. Assuming Ci=1, Ri=1,
Ii=0 (i=1,2,3,4), the presented two sub-neural networks can be
respectively described as follows:

ẋ1 = −x1 + 1.8 tanh(x1) + 2 tanh(x2)− 0.5 tanh(x3)
−12 tanh(x4)

ẋ2 = −x2 + tanh(x2) + 20 tanh(x3)− 0.5 tanh(x4)
ẋ3 = −x3 + 0.5 tanh(x1)− 4 tanh(x2) + 1.8 tanh(x3)

+4tanh(x4)
ẋ4 = −x4 + 0.82 tanh(x1) + 0.5 tanh(x3) + 2 tanh(x4)

, (2)



ẏ1 = −y1 + tanh(y1) + 0.5 tanh(y2)− 3.5 tanh(y3)
− tanh(y4)

ẏ2 = −y2 + 2.8 tanh(y2) + 3 tanh(y3) + 0.5 tanh(y4)
ẏ3 = −y3 + 3 tanh(y1)− 3 tanh(y2) + tanh(y3)

−0.7 tanh(y4)
ẏ4 = −y4 + 0.5 tanh(y2) + tanh(y3) + tanh(y4)

, (3)

where xi and yi are the membrane potentials of neurons Xi and
Yi, respectively.

B. Memristor Model Design

Memristors can be employed to imitate biological neural
synapses, to describe electromagnetic induction effects, or to
simulate the magnetic coupling between neurons [25]. Based on
the generalized memristor model [26], a flux-controlled memris-
tor was proposed to emulate biological neural synapses recently
[12]. Based on the flux-controlled memristor, an improved flux-
controlled memristor is described as{

i = W (ϕ)v = ϕv
dϕ/dt = sin(πϕ) + v

, (4)

where v, i, and W (ϕ)=ϕ are voltage, current, and memductance
functions of the memristor. It is noted that the state equation for
the memristor associates not only with the applied stimulus but
also with its inner state flux variable ϕ.

To show the voltage-current loci of the memristor given in (4),
a sinusoidal voltage v = Asin(2πFt) is added to the input of
the presented memristor. Here, A and F are the amplitude and
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Fig. 2: The fingerprints of the memristor driven by
v=Asin(2πFt). (a) Amplitude-relied voltage-current loci
for A=1, 2, 3, and 4 with F=1 and x0=0. (b) Frequency-relied
voltage-current loci for F=1, 2, 4, and 8 with A=4 and x0=0.
(c) Initial state-relied voltage-current loci for x0=±1, ±3, ±5,
±7, and ±9 with A=4 and F=1.

frequency of the sinusoidal voltage. Firstly let F=1. For A=1,
2, 3, and 4 with x0=0, the amplitude-relied voltage-current loci
in the v-i plane are plotted in Fig.2(a). Secondly, for F=1, 2,
4, 8, with fixed A=4, x0=0, the frequency-relied voltage-current
loci in the v-i plane are plotted in Fig.2(b). Finally, denote A=4,
F=1. For x0=±9, ±7, ±5, ±3, and ±1, the initial state-relied
voltage-current loci in v-i plane are drawn in Fig.2(c). As can
be seen, the voltage-current loci in Fig.2 perfectly illustrates the
three fingerprints of the memristor [26]. Additionally, Fig.2(c)
shows that the designed memristor displays multiple different
pinched hysteresis loops under different initial states. That is to
say, the memristor is a multistable memristor, which means that
it has the feature of multistability. As we all know, biological
synapses are malleable due to their multistable nature. Therefore,
the multistable memristor is the best candidate for simulating
neural synapses.

C. Memristive Coupled Neural Network Construction

As we all know, the human brain is composed of various
encephalic regions with different neurological functions. And
abundant evidences show that there are strong connections be-
tween different encephalic regions, and the functional connec-
tivity between different brain regions exhibits complex nonlinear
dynamics. For example, both the frontal lobe and the parietal
lobe in the brain play a key role in language and thought
[27]. Also, when the occipital lobe is damaged, not only visual
impairment occurs, but also memory deficiency and motion
perception disorder. Consequently, the study of the dynamical
behavior of the coupled neural networks with two different sub-
neural networks, namely encephalic regions, is significant and
valuable. It is well known that synapses play an important role
in the signal exchange and information encoding between neurons
and neuronal networks. And memristor is usually used to emulate
biological neural synapses between neurons [28]. When there is a
membrane potential difference between two neurons, a magnetic
induction current can be sensed. Base on this strategy, a reduced
diagram is plotted for a new memristive coupled neural network
with a memristor synapse in Fig.3, in which the two sub-neural
networks represent two different encephalic regions in the brain.
Considering the two sub-neural networks in (2) and (3), as well
as the multistable memristor in (4), the memristive coupled neural
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Fig. 3: Concept diagram of the memristive coupled neural net-
work.

network is mathematically modeled by

ẋ1 = −x1 + 1.8 tanh(x1) + 2 tanh(x2)− 0.5 tanh(x3)
−12 tanh(x4) + ρϕ(x1 − y1)

ẋ2 = −x2 + tanh(x2) + 20 tanh(x3)− 0.5 tanh(x4)
ẋ3 = −x3 + 0.5 tanh(x1)− 4 tanh(x2) + 1.8 tanh(x3)

