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Abstract5

Herein, cluster output synchronization for memristive neural networks (MNNs) is investigated using two differ-6

ent control schemes. Existing synchronization models for MNNs focus on the behavior of a single neuron node in7

one-cluster networks. However, actual neural networks (NNs) are clustered organizations consisting of multiple in-8

teracting clusters, where the nodes from the same cluster combine and work together. This study proposes a cluster9

output synchronization model for MNNs, which considers the combination output behavior of the nodes in NNs clus-10

ters. Accordingly, two specific control schemes are designed: one based on feedback control involves designing a11

small number of controllers to reduce control costs, and the other based on adaptive control involves designing mul-12

tiple adjustable controllers to increase the anti-interference capacity of the control system. Meanwhile, to facilitate13

synchronization in MNNs, a model relationship between MNNs and traditional NNs is investigated. By utilizing the14

control schemes, model relationship, and Lyapunov stability theory, sufficient conditions are obtained for validating15

the cluster output synchronization. Finally, several numerical examples are given to illustrate the accuracy of the16

theoretical results.17
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1. Introduction19

Before the memristor was discovered in 1971, through the relationship between charge and magnetic flux, Chua20

theoretically inferred the existence of a basic circuit component in addition to the resistor, capacitor, and inductor21

[1]. Thirty-seven years later, Hewlett-Packard Company successfully validated Chua’s theory by making the first22

memristive nanometer device [2]. Subsequently, it has been successfully applied in various fields owing to its excellent23

characteristics, such as low power consumption, good scalability, and nonvolatile memory [3–5]. A breakthrough24

application would be to establish a memristive neural network model because memristor can accurately mimic real25

synapsis. Compared to traditional NNs, MNNs have more complex and richer dynamics behaviors and can better26

simulate real nervous systems. Thus, many studies on the dynamics characteristics of MNNs have been published27

[6–8].28

As a type of primary collective behavior, synchronization can be widely observed in many natural environments29

and complex systems. In recent years, synchronization of complex networks has attracted a lot of research attention30

due to its applicability to associative memory [9], brain science [10], information encryption [11], combinatorial31

optimization [12] and so on. Notably, many studies into the synchronization of MNNs have also been conducted32

because synchronization behavior is pivotal to some important NNs functions (e.g., information expression [13] and33

pattern recognition [14]). In [15], the authors explored quasi-synchronization for a class of chaotic MNNs, which34

were treated as the NNs with indeterminate coefficients, and a feedback control strategy was employed to realize35

synchronization. In [16], Li et al. considered the MNNs with parameter mismatch and derived some sufficient36

conditions for lag synchronization by utilizing the Halanay inequality and ω-Measure method. By applying weighted37

double-integral inequalities and Lyapunov stability theory, Feng et al. studied asymptotic synchronization for MNNs38
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with mixed delay under quantized intermittent control [17]. More studies could be found in [18–22] and the references39

therein.40

Synchronization can be divided into various models depending on the characteristics of collective dynamical be-41

haviors: cluster synchronization, finite-time synchronization, fixed-time synchronization, asymptotic synchronization42

and output synchronization . Among them, cluster synchronization is unique. It can be observed when the ensemble of43

a network divides into several portions where the nodes within one portion are synchronous, whereas those from dif-44

ferent portions are not. Because cluster synchronization behavior is common across many natural and science systems45

[23], and has a wide range of applications, cluster synchronization of complex networks, including traditional NNs,46

has been extensively studied [24–29]. For instance, Zhou et al. applied an adaptive pinning control strategy to handle47

cluster synchronization problem of complex networks with diverse dynamics nodes and stochastic disturbances [24].48

In [25], the authors simultaneously dealt with fixed-time and finite-time synchronization for complex networks with49

interacting clusters in the cases with and without pinning control, and synchronization settling time was estimated50

by applying theories on finite-time stability. In [26], a type of traditional NNs with hybrid coupled term and delay51

was studied and cluster synchronization was achieved by utilizing a matrix-based method. In [27], the authors further52

researched the main results of [26] and extended early finding to a type of stochastic delayed NNs. However, cluster53

synchronization for MNNs has not yet been reported, which remains as an open challenge.54

