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Abstract. This paper combines two estimation procedures: Iterative Generalized Least 

Squares as used in the software MLwiN; Gibbs Sampling as employed in the software BUGS 

to produce a modelling strategy that respects the hierarchical nature of the Teaching Styles 

data and also allows for the endogeneity problems encountered when examining pupil 

progress. 
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1. Introduction 

The progress that pupils make in their academic achievement is seen as an indicator of the 

quality of the education that they receive. With the possibility of sanctions being imposed on 

schools and/or teachers that are seen to produce inadequate progress, and role models being 

made of those schools and/or teachers that produce progress above what is generally 

expected, it is of prime importance that the assessment of pupil progress is handled with care. 

This care must be taken in the actual measurement of pupil achievement and also the 

statistical analyses to which measures are subjected. 

 

The role of multilevel models in the analysis of educational data is now generally accepted. 

Recently published papers in the field that use them in their analyses include Dryler (1999), 

Brutsaert (1999), Goldstein & Sammons (1997), Hofman et al (1999). Those that use 

multilevel analyses to examine pupil progress include Sammons & Smees (1998), Strand 

(1997), Tymms et al (1997). In the setting of education, pupils are grouped into classes which 

are then grouped into schools. In the multilevel model, each level of the hierarchy in the data 

has a random effect associated with it to allow for the contribution to the response of 
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unmeasured or unmeasureable influential factors that operate at each level. Coefficients of 

regressors in the model may also have random components to allow the effect of the 

regressors to vary between the different groupings at the various levels of the hierarchy. It is 

this respect that multilevel models give to the hierarchy of the data that have made their use 

commonplace. Software specifically designed to fit multilevel models have been available 

since the 1980s and now include MLwiN (Goldstein et al, 1998), which uses an Iterative 

Generalized Least Squares algorithm to carry out the estimation; HLM (Bryk et al, 1996) 

which uses an EM algorithm; VARCL (Longford, 1988) which uses Fisher scoring. Major 

statistical packages such as SAS (PROC MIXED (SAS Institute, 1992, 1996) which uses a 

Newton-Raphson algorithm) and S-Plus (nlme function (Mathsoft, 1997) which uses an EM 

algorithm) also have routines that will fit multilevel models. Standard texts on the subject 

include Goldstein (1995), Longford (1993), Bryk & Raudenbush (1992), Snijders & Bosker 

(1999). Good introductory chapters/articles on the subject are Paterson (1991) and Paterson & 

Goldstein (1991). 

 

The problem of endogeneity is one that is unavoidable in analyses of pupil progress. A typical 

analysis is one that attempts to relate a student’s current achievement (e.g. a current test 

score) to previous achievement (e.g. a baseline score) (see, for example, Sammons & Smee, 

1998). There are several factors that contribute to both the current and earlier test score: 

ability of pupil, influence of teacher (if the teacher is the same at the time of both tests), 

influence of school (if the school is the same at the time of both tests). There may also be 

influences related to the neighbourhood where the pupil lives, the background of the pupil, 

etc. In the multilevel model, we would expect to see random components of the model that 

relate to the levels of the data hierarchy: pupil, teacher, class, school. We may also see 

random components relating to neighbourhood, background, etc. Thus the earlier test score is 

related to the random components of the multilevel model and the standard regression 

assumption of independence of the explanatory variables and the random part of the model is 

not tenable. This fact is largely ignored in the modelling of pupil progress. Papers such as 

Goldstein & Thomas (1996), Gray et al (1995) and Sammons & Smee (1998) do not address 

the problems associated with endogeneity with the result that the estimates of their model 

parameters may not be consistent. This lack of consistency may be of more importance in 

some situations than in others, but unless the problem is examined, the extent to which the 

parameter estimates are affected is unknown. Conclusions drawn from the suspect results may 

be inappropriate. 
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In this paper, a re-analysis of part of the Teaching Styles data (Bennett, 1976) is conducted. 