+4 tanh(x4)
ẋ4 = −x4 + 0.82 tanh(x1) + 0.5 tanh(x3) + 2 tanh(x4)
ẏ1 = −y1 + tanh(y1) + 0.5 tanh(y2)− 3.5 tanh(y3)

− tanh(y4)− ρϕ(x1 − y1)
ẏ2 = −y2 + 2.8 tanh(y2) + 3 tanh(y3) + 0.5 tanh(y4)
ẏ3 = −y3 + 3 tanh(y1)− 3 tanh(y2) + tanh(y3)

−0.7 tanh(y4)
ẏ4 = −y4 + 0.5 tanh(y2) + tanh(y3) + tanh(y4)
ϕ̇ = sin(πϕ) + (x1 − y1)

, (5)

where the additive nonlinear term ρϕ(x1 − y1) denotes the
induction current which is induced by the two adjacent neurons
X1 and Y1 with different membrane potentials. And ρ is the
coupling strength of the memristive magnetic induction effect.
The term sin(πϕ) represents an additional magnetic flux caused
by the membrane potential fluctuation.

The equilibria of the MCNN and their stabilities are investi-
gated by theoretical and numerical analysis methods. MATLAB
numerical calculations show that there are infinitely discrete
equilibria that can be expressed as

E = {(x1∗, x2∗, x3∗, x4∗, y1∗, y2∗, y3∗, y4∗, z∗)
=(0, 0, 0, 0, 0, 0, 0, 0, k), k = 0,±1,±2,±3, ...,±n . (6)

Obviously, the MCNN generates infinitely many equilibria along
the axis-z by changing phase space. Therefore, the multistable
memristor synapse plays a key role in the generation of com-
plex dynamics due to its infinite many equilibria. With help of
MATLAB numerical calculation for different parameters k and
ρ, the eigenvalues of the equilibrium points and their stabilities
are given in Table I. According to Table I, the equilibrium point
set E are always unstable saddle-focus points. Consequently, the
chaotic and hyperchaotic attractors generated from the MCNN
are self-excited attractors.

As we all know, the dynamics of synchronization in MCNNs
has been widely investigated in past decades [29]-[31]. However,
to the best of our knowledge, the chaotic dynamics of the MCNNs
has never been studied. Actually, chaos plays an important role in
brain neural systems [2]. Consequently, the research on chaotic
dynamics of the MCNNs is valuable for better understanding
brain functions.

III. DYNAMICAL ANALYSIS OF THE MEMRISTIVE COUPLED
NEURAL NETWORK

Chaotic behaviors widely exist in many specific areas of the
brain, which plays crucial roles in the information processing and
transmission between two different encephalic regions. In this
section, the complex brain-like chaotic dynamics of the proposed
memristive coupled neural network with eight neurons in (5)
are revealed by using basic dynamic analysis methods including
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TABLE I: ADJUSTABLE PARAMETERS, EIGENVALUES OF EQUILIBRIA, AND CORRESPONDING STABILITIES.

k ρ Eigenvalues Stabilities

0 0.17/2.5 (π, 1.1824, -0.1867, 0.2902±8.9328j, 1.0098±2.8740j, 0.4021±4.3827j) Unstable
Saddle-focus

-1 0.17 (-π, 1.1098, -0.1904, 0.2879±8.9310j, 0.3554±4.3645j, 0.9270±2.8723j) Unstable
Saddle-focus

1 0.17 (-π, 1.2554, -0.1835, 0.2928±8.9343j, 0.448±4.3927j, 1.0925±2.8728j) Unstable
Saddle-focus

-1 2.5 (-π, 1.9989, -0.0134, 0.2759±8.8982j, 0.4141±3.8945j, 0.0161±1.6369j ) Unstable
Saddle-focus

1 2.5 (-π, 3.3347, -0.1639, 0.3268±8.9345j, 0.7290±4.1810j, 2.0588±1.9811j) Unstable
Saddle-focus

bifurcation diagrams, Lyapunov exponents, phase portraits, and
attraction basins. And all the numerical simulations are done in
MATLAB R2017a with the ODE45 algorithm. Additionally, the
start time, the time step, and the time length are set as 500, 0.01,
and 3000, respectively.

A. Coupling Strength-Relied Dynamical Behaviors

Firstly, when the coupling strength ρ increases from 0 to 3, the
ρ-based bifurcation diagram is plotted by Fig.4(a) under initial
states (1, 1, 1, 1, 1, 0, 0, 1, 1), where x1max is the maxima
of the membrane potential x1. Moreover, the corresponding first
six Lyapunov exponents are shown in Fig. 4(b). It can be seen
from Fig.4 that the MCNN can generate complex dynamical
behaviors including period, quasi-period, chaos, and hyperchaos.
For example, the MCNN intermittently exhibits periodic and
quasiperiodic attractors in the region ρ ∈(0.17, 0.32). And in the
region ρ ∈(0.33, 1.1), the MCNN generates chaotic attractors with
one positive Lyapunov exponent. Another promising finding is
that hyperchaotic attractors with two positive Lyapunov exponents
can be detected in the coupled neural network within the region
ρ ∈(1.2, 2.9). The phase portraits of the MCNN with different
values of ρ are given to illustrate its dynamical evolution with
the coupling strength of the memristor synapse, as shown in
Fig.5. Fig.5 suggests that the MCNN successively produces
periodic, quasiperiodic, chaotic, and hyperchaotic attractors with
the increase of ρ under initial states (1, 1, 1, 1, 1, 0, 0, 1, 1).
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B. Initial State-Relied Dynamical Behaviors