In accordance with the model structure, current synchronization models for MNNs, such as the ones in [15–22],55

can almost be sorted into a type of node-to-node synchronization pattern, as illustrated in Fig.1. The node within the56

response system attempts to synchronize with the according node within the drive system via a controller. Such a57

pattern focuses on the behavior of a single node in a network containing one cluster, while it may be monotonous and58

insufficient for NNs study. On the one hand, although it is feasible to control neuron node states for synchronization59

by applying neural electrode tools [30], many neuron nodes in NNs are usually present, and successfully controlling60

each node is unlikely and difficult. On the other hand, NNs consist of multiple structured clusters, where the nodes61

belonging to the same cluster share morphological and functional similarities, and always combine and work together62

for function implementations [31, 32]. Thus, combination behaviors of neuron nodes within clusters, such as the63

weighted sum of node states [33], have a more direct and significant effect on function than single node behavior. For64

instance, in some NNs studies on information expression and processing mechanism [34, 35], it was demonstrated65

that accurate and complete information expression in NNs is based on the weighted sum of node states in populations66

(i.e., clusters). In contrast, the single node state only presents limited and rough information. Therefore, to elucidate67

the synchronization activities of NNs [13, 14], it is necessary to consider the combination behavior of neuron nodes68

in NNs clusters.69

Accordingly, this article proposes a cluster output synchronization model for MNNs, as demonstrated in Fig. 270

where the weighted sums of node states in clusters are expressed as the cluster outputs, and the synchronization is71

realized between the outputs of the drive and response systems. The main contributions of this study are summarized72

below.73

1) A cluster output synchronization model for MNNs (and NNs) is presented for the first time. It differs from the74

existing node-to-node synchronization models and provides a more practical model structure for MNNs. Moreover, it75
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Figure 1: Node-to-node synchronization model for MNNs.
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Figure 2: Cluster output synchronization model for MNNs where wi, i = 1, 2, · · · , zq denote output weights.

is more general since it can be reduced to the node-to-node model in the special case that there exists only one node76

in each cluster, which can be observed in Fig. 2.77

2) To study synchronization in MNNs, a model relationship between MNNs and traditional NNs is investigated78

by employing differential inclusion and measurable function theories.79

3) Two specific control schemes are designed for the proposed synchronization model, where one scheme aims80

to reduce control costs by designing a small number of fixed feedback controllers, whereas the other is designed to81

increase the anti-interference capacity in control system using adjustable adaptive controllers. Utilizing the control82

schemes, model relationship, and Lyapunov stability theory, some sufficient conditions are then obtained to ensure83

cluster output synchronization.84

Notations: Throughout this article, diag(a1, a2, ..., an) denotes a diagonal matrix of n-dimension. For a matrix A,85

AT and A−1 stand for the transpose and the inverse of A, respectively. ‖·‖ represents the standard 2-norm of a matrix86

or vector. Let ε > 0, C([−ε, 0],R) stands for the family of continuous functions from [−ε, 0] to R. In represents the87

n-dimensional identity matrix. 1n denotes the all-one column vector in Rn.88

2. Preliminaries89

In this article, we consider a directed network with a set of nodes ν = {1, 2, ...,D} and assume that it can be split90

into q nonempty clusters, represented by ν1, ν2, ..., νq which satisfy ∪q
`=1ν` = ν . For convenience, let N` denote the91

number of `th cluster ν` and Z` =
∑`

J=1 NJ . Then, it is expressible that ν` = {Z`−1 + 1,Z`−1 + 2, ...,Z`}, where Z0 = 0.92

Additionally, for j ∈ ν`, let j̄ denote the subscript of `th cluster, i.e., j̄ = ` if j ∈ ν`.93

Consider the following MNNs with multiple clusters and time-varying delay, whose dynamic equation can be94

described by95

ẋi(t) = −sixi(t) +

Zq∑
j=1

ψi j(xi(t)) f j̄(x j(t)) +

Zq∑
j=1

φi j(xi(t))g j̄(x j(t − ε j̄(t))) + Ii, i ∈ ν`, `= 1,...,q (1)
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where si > 0 represents the self-inhibition, f j̄(·) and g j̄(·) denote the activation functions in j̄th cluster, ε j̄(t) stands96

for the transmission delay in j̄th cluster and meets 0 < ε j̄(t) ≤ ε j̄, where ε j̄ > 0 is a constant. Ii is the outside input.97