The Teaching Styles project had two aims. One was to see if different types of pupil 

performed better under certain teaching styles and the other, of prime interest in this paper, 

was to examine whether the progress of pupils was affected by different teaching styles. 

 
Bennett sent questionnaires regarding classroom techniques to 1500 primary school teachers 

in 871 schools in Lancashire and Cumbria and used principal components analysis followed 

by cluster analysis to identify different teaching styles. A seven cluster model was adopted 

and these seven were subsequently reduced to three clusters. The clusters were identified as 

containing teachers using Formal, Mixed and Informal teaching methods. To examine pupil 

progress in relation to the three teaching styles, Bennett chose 12 year four teachers of each of 

the three styles. The teachers chosen were those that displayed teaching characteristics typical 

of the styles. Attainment and personality tests were then administered to the pupils in these 

teachers’ classes in the September at the start of their fourth year and again at the end of the 

academic year the following June. 

 
The analysis of pupil progress in three subject areas (Reading, Mathematics and English) was 

presented in Chapter 5 of Bennett (1976) using analysis of covariance. The use of this method 

of analysis ignores the clustering of the pupils into classes and effectively assumes that each 

pupil was taught by a different teacher, leading to small standard errors. Aitkin, Anderson & 

Hinde (1981) presented a re-analysis of the data (see also Aitkin, Bennett & Hesketh, 1981; 

Gray & Satterly, 1981), and for pupil progress used a variance components modelling 

approach that respected the hierarchical nature of the data (pupils grouped under teachers) 

and also defined the styles of the teachers using a latent class model. 

 
Spencer & Fielding (1998) carried out a comparison of modelling strategies for value-added 

analyses of educational data using the Iterative Generalized Least Squares algorithm found in 

the package MLn (Rasbash & Woodhouse, 1995) and a Bayesian approach using Gibbs 

sampling as found in the BUGS package (Spiegelhalter et al, 1995). In this current work, 

aspects of both these approaches are used together to analyse the Teaching Styles data, with 

the package MLwiN (Goldstein et al, 1998) used as the successor to MLn. The work in this 

paper concentrates on obtaining an easily implemented estimation strategy that employs 

readily available modelling software so that the methods are capable of being routinely used 

by researchers carrying out similar analyses. 
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In section 2 of this paper, models used by Bennett (1976) and Aitkin, Anderson & Hinde 

(1981) are introduced and the problem of endogeneity is recognised. In section 3, two 

estimation methods that allow for the endogeneity problem (using instrumental variables and 

using Gibbs sampling techniques) are discussed. An approach is then developed that 

combines the estimation strategies available via the BUGS and MLwiN software packages. In 

section 4, the results obtained when the combined approach is used are considered and the 

specification of prior distributions is discussed in section 5. Conclusions are provided in 

section 6. 

 

2. Models and the problem of endogeneity 

The simple model used by Bennett (1976) relates the post-test score (June test) to the three 

teaching styles used, allowing for the pre-test score (September test). The model used is thus 

of the form below. 

( )y xijk j ijk ijk= + + − +β α β0 1 x e  

 

where  is the post-test score for pupil k taught by teacher i using teaching style j and  

is the pre-test score for the same pupil. The 

yijk xijk

α j  is the fixed effect of teaching style j and  

is the pupil-specific random error. This model effectively combines any and all the effects the 

teachers have into just the teaching style effect, 

eijk

α j , and thus assumes that all teachers of a 

particular style are identical. Also because no allowance is made for the clustering of pupils 

within classes under a single teacher, the model effectively makes the assumption that each 

pupil has his or her own individual teacher, not shared with any of the other pupils. These 

assumptions that are made by adopting this model are clearly not tenable. 

 

Aitkin, Anderson & Hinde (1981) introduced a variance component for the teacher into the 

model, as below (with a simple change in notation). 

 

( )y x xijk j ijk i ijk= + + − + +β α β δ0 1 0 e  

 

where  is the random effect of teacher i. This introduction of this teacher effect allows 

teachers to vary in the effects they have on their pupils’ scores beyond simply the effect of 

teaching style and also enables pupils within the same class to have the same teacher effect 

δ0i
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applied to them, thus acknowledging the hierarchical structure of the data. This model is 

therefore a considerable improvement over that used by Bennett (1976). 