High sensitivity to initial states is one of the main characteris-
tics of the nervous systems. In this subsection, the phenomenon
related to the initial states is revealed in the MCNN. When
the coupling strength ρ=0.17, initial values x10=x20=x30=x40=1,
y10=y40=1, y20=y30=0, and ϕ0 is increased from 10 to 50, the
bifurcation diagram of the ϕ0 is depicted in Fig.6(a). Besides,
Fig.6(b) displays the corresponding Lyapunov exponent spectra.
Fig.6 directly illustrates three important results: (i) the proposed
MCNN generates a coexisting phenomenon of periodic behav-
ior, quasiperiodic behavior, chaotic behavior, and hyperchaotic
behavior under different initial states; (ii) the MCNN generates
coexisting infinite chaotic attractors with different shapes and
positions with the increase of ϕ0; (iii) each chaotic attractor

0.6

(a) (b)

0.3

0

-0.3

-0.6
42-2-4

x2

x
4

0

0.8

0.4

0

-0.4

-0.8
5.02.5-2.5-5.0

x2

x
4

0

1.0

0.5

0

-0.5

-1.0
63-3-6

x2

x
4

0

1.6

0.8

0

-0.8

-1.6
105-5-10

x2

x
4

0

(d)(c)

Fig. 5: Dynamical behaviors of the MCNN for different values of
ρ. (a) Periodic attractor with ρ=0.17. (b) Quasiperiodic attractor
with ρ=0.3. (c) Chaotic attractor with ρ=0.8. (d) Hyperchaotic
attractor with ρ=2.5.

0

(a) (b)

-10

-20

-30

-40

-50
302010

φ
m

a
x

0.2

0

-0.2

-0.4

-0.6
2010

L
y
a
p
u
n

o
v
 e

x
p
o
n
e
n
ts

504030

L1
L2

L3

L4

L5

L6

40 50
φ0 φ0

Fig. 6: The ϕ0-dependent dynamics with the coupling strength
ρ=0.17 and initial states (1, 1, 1, 1, 1, 0, 0, 1, ϕ0). (a) Bifurcation
diagram. (b) First six Lyapunov exponents.

has an independent initial state range ϕ0 ∈(k, k+2) where k is
even number, which shows that the positions of chaotic attractors
in the MCNN are controllable. Such complex dynamics means
that the MCNN can not only generate coexisting behaviors with
hyperchaos but also has initial tunable extreme multistability.
Furthermore, when ρ=0.17, and x10=x20=x30=x40=y10=y40=1,
y20=y30=0, the phase portraits of the MCNN with different ϕ0

are plotted for further illustrating the initial-dependent coexisting
dynamics as shown in Fig.7.

Furthermore, to reveal the dynamical effects of each initial state
in the MCNN under the above condition, the results of the local
attraction basin in the x10-ϕ0 plane are shown in Fig.8. As can
be seen, the local attraction basin owns complicated manifold
structures and basin boundaries, and the color-painted labeled
by s0 to s10 indicate eleven attracting regions of dynamical
behaviors. Among them, s0 region denotes unbounded behavior,
s1 region represents periodic attractors, s2 region represents
quasi-periodic attractors, and s3 to s6 regions express chaotic
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attractors. Additionally, the regions labeled from s7 to s10 stand
for hyperchaotic attractors. Consequently, the numerical results in
Fig.8 show that the dynamical behaviors in the MCNN strongly
rely on the initial state of the memristor.

C. Initial-Boosted Coexisting Hyperchaotic Attractors

The initial boosting hyperchaotic phenomenon plays an im-
portant role in dynamical systems and has valuable applica-
tions [15]. But such a phenomenon has not been observed
in neural networks. It is wonderful that the presented MCNN
can generate initial boosting coexisting hyperchaos. For in-
stance, we plot the bifurcation diagram of the ϕ0 under ρ=2.5
and x10=x20=x30=x40=1, y10=y40=1, y20=y30=0, as shown in
Fig.9(a). As can be seen, the MCNN displays a complicated
initial boosting phenomenon. Also, the initially boosted dynamics
is symmetric about the zero value of ϕ0, which has never
been reported in existing dynamical systems. Meanwhile, the
corresponding constant Lyapunov exponents with two positive
values in the whole range of the ϕ0 variation are given in
Fig.9(b) besides two small periodic windows. Obviously, the
MCNN has an infinite wide hyperchaotic range along ϕ0-axis.
That is to say, the MCNN enjoys complex dynamics of initial
boosting coexisting hyperchaos, which means that it has excellent
robustness. Additionally, to further inspect the initial boosted
hyperchaotic dynamics, when keeping ρ=2.5 and x20=x30=x40=1,
y10=y40=1, y20=y30=0 unchanged, we draw the local attraction
basin in the x10-ϕ0 plane, as shown in Fig.10. As can be
seen, the local attraction basin has complex manifold structures
and basin boundaries, and the specified initial value regions are
composed of different colored zones marked by r1-r8, among
which the colored zones marked by r1-r8 correspond to the hy-
perchaotic attractors with different positions in Fig.11. Moreover,
the greenyellow region r0 represents periodic attractor. Overall,
these results manifest that the dynamical behaviors in the MCNN
have strongly relied on the initial states of the memristor synapse.
This is an important finding in the understanding of the brain
neural systems.