ψi j(xi(t)) and φi j(xi(t)) are the memristive connection weights, and based on the simplified mathematical model of98

memristor, we can describe them as follows:99

ψi j(xi(t)) =

 ←

ψi j, |xi(t)| ≤ Ti
~ψi j, |xi(t)| > Ti

(2)

100

φi j(xi(t)) =

 ←

φi j, |xi(t)| ≤ Ti
~φi j, |xi(t)| > Ti

(3)

where switching jumps Ti > 0,
←

ψi j, ~ψi j,
←

φi j and ~φi j are some constants. The initial values of (1) are denoted as101

xi(a) = Gi(a), a ∈ [−εī, 0], and Gi(a) ∈ C([−εī, 0],R), i ∈ ν`, `= 1,...,q.102

Viewing (1) as drive system, response system that aims to synchronize with (1) is103

ẏi(t) = −siyi(t) +

Zq∑
j=1

ψi j(yi(t)) f j̄(y j(t)) +

Zq∑
j=1

φi j(yi(t))g j̄(y j(t − ε j̄(t))) + ui + Ii, i ∈ ν`, `= 1,...,q (4)

where ψi j(yi(t)) and φi j(yi(t)) are defined similarly to (2) and (3), respectively. ui is the controller to be designed.104

In general, the initial values of (4) are different from those of (1) and denoted by yi(a) = Fi(a), a ∈ [−εī, 0] and105

Fi(a) ∈ C([−εī, 0],R), i ∈ ν`, `= 1,...,q.106

In light of equalities (2) and (3), it is observed that MNNs are a type of discontinuous state-dependent switching107

system. Thus, the solutions of the systems (1), (4) will be handled in Filippovs sense. In the following, we give the108

relevant definition.109

Definition 1 ([36]): The Filippov set-valued map of g(t, x) at x ∈ Rn is defined as110

G(t, x) =
⋂
δ>0

⋂
µ(N)=0

co[ f (B(x, ∂)\N)]

where co[·] represents the closure of the convex hull, B(x, ∂) denotes the ball of center x and radius ∂, and µ(N)111

denotes the Lebesgue measure of set N.112

Let ψ∗i j = min
{
←

ψi j, ~ψi j

}
, ψ∗∗i j = max

{
←

ψi j, ~ψi j

}
, φ∗i j = min

{
←

φi j, ~φi j

}
, φ∗∗i j = max

{
←

φi j, ~φi j

}
, ψi j =

ψ∗∗i j +ψ∗i j

2 , ∆ψi j =113

ψ∗∗i j −ψ
∗
i j

2 , φi j =
φ∗∗i j +φ∗i j

2 , ∆φi j =
φ∗∗i j −φ

∗
i j

2 .114

Then, based on Definition 1 and by utilizing differential inclusion and measurable function theories [37], the
system (1) can be rewritten as

ẋi(t) = −sixi(t) +

Zq∑
j=1

(ψi j + ∆ψi jς
1
i j(t)) f j̄(x j(t)) +

Zq∑
j=1

(φi j + ∆φi jς
2
i j(t))g j̄(x j(t − ε j̄(t))) + Ii, `= 1,...,q.

where ς1
i j(t) ∈ co[−1, 1] and ς2

i j(t) ∈ co[−1, 1] are measurable functions.115

For convenience, denote

∂x
i (t) =

Zq∑
j=1

∆ψi jς
1
i j(t) f j̄(x j(t)) +

Zq∑
j=1

∆φi jς
2
i j(t)g j̄(x j(t − ε j̄(t)))

and one has116

ẋi(t) = −sixi(t) +

Zq∑
j=1

ψi j f j̄(x j(t)) +

Zq∑
j=1

φi jg j̄(x j(t − ε j̄(t)))+∂
x
i (t) + Ii, i ∈ ν`, `= 1,...,q. (5)
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Analogously, it can be deduced from the system (4) that117

ẏi(t) = −siyi(t) +

Zq∑
j=1

ψi j f j̄(y j(t)) +

Zq∑
j=1

φi jg j̄(y(t − ε j̄(t)))+∂
y
i (t) + ui + Ii, i ∈ ν`, `= 1,...,q (6)

where ∂y
i (t) =

Zq∑
j=1

∆ψi jς
3
i j(t) f j̄(y j(t))+

Zq∑
j=1

∆φi jς
4
i j(t)g j̄(y(t − ε j̄(