 

In this paper we now additionally recognise that the contribution of the pupil to the post-test 

score is e  (subsumed with the lowest level error component) and that the regressor, , 

being a pre-test score on the same pupil, will contain a contribution from the pupil that will 

have a positive correlation with . We also additionally recognise that the teacher effect for 

the post-test, δ , also accounts for any school effects that influence the post-test. As these 

school effects may also influence the pre-test score, the regressor  will also contain a 

contain a contribution from the school that will have a positive correlation with . Thus  

is an endogenous variable for the model, being correlated with both random components, 

ijk xijk

eijk

0i

xijk

δ0i xijk

δ0i  

and , and we must consider the effect that this has on the estimation procedure used. eijk

 

Standard multilevel estimation procedures, such as those used in the software described in 

section 1, make the assumption that the regressors in a model are independent of the random 

effects and are thus not designed to produce consistent estimates when applied to models with 

an endogenous variable. Usually this will mean that the estimates obtained for a model with 

an endogenous regressor will be inconsistent. There is, however, a set of circumstances when 

this is not the case. If the endogeneity is only caused by correlations at levels of the model 

hierarchy above the lowest level and the assumption of normality is made for all components 

of the random part of the model, then it can be shown that, subject to a reparameterisation, the 

conditional distributions allowing for the endogeneity are equivalent to a specification of the 

model using conditional distributions assuming that the endogeneity is not present (Aitkin, 

1999). In these circumstances, the standard estimation procedures would not produce 

inconsistent results. 

 

For the modelling of the Teaching Styles data in this paper, these set of circumstances would 

exist if the endogeneity was only due to the correlation of the regressor, , with the teacher 

effect, . However, as the endogeneity is also caused by the correlation with the pupil effect 

at the time of post-test, e , we have an added complication and inconsistent parameter 

estimates may result. The extent to which this lack of consistency affects the parameter 

estimates will depend greatly on the sizes of the correlations involving the regressor which 

xijk

δ0i

ijk
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cause the endogeneity. As, however, these correlations are not known and can only be 

speculated about, failure to address the endogeneity problem will have an unknown impact on 

the estimates and the conclusions subsequently drawn. Clearly some approach to overcome 

the endogeneity problem is required. 

 

3. Modelling Strategies 

3.1. USING MLWIN WITH INSTRUMENTAL VARIABLE ESTIMATION 

The above model suggested by Aitkin, Anderson & Hinde (1981) can easily be used to model 

the Teaching Styles data and parameter estimates can be obtained using a multilevel 

modelling package such as MLwiN. 

 

However, on their own, the techniques used by MLwiN and other packages similarly 

designed for multilevel modelling do not address the problem of endogeneity. A possible 

solution is offered by using instrumental variable methods which were first developed to 

address precisely this problem of correlation between the regressors and model disturbance. 

In essence, an instrumental variable estimation procedure uses a set of variables that act as 

“instruments” for the original set of regressors. This instrument set may include some of the 

original regressors but the key is that the instrument set should be uncorrelated with the 

model disturbance while at the same time being closely related to the original regressor set. 

The instrument set is then used in the estimation process alongside the original regressor set 

in such a manner that consistent estimates result. 

 

Originating and widely used in the field of econometrics, these instrumental variable methods 

have been the subject of some scepticism. The major concern is that of defining an 

appropriate instrument set. If the original regressor set is correlated with the model 

disturbance then is likely that any other set of variables closely related to it (as the instrument 

set is required to be) will also be correlated with the model disturbance. It is this choosing of 

the variables to act as the instrument set that is crucial to the success and integrity of the 

instrumental variable approach. This, in turn, leads to another problem associated with 

instrumental variable methods. If an instrument set is chosen so that its lack of correlation 

with the model disturbance is beyond question, then it may not be as closely related to the 

original regressor set as one would wish. This lack of a close correlation between instrument 

and regressor sets can lead to large standard errors for the instrumental variable estimates and, 
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on some occasions, leave the estimates uninterpretable. For further information on 

instrumental variable methods see, for example, Bowden & Turkington (1984). 