Additionally, by calculating Lyapunov exponents, it will be
shown in this section that the MCNN has complex hyperchaotic
behavior for the parameter values and initial values of ρ=2.5 and
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diagram. (b) First six Lyapunov exponents.
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(1, 1, 1, 1, 1, 0, 0, 1, 1). The Lyapunov exponents for the MCNN
are computed for t=1E5 seconds as follows:
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Fig. 11: Coexisting multiple hyperchaotic attractors with different
positions in the MCNN with ρ=2.5 and different ϕ0.

LE1 = 0.1502, LE2 = 0.0818, LE3 = 0,
LE4 = −0.3142, LE5 = −0.4967, LE6 = −0.5561,
LE7 = −0.7443, LE8 = −3.099, LE9 = −42.27.

(7)

The existence of two positive Lyapunov exponents in (7) makes
it clear that the MCNN is hyperchaotic. Moreover, the Kaplan-
Yorke dimension of the hyperchaotic neural network is calculated
by the following formula:

DKY = 3 +
LE1 + LE2 + LE3

|LE4|
= 3.7384. (8)

Compared with the previous hyperchaotic neural network
(DKY =3.1403) [5], the memristive coupled neural network has
higher complexity since it has a larger value of DKY .

IV. APPLICATION IN BIOMEDICAL IMAGE ENCRYPTION

Thanks to many significant properties like inherent random-
ness, high sensitivity, and unpredictability, chaotic systems have
been broadly employed in designing image cryptosystems [32]-
[34]. Generally, the hyperchaotic systems have a large secret
keyspace and good sensitivity, and its dynamics is more com-
plex than that of the general chaotic system [35]. Furthermore,
systems with initial-boosted coexisting behaviors have become
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potential candidates for chaos applications compared to chaotic
systems without coexisting attractors due to their high sensitivity.
Interestingly, the coupled neural network would have a more
attractive application prospect in image encryption schemes, as
it has two sub-neural networks and more information. In other
words, the coupled systems have a larger keyspace, so that the
encryption schemes have higher security. Therefore, the proposed
hyperchaotic MCNN can be used to design a more secure image
encryption scheme.

A. Design of Biomedical Image Encryption Scheme

The structure of the designed biomedical image encryption
cryptosystem is given in Fig.12. As can be seen, the cryptosystem
has three blocks: chaotic sequence generator, permutation mod-
ule, and substitution module. Assuming that a gray-scale original
image P (i) is used as the encryption object. Then, the process
of encryption consists of three steps of operations.

SubstitutionPermutation
Plain image

Secret key
Chaotic sequence generator

K1(i)

P(i)

Cipher image

K2(i)

C(i)P1(i)

Fig. 12: Architecture of the MCNN-based biomedical image
encryption scheme.

1) Chaotic sequence generator: Set system parameter ρ and
initial states (x10, x20, x30, x40, y10, y20, y30, y40, ϕ0),
discarded number N0, and time step, then iterate the MCNN
(5) with the fourth-order Runge-Kutta algorithm from initial
states. The MCNN is pre-iterated N0 times to eliminate
the adverse effects and to increase security. After the
iteration of N0 times, the network is continuously iterated
256×256 times. For each iteration, we can get nine values
x1(i), x2(i), x3(i), x4(i), y1(i), y2(i), y3(i), y4(i), ϕ(i).
During iteration, the nine values are used to generate two
different key values K1(i) and K2(i), respectively. They
are calculated by

K1(i) = (x1i + x2i + x3i + x4i + ϕi)/5, (9)

K2(i) = mod(floor(((y1i + y2i + y3i
+y4i + ϕi)/5) ∗ 1015), 256)

, (10)

where the floor(x) denotes the elements of x to the nearest
integers less than or equal to x. Then, K1(i) is utilized
for permutating the original image, and K2(i) is used to
substitute the pixel of the permutated image.

2) Permutation module: This module generates a permutation
box. The chaotic key sequence K1(i) is arranged in ascend-
ing order to obtain the index sequence index. According to
the index sequence index, the plain image P (i) is globally
scrambled to be a sequence P1(i)

P1(i) = P (index(K1(i))). (11)

3) Substitution module: The introduction of non-linear opera-
tions in the pixel encryption process makes the plaintext and
the ciphertext have a more complex non-linear relationship,
which can enhance the security of the algorithm. So, the
permutation image is encrypted as

C(i) = P1(i)⊕K2(i), (12)

where the symbol ⊕ represents the exclusive XOR opera-
tion bit-by-bit. The MCNN is iterated until all the elements

are encrypted. Then every element in the encrypted set
is converted into decimal numbers and we can obtain the
cipher image.