 

Previous work concerning the application of instrumental variable methods to multilevel 

models with endogenous variables has been carried out by Fielding & Spencer (1997, 1998). 

In their work, consistent estimates of the fixed parameters in the model are first obtained 

using instrumental variables. An appropriate multilevel modelling package such as MLwiN is 

then used to estimate the other model parameters (the random parts of the model) whilst 

constraining the fixed parameters to be equal to the instrumental variable estimates. The 

resulting estimates of the random parameters of the model are then used to obtain the standard 

errors of the instrumental variable estimates. 

 

The reason why this strategy would produce consistent parameter estimates can be seen by 

examining why inconsistent estimates are arrived at if no steps are taken to address the 

endogeneity problem. The Iterative Generalized Least Squares algorithm in MLwiN is, as its 

name suggests, an iterative procedure with firstly estimates of the fixed part of the model 

being obtained and then these are used to obtain estimates of the random part of the model. 

These estimates of the random part are then used to re-estimate the fixed part of the model 

and the iterative procedure continues until convergence of the parameter estimates occurs. In 

a situation where endogeneity exists, the initial estimate of the coefficient of the endogenous 

variable will not be consistent. This inconsistent estimate will then be used in the estimation 

of the random part of the model and cause further inconsistency here. This inconsistency of 

the estimates of the random part of the model will then be fed back into the estimation of all 

the parameters in the fixed part of the model. By using the consistent instrumental variable 

estimates of the fixed effects in the algorithm, the random parameters will be estimated 

consistently and so all the parameter estimates that result will be consistent. 

 

In order to implement this strategy in the context of the model used in this paper, an 

instrument must be found that is related to the endogenous pre-test score whilst being 

independent of the model disturbance. This is not always straightforward as it is often the 

case that such suitable background variables have not been collected. With the Teaching 

Styles data, there is a wealth of information regarding personality attributes available, 

measured at both the pre-test and post-test occasions. The post-test personality measurements 

may clearly be related to the post-test model disturbance (which includes a pupil-specific 



  

effect), and are thus unsuitable for use as instruments. The relationships between the pre- test 

personality measurements and the post-test model disturbance is less clear and need further 

investigation before they can be considered suitable for use as instruments. This is the subject 

of ongoing work and for the purposes of this paper, the cautious option of not using them as 

instruments is chosen. As a result, the Teaching Styles data does not have available obvious 

variables that are appropriate for use as instruments with which to implement the instrumental 

variable approach, so alternatives must be considered. 

 

3.2. USING BUGS 

An alternative modelling strategy is to use a completely Bayesian approach, as implemented 

via Gibbs sampling in the package BUGS. A model can be constructed which respects the 

hierarchical nature of the data, as below. 

 

( )y z z z x x eijk ijk ijk ijk ijk i ijk= + + + − + +α α α β δ1 1 2 2 3 3 1 0 0  

 

where  is the post-test score for pupil k taught by teacher i using teaching style j and  

is the pre-test score for the same pupil. The 

yijk xijk

α1 , α2 , α3  are the main effects for the three 

teaching styles with the z , ,  being appropriately defined dummy variables. The 

 is the random effect associated with teacher i and the  is the pupil-specific effect. 

This model is identical (subject to a change in parameterisation) to that used by Aitkin, 

Anderson & Hinde (1981). 

ijk1 z ijk2 z ijk3

δ0i e ijk0

 

The endogeneity of the pre-test score can also be respected by allowing it to be modelled as 

below. 

 
x x eijk i ijk− = +δ1 1  

 
where  is the random effect associated with teacher i and the  is the pupil-specific 

effect. 

δ1i e ijk1

 

To respect the endogeneity, the δ0i , δ1i  are defined as coming from a bivariate normal 

distribution and, independently, the ,  are also defined as coming from a bivariate 

normal distribution. 

e ijk0 e ijk1
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Non-informative priors (normal distributions with means of zero and precisions of 0.00001) 

are assigned to the fixed parameters. These effectively say that before examination of the 

data, the effects of the teaching styles are assumed to be identical and zero, but the low 

precisions and thus high variances attached to this assumption mean that it is a very weak 

assumption and information from the data will swamp its effect. For the bivariate normal 

distributions for the random parameters, we have zero mean vectors as priors (i.e. random 

effects have means of zero) and arbitrarily defined scale matrices with the numbers 2 on the 

main diagonal and 1 in the off-diagonal positions. These matrices indicate the relative sizes of 

the covariance matrices. Other definitions of the prior distributions could be used and are 

investigated later in section 5 of this paper. 

 

A BUGS analysis starts with each parameter having a pre-determined start value. A Gibbs 

sampling algorithm then simulates the full joint distribution of all the parameters by obtaining 

a single sample for each parameter, one at a time, from its conditional distribution given all 

the other parameters (see Best, Spiegelhalter, Thomas & Brayne, 1996, for more details). To 

begin with, the starting values will have a non-negligible influence on the sample values 

obtained for each parameter. However, as the sampling continues, the effect of these starting 

values will diminish and eventually effectively disappear. At some time after the 

commencement of the Gibbs sampler, convergence should occur. This effectively means that 

the conditional distributions, from which samples are being obtained, are not changing from 

iteration to iteration of the sampler. Once this convergence has occurred, the subsequent 

samples obtained from the Gibbs sampler can be seen as being realisations of the joint 

distribution and sample statistics (e.g. mean, standard deviation) can be calculated from them 

to summarise the distributions of the parameters. 

 

There remains the question of how to decide when then parameter values have converged. 

Graphical displays of the updated parameter values can be inspected and there are also 

convergence criteria that have been developed. Accompanying the BUGS software is a suite 

of menu-driven S-Plus functions known collectively as CODA (Best, Cowles & Vines, 1995) 

which helps the BUGS user in determining whether or not convergence has occurred. 

 

With the help of CODA, a run of 500 BUGS updates was considered for the Reading tests 

from the Teaching Styles data. Although being a relatively large number of updates, taking 

some considerable computer time, inspection of plots of the updated parameter values showed 



  

that they did not all display the pattern of white noise around a stationary value, characteristic 

of a state of convergence. Use of the convergence criteria available through CODA also 

revealed a lack of convergence for some of the parameters. 

 

Although convergence for all the parameter estimates was not occurring, that of β1 , the 

coefficient of the endogenous variable, did appear to have converged after a reasonably short 

period of time. This was also true when the Mathematics and English tests from the Teaching 

Styles data were examined. This prompted the consideration of a combined strategy for 

modelling the data. 

 

3.3. A COMBINED STRATEGY 

This combined strategy uses the multilevel modelling abilities of the package MLwiN, with 

its flexibility for constraining parameters, with the ability of BUGS to obtain a consistent 

estimate of the coefficient of the endogenous variable from an analysis that takes a modest 

amount of time to run. 

 

In a similar manner to the way the instrumental variable estimates of the fixed effects could 

be used as described in section 3.1, MLwiN is used to estimate the parameters of the 

multilevel model whilst constraining the coefficient of the endogenous regressor to be equal 

to the value obtained from the BUGS analysis. The initial estimate of the coefficient of the 

endogenous variable will be consistent and so via the Iterative Generalized Least Squares 

algorithm the other fixed effects will also have consistent estimates. This will then yield 

consistent estimates of the random part of the model and the iterative procedure will continue 

until convergence. What then result are consistent estimates of all the model parameters: that 

for the coefficient of the endogenous variable coming from the BUGS analysis and those for 

the other parameters coming from the MLwiN analysis. Standard errors produced by MLwiN 

will be conservative as they do not allow for variation in the coefficient of the endogenous 

variable and this must be borne in mind when conclusions are drawn. 