B. Experimental Results Analysis

To demonstrate the efficiency of the designed biomedical
image encryption cryptosystem, we used a laptop with Intel
CoreTM i7 CPU 2.500 GHz and 6 GB RAM with preinstalled
MATLAB R2017a. And some classic metrics like keyspace,
histogram, correlation coefficient, information entropy, key sensi-
tivity,differential attack, noise attack and chosen plain-text attack
were measured [34]. In whole experiments, four medical images
Chest, Angiography, Brain, and Lung each of size 256×256 are
employed as the test images, as shown in Fig.13(a1-a4). Setting
the secret key (ρ, x10, x20, x30, x40, y10, y20, y30, y40, ϕ0)=(2.5,
1, 1, 1, 1, 1, 0, 0, 1, 2), two pseudorandom sequences generated
by (9) and (10) are used for medical image encryption. In this
process, to avoid the transient effect, the pre-iterate number N0

of the chaotic system is set as 500, and the time step is chosen
as 0.001.

(1) Keyspace analysis: A good image encryption algorithm
should possess a larger keyspace to resist the exhaustive attack
in an effective manner. The presented encryption scheme adopts
one parameter ρ and nine initial values x10, x20, x30, x40, y10,
y20, y30, y40, ϕ0 as its key, which can ensure that unauthorized
decryption becomes difficult. In our experiments, all bites adopt
double-precision data, so the keyspace of the encryption scheme
is (1016)10 = 10160 ≈ 2480. It is obvious that the encryption
scheme has more than 2100 keyspace and can resist all types of
violent attacks. The keyspace is much larger than the latest similar
encryption schemes, such as [19], [24], [32], [33]. From this, we
can conclude that the new biomedical image encryption scheme
has a great keyspace.

(2) Histogram analysis: As we all know, the intensity distribu-
tion of gray values in images can be described by a histogram.
The histogram is a fundamental tool to reflect the distribution of
the pixel intensity values in the images. Generally, an excellent
image encryption system should make the histograms of the
encrypted images as uniform as possible. Four original medical
images, encrypted images, and their corresponding histograms are
shown in Fig.13. From Fig.13(c1)-(c4), it can be seen that all of
the encrypted images look messy and completely lose the original
image information. And from Fig.13(d1)-(d4) and Fig.13(b1)-
(b4), the histograms of the cipher images are very uniform and are
significantly different from those of the original images, which
means that the designed biomedical image encryption scheme has
strong ability to resist statistical attack.

(3) Correlation analysis: The correlation coefficients can mea-
sure the robustness of the image and reflect the degree of
correlation between the gray values of adjacent pixels in the
images. Usually, for regular images, the adjacent pixels have a
strong correlation near to 1 in every direction. But for cipher
images, the correlation coefficients should be close to 0. The
correlation of each pair of pixels can be computed by[36]

ρxy =

N∑
i=1

(xi − E(x))(yi − E(y))√
N∑
i=1

(xi − E(x))
2

√
N∑
i=1

(yi − E(y))
2

, (13)

where x and y are the intensity values of two adjacent pixels,
and N is the total number of pixels. E(x) and E(y) are the
averages of xi and yi, respectively. To evaluate the correlation
coefficients, we randomly selected 10000 pairs of adjacent pixels
in every direction. Then, the correlation coefficients of adjacent
pixels of images Chest, Angiography, Brain, and Lung in three
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Fig. 13: Simulation results of the proposed encryption scheme:
(a1-a4) Original image; (b1-b4) Histogram of the original image;
(c1-c4) Cipher image; (d1-d4) Histogram of the cipher image.

TABLE II: CORRELATION COEFFICIENTS AND INFORMATION EN-
TROPY OF THE ORIGINAL IMAGES AND THEIR CIPHER IMAGES
Medical Images Type Horizontal Vertical Diagonal Entropy

Chest Original 0.993602 0.992463 0.987863 6.5336
Chest Encrypted -0.001745 -0.000839 0.013351 7.9981

Angiography Original 0.990111 0.993122 0.980891 6.0647
Angiography Encrypted 0.001070 -0.004135 0.004224 7.9979

Brain Original 0.935238 0.925998 0.908461 6.7450
Brain Encrypted -0.012230 -0.007964 0.003396 7.9979
Lung Original 0.934076 0.922685 0.897652 5.6348
Lung Encrypted -0.009910 -0.000055 0.008239 7.9980

directions were calculated. Both the correlation coefficients of the
original images and cipher images are listed in Table II. As shown
in Table II, we can clearly see that the correlation coefficients of
the adjacent pixels in the original images is close to 1, and the
correlation coefficients of the adjacent pixels in the encrypted
images is close to 0, which further proves that the image
encryption scheme can completely break the correlation of the
adjacent pixels in the images and thus effectively resist attacks. It
is evident that the proposed biomedical image encryption scheme
can efficiently reduce the correlation between adjacent pixels of
the encrypted images.

(4) Entropy analysis: Information entropy reflects the statistical
characteristics of images. The larger the information entropy
value is, the higher the randomness of image information. A good
image encryption scheme should make the information entropy
value of the encrypted images close to 8 as far as possible
to achieve the purpose of resistance to statistical attack. The
information entropy can be defined as [36]

H(P ) =

2N−1∑
i=0

P (xi)log2

1

P (xi)
, (14)

where N represents the bit depth of the image P and P (xi)
represents the probability of the presence of a pixel xi. For
grayscale images, xi ∈ [0, 255], N=8, P (xi) ∈ [0, 1], and
sum(P (xi))=1.The theoretical maximum information entropy is
8. The closer the information entropy is to 8, the more random the
grayscale distribution of image pixels. For instance, we assume
that there are only five types of pixels in a gray image, namely
x1-x5. Their probability values are 0.2, 0.4, 0.05, 0.25 and
0.1, respectively. The information entropy of the image can be
calculated by (14), namely H=2.0414. It means that the pixel
distribution in this image is not uniform, that is to say, it has poor
randomness property. We calculate the information entropy of the
four original medical images and their corresponding encrypted
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Fig. 14: Image decryption process with the secret key (ρ, x10,
x20, x30, x40, y10, y20, y30, y40, ϕ0). (a1)-(a4) Accurate de-
crypted image with the secret keys (2.5, 1, 1, 1, 1, 1, 0, 0, 1,
2); (b1)-(b4) Inaccurate decrypted image with the secret keys
ρ=2.5+10−12/10−13 and x10=1+10−12/10−13; (c1)-(c4) Inaccu-
rate decrypted image with the secret keys x40=1+10−12/10−13

and x30=1+10−12/10−13; (d1)-(d4) Inaccurate decrypted image
with the secret keys ϕ0=2+10−12/10−13 and y30=1+10−12/10−13.

images. The calculation results are shown in Table IV. We can see
that there is a large improvement in information entropy after the
original image is encrypted. Furthermore, the results show that
the information entropy of the image encrypted by this algorithm
is closer to 8.

(5) Sensitivity analysis: The key sensitivity is an important
index in the security of encryption algorithms. A good encryption
scheme should be sensitive to the key. In our encryption algo-
rithm, the system parameter ρ and initial values (x10, x20, x30,
x40, y10, y20, y30, y40, ϕ0) are all used as secret keys. Fig.14(a1)-
(a4) gives the accurate decrypted image. And Fig.14(b1)-(d4)
illustrate the inaccurate decrypted images with a tiny change
of the secret keys. As can be seen, even the secret key is
changed very little (10−12), the decrypted images are completely
different from the original images. Therefore, the key sensitivity
test shows that the proposed biomedical image encryption scheme
has perfect sensitivity to the key.

(6) Differential attack analysis: NPCR (number of pixel change
rates) and UACI (unified average change intensity) can be used
to represent the effect of a single-pixel change of the plain image
on the cipher image. C1 and C2 denote two cipher images with
both sizes equal to M × N , whose corresponding plain images
only have a single-pixel difference. The gray values of the pixels
in position (i, j) of C1 and C2 are expressed by C1(i, j) and
C2(i, j), respectively. NPCR and UACI can be written by

NPCR(C1, C2) =

M∑
i=1

N∑
j=1

D(i, j)

M.N
× 100%, (15)

D(i, j) =

{
0, ifC1(i, j) = C2(i, j)
1, ifC1(i, j) 6= C2(i, j)

, (16)

UACI(C1, C2) =
1

M.N

M∑
i=1

N∑
j=1

|C1(i, j)− C2(i, j)|
255

× 100%.

(17)
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According to references [24], the expected NPCR and UACI
values of a 256 gray-scale image are 99.6094% and 33.4635%,
respectively. Table III gives the NPCR and UACI values of the
encrypted images for different plain medical images using the
proposed encryption algorithms evaluated by the average value
of 150 times running. In Table III, the presented encryption
algorithm has NPCR and UACI values very close to the expected
values. Therefore, it is very sensitive to small changes in the plain
images. That is to say, it has a strong ability to oppose differential
attacks.

TABLE III: OUTCOMES OF NPCR AND UACI TEST FOR THE EXPERI-
MENTED DATASET

Medical Image NPCR(%) UACI(%)
Chest 99.6104 33.4662

Angiography 99.6116 33.4675
Brain 99.6095 33.4682
Lung 99.6091 33.4668

(7) Data loss and noise attacks: An ideal encryption algorithm
can effectively resist external attacks. The data loss attack and
the noise attack are usually used to evaluate the robustness of an
image encryption algorithm. In the process of image transmission,
the images are easy to suffer from noise and partial data loss. An
ideal image encryption algorithm should be robust to noise and
partial data loss.

To test the algorithm’s ability to resist data loss, we cut off
some parts of the cipher image and then decrypt it. Fig.15(a1-a3)
and (b1-b3) provide results of data loss attacks for the different
lost areas, where the plain image is recovered successfully via
the decryption process. Salt and pepper noise may arise in
images when image signals are suddenly and strongly interfered
within the transmission process. To test the algorithm’s ability
to resist salt noise attacks, we added salt and pepper noise to
the encrypted image with different proportions. The outcomes
of the noise attacks are shown in Fig.15(c1-c3) and (d1-d3). As
can be seen, some pixel values in decrypted images are changed,
but the approximate information of the plain image could still
be displayed. This means that the encrypted image still has a
good decryption effect after being attacked by salt and pepper
noise. Consequently, the experimental results in Fig.15 show that
the proposed encryption algorithm can effectively resist the noise
and data loss attack and has very good security.