 

We thus have a means of obtaining consistent parameter estimates for all parts of the model 

using a combination of the modelling strategies used with BUGS and MLwiN. 
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4. Comparison of results 

4.1. USING TEACHING STYLES AS DEFINED BY BENNETT (1976) 

The combined modelling strategy was employed in analysing the Reading, Mathematics and 

English tests from the Teaching Styles data, with the allocation of teachers to styles being that 

defined in Bennett (1976). The length of the BUGS run used was 250 updates. Convergence 

of  appeared to have been achieved after 100 updates and its mean value was calculated 

from the last 150 updates. This was a cautiously large number of updates and a shorter run 

may also have produced acceptable results. 

β1

 

We present the results obtained using the combined BUGS and MLwiN strategy for estimates 

of ,  and α , the main effects for the teaching styles, in table I (with standard 

deviations in brackets). For comparison purposes, we also have figure 1 (following the format 

of figures from Aitkin, Anderson & Hinde, 1981) showing these results from the combined 

strategy alongside the effects of teaching styles published in Bennett (1976). Also displayed 

are estimates of the effects of teaching styles obtained from an EM algorithm similar to that 

used by Aitkin, Anderson & Hinde (1981) whose paper does not provide such information for 

the teaching styles as defined by Bennett (1976). Notably, we have standard errors to consider 

here that were not provided by Bennett (1976), and the EM algorithm used by Aitkin, 

Anderson & Hinde did not provide them either. 

α1 α2 3

 
Table I. Main effects for Bennett’s teaching styles from combined strategy 

 
 Formal style Mixed style Informal style 
Reading 105.3 (1.387) 106.1 (1.397) 104.7 (1.341) 
Mathematics 103.8 (1.191) 102.7 (1.210) 103.2 (1.160) 
English 107.7 (0.936) 106.6 (0.949) 105.6 (0.910) 

 

As can be seen from figure 1, for English, the three estimation strategies produce very similar 

results. For Mathematics, the EM algorithm and Bennett’s estimates are quite close but the 

combined strategy produces smaller differences between the teaching styles, although the 

ordering of the estimates is maintained. For Reading, the combined strategy produces 

estimates that have the same order as Bennett’s estimates but the differences are less extreme. 

The EM algorithm produces a different picture with the ordering of the Formal and Mixed 

styles reversed. 
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Figure 1. Teaching style effects for combined strategy, Bennett (1976) and EM 

algorithm 
 Bennett (1976),  EM algorithm,  Combined Strategy 
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Looking at table I, we see that for Reading and Mathematics, the differences between the 

estimates for the styles is within two standard deviations leading us to observe that there is 

insufficient evidence to claim that any style is better or worse than the others regarding the 

results of the post-test, using the two standard deviations rule of thumb. For English it appears 

that the estimates for the Formal and Informal styles are more than two standard deviations 

apart. However, it should be noted that the standard deviations given are conservative ones at 

best because when the MLwiN part of the combined strategy was being undertaken, the 

variation associated with the BUGS estimate of the β1  coefficient was not used. Thus the real 

standard errors for the style effects should be greater than those displayed in table I and the 

difference between the Formal and Informal styles for English may not be as important as it 

first seems. 

 

4.2. USING TEACHING STYLES AS DEFINED BY AITKIN, ANDERSON & HINDE (1981) 

The combined modelling strategy was also used to analyse the Reading, Mathematics and 

English tests from the Teaching Styles data, with the allocation of teachers to styles now 

being that defined by Aitkin, Anderson & Hinde (1981). The estimate of the coefficient of the 

endogenous variable from BUGS was obtained in the same manner as in section 4.1. 

 

Table II shows the main effects for the teaching styles obtained using the combined BUGS 

and MLwiN strategy (with standard deviations in brackets). We also have figure 2 showing 

these results from the combined strategy alongside those from Aitkin, Anderson & Hinde 

(1981). 