(8) Chosen plain-text attack: It is well known that a good
encryption scheme needs to have good performance as opposed
to chosen plain-text attack. Some attackers may choose plain
images which are all-black or all-white to decipher the encryption
scheme. However, in our encryption scheme, in addition to the
fact that the position of image pixels can be changed by the
permutation process, the size of pixel values can also be changed
by the substitution process, thus this encryption method can
ensure high security whatever original image is. Fig.16 gives
the all-black and all-white plain image, their encrypted images
and the histograms of the encrypted images. All of the tested
images are 256×256. Fig.16 illustrates that the distributions of
the histograms of the encrypted images of all-black and all-white
images are both uniform. Thus the decipherer cannot obtain any
useful information from the encrypted images and the encryption
system cannot be broken. Therefore, it confirms that our image
encryption algorithm can resist the chosen plain-text attacks.

Here we compare the results of the presented cryptosystem
with those of the previous similar works, as shown in Table
IV. Obviously, compared with the recent results of [19], [24],
[32], [33], the chaotic system used in the designed encryption
scheme has higher dimensions and more complex chaotic dynam-
ics. Therefore, the proposed medical image encryption scheme
has a larger keyspace, higher information entropy and more
sensitive secret key, which enjoys higher security. It is noted

(b1) (b2) (b3)

(a1) (a2) (a3)

(d1) (d2) (d3)

(c1) (c2) (c3)

1/32 1/16 1/4
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Fig. 15: The robustness of the proposed algorithm to partial data
loss and noise attacks. (a1-a3) The encrypted image with 1/32,
1/16, and 1/4 loss, respectively. (b1-b3) Corresponding decryption
images. (c1-c3) The encrypted image with 1%, 10%, and 20% salt
and pepper noise, respectively. (d1-d3) Corresponding decryption
images.

(b1) (b2) (b3)

(a1) (a2) (a3)
0 50 100 150 200 250

0

100

300

400

200

500

600

0 50 100 150 200 250
0

100

300

400

200

500

600

Fig. 16: The experimental results of chosen plaintext attack.
(a1),(a2) and (a3) Black image, its encrypted image and cor-
responding histogram, respectively. (b1), (b2) and (b3) White
image, its encrypted image and corresponding histogram, respec-
tively.

that compared with [24], the proposed encryption scheme has a
lower information entropy. Nevertheless, the difference between
them is so small that it doesn’t affect its safety. Furthermore, the
designed medical image encryption scheme not only has very low
correlation coefficients in every direction but also demonstrates
its experimental results on the hardware platform. Consequently,
these results suggest that the biomedical image encryption scheme
based on the coupled HNN can more effectively resist the entropy
attack and statistical attacks, and can be applied to protect image
data in practical information communication.

V. VALIDATION BY HARDWARE EXPERIMENTS

Due to the properties of ultra-low power, programmable
reusability, and strong controllability, the field-programmable gate
array (FPGA) is broadly applied in industrial electronics. Particu-
larly, FPGA-based chaotic systems have been widely investigated
in recent years [36], [37]. However, image cryptosystems based
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TABLE IV: PERFORMANCE COMPARISON OF VARIOUS ENCRYPTION SCHEMES

Refs Image type System type System
Dimension

Information
Entropy

Key
sensitivity

Original image:
Horizontal,
Vertical,
Diagonal

Cipher image:
Vertical,
Horizontal,
Diagonal

Hardware
demonstration

2019 [32] Normal image
Lena(256×256)

Multi-scroll
chaotic system 3 7.9898 –

0.9233,
0.9672,
0.8949

-0.0062,
0.0061,
-0.0277

No

2020 [33] Normal image
Lena(256×256)

Multi-wing
chaotic system 3 7.9976 10−9

0.972807,
0.939337,
0.921438

0.000827,
0.005238,
-0.000455

Yes

2020 [19] Normal image
Lena(256×256)

Initial boosted
chaotic HNN 4 7.9977 10−8

0.97492,
0.98629,
0.96268

0.0004,
0.0007,
0.0012

No

2021 [24] Medical image
Chest(256×256) Chaotic HNN 3 7.9992 10−9

0.94505,
0.96653,
0.91917

0.0026,
0.0026,
0.07992

No

This work Medical image
Chest(256×256)

Iinitial-boosted
hyperchaotic HNN 9 7.9981 10−12

0.993602,
0.992463,
0.987863

-0.001745,
-0.000839,
0.013351

Yes
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Fig. 17: Block diagram of the FPGA-based biomedical image
cryptosystem

on chaotic neural networks are seldom implemented by FPGA
hardware [38]. Thus we develop an FPGA-based hardware test
platform to implement the proposed MCNN and the designed
biomedical image encryption scheme. The hardware devices
contain one Xilinx Virtex-6 FPGA development board and one
monitor.