 
Table II. Main effects for Aitkin, Anderson and Hinde’s teaching styles from 

combined strategy 
 

 Formal style Mixed style Informal style 
Reading 104.8 (1.172) 104.2 (1.816) 106.2 (1.394) 
Mathematics 103.3 (0.976) 101.5 (1.503) 103.8 (1.162) 
English 107.4 (0.794) 104.8 (1.225) 106.1 (0.946) 
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As can be seen from figure 2, the ordering of the estimates for the three teaching styles is the 

same for Aitkin, Anderson & Hinde (1981) and the combined strategy for all three subjects. 

Importantly though, the combined strategy produces estimates that show less extreme 

differences between the styles. With the same warning about the standard errors shown in 

table II as described in section 4.1, we observe that there is insufficient evidence to claim that 

the teaching styles differ in their effects using the two standard deviations rule of thumb. 
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Figure 2. Teaching style effects for combined strategy and Aitkin, Anderson & 

Hinde (1976) 
 Aitkin, Anderson & Hinde (1981),  Combined Strategy 
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Despite the fact that the results from the combined strategy do not differ greatly from those 

obtained by Bennett (1976), they have been arrived at by properly taking into account the 

hierarchical nature of the data and also the problem of endogeneity. Therefore, it is possible to 

interpret the results with a greater degree of confidence, and given the sizes of the standard 

deviations, the conclusion is reached that there appear not to be any significant differences 

between the main effects of the three teaching styles. 

 

5. Priors 

In the BUGS analyses carried out above, non-informative priors were used. To briefly assess 

the sensitivity of the estimate of the coefficient of the pre-test score to different specifications 

of the prior distributions, two further BUGS runs were undertaken using the Reading test 

data. The first run simplified the approach to the scale matrices for the bivariate normal 

distributions for the random parameters by using identity matrices. The second run used 

different but sensible prior distributions for the α1 , α2 , α3  (normal distributions with means 

equal to the mean of the post-test and precisions of 0.00001) and for β1  (a normal distribution 

with mean equal to 1 and precision of 0.00001). 

 

As before, runs of 250 updates were conducted and convergence of β1  appeared to have been 

achieved after 100 updates. Its mean value was calculated from the last 150 updates. Both the 

runs yield a mean value of 0.837 for β1 , close to the 0.874 used previously. Thus, although a 

comprehensive review of alternative prior distributions has not been carried out, some degree 

of confidence can be felt in the robustness of the estimate to alternative specifications of the 

prior distributions. 

 

6. Conclusions 

The analysis of the Teaching Styles data shown in this paper has revealed that there is not 

enough evidence to suggest that real differences exist between the results obtained from the 

three styles of teaching, whether the teachers are allocated to styles by the method of Bennett 

(1976) or that of Aitkin, Anderson & Hinde (1981). This finding, coming from an analysis 

that both respects the clustering of the pupils in the study and the existence of an endogenous 

variable in the modelling process unlike previous analyses, is made possible due to the 

availability of (admittedly conservative) standard errors for the estimates of the teaching style 

effects that had not been available for previous analyses. 
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It has been shown that the modelling strategies employed in BUGS and MLwiN can be 

combined to provide the researcher with a means of obtaining consistent parameter estimates 

for models containing an endogenous variable. The extent to which ignoring the endogeneity 

problem affects the results of an analysis is not known before the problem is addressed and 

may substantially affect the conclusions drawn. Combining the approaches overcomes 

difficulties encountered when attempting to carry out the analysis using instrumental variables 

with MLwiN (lack of suitable variables to be used as instruments) and when using BUGS on 

its own (problems of convergence). As always, the researcher must be competent at using the 

packages involved and have a working knowledge of the procedures that underpin them. This 

is particularly the case for the BUGS side of the combined strategy where prior distributions 

must be specified and convergence judged. It is also noted that some Gibbs sampling 

procedures are available through currently available versions of MLwiN and it is possible that 

in the future the combined strategy may be available using just this package, although the 

level of understanding required of the researcher will be the same as when BUGS is used. 
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