A. Design of The FPGA-Based Biomedical Image Cryptosystem

In this subsection, we design and implement an biomedical
image cryptosystem on the FPGA platform. The hardware struc-
ture of the cryptosystem mainly includes five parts: image RAM
(random access memory), chaotic sequence controller, image
encryption module, image decryption module, and VGA display
controller. As shown in Fig.17, the image RAM is used to store
and output the original medical image from medical image ac-
quisition devices. And the chaotic sequence controller completes
the production and caching of chaotic sequences generated by the
MCNN. In the process of medical image encryption, the original
medical image and chaotic sequences are sent to the image
encryption module synchronously. Then the original medical
image is encrypted in the image encryption module. After that, the
encrypted image is sent to the VGA display controller and finally
is displayed on the monitor. In the process of image decryption,
the encrypted medical image and chaotic sequences are sent
to the image decryption module synchronously. Afterward, the
encrypted medical image is decrypted in the image decryption
module, and the decrypted image is displayed on the monitor by
the VGA display controller.

B. FPGA-Based Implementation Results

The hardware structure of the biomedical image cryptosystem
in Fig.17 is realized via employing a Xilinx Virtex-6 FPGA
development board with a 32-bit IEEE 754-1985 floating-point
standard. The functions of the five parts are implemented by
Verilog HDL programming, where the generation process of the
chaotic sequences can refer to our previous work in [33]. Various
attractors realized by FPGA-based memristive coupled neural
network (5) are shown in Fig.18. In the experiment, medical
images are stored in the RAM of the ZYNQ-XC7Z020 chip. The
experimental results are shown in Fig.19, where The hyperchaotic
sequences generated from the hyperchaotic attractors is given
in Fig.19(a), the original image and the encrypted image are
shown in Fig.19(b) with the secret key (ρ, x10, x20, x30, x40,
y10, y20, y30, y40, ϕ0)=(2.5, 1, 1, 1, 1, 1, 0, 0, 1, 2). Fig.19(c)
gives the encrypted image and correct decrypted image with the
correct secret key. And the encrypted image and the incorrect
decrypted image are shown in Fig.19(d) under incorrect secret
key (2.5, 1, 1, 1, 1+10−12, 1, 0, 0, 1, 2). Obviously, the FPGA-
based experimentation results agree with the MATLAB-based
simulation results. Table V gives the performance metrics of
the designed hardware cryptosystem. Moreover, the times for
image encryption and image decryption on the FPGA plat-
form are 0.241543s and 0.228897s, respectively. These times
are largely lower than the corresponding time 0.752145s and
0.682635s in MATLAB numerical simulations. That is to say,
the biomedical image cryptosystem implemented by the FPGA
can greatly improve the speed of data processing and the time
of algorithm operation. Obviously, these experimental results
verify the feasibility and reliability of the presented MCNN-based
biomedical image encryption scheme.

VI. CONCLUSION

In this article, based on two sub-neural networks and one
multistable memristor synapse, a memristive coupled neural net-
work (MCNN) model is proposed. Dynamical analysis shows
that the MCNN exhibits complex brain-like chaotic dynamics
including chaos and hyperchaos. Particularly, it is capable of
generating brain-like initial-boosted hyperchaos under different
initial states. Meanwhile, we design a MCNN-based biomedical
image encryption scheme. Experimental results demonstrate that
the designed biomedical image cryptosystem enjoys some ad-
vantages in terms of secret keyspace, information entropy, key
sensitivity and robustness. Finally, we designed and implemented
the MCNN and corresponding biomedical image cryptosystem
on the FPGA platform. And hardware experimentation results
have been given to verify the effectiveness of the theoretical
analyses and numerical simulations. Nowadays, with the rapid
development of brain science, the study of brain-like dynamics
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TABLE V: PERFORMANCE METRICS OF HARDWARE CRYPTOSYSTEM
Metrics Area/bit Resource utilization RAM/byte Cycles/byte Energy/bit Power/mW Throughput/Mbps

FPGA LUTs: 3587
Regs: 2560

ALMs: 26%
Regs: 15%

LUTRAM: 1425
BRAM: 96 1.15 52.89 21.65 527.24

(a1)

(b1)

(c1)

(a2) (a3) (a4)

(b2) (b3) (b4)

(c2) (c3) (c4)

Fig. 18: Various attractors of the MCNN (5) from the FPGA
implementation. (a1-a4) FPGA results of Fig.5. (b1-b4) FPGA
results of Fig.7. (c1-c4) FPGA results of Fig.11.

(a) (b)

(c) (d)

Fig. 19: FPGA-based measured results. (a) Hyperchaotic attractor.
(b) Original and encrypted medical image. (c) Encrypted and
correctly decrypted medical image. (d) Encrypted and incorrectly
decrypted medical image.

has become an urgent requirement to deeply understand brain
function and nerve disease. Consequently, modeling, analysis,
simulation, implementation and application of the brain nervous
system as attempted in this paper will be helpful in the ex-
ploitation of neuromorphic systems and the clinical diagnosis of
neurogenic diseases.

Future research will focus on studying the brain-like dynamics
of large-scale neural networks closer to the real brain nervous
systems. Future applications will use this memristive coupled
neural network to build an artificial intelligence system with brain
functions.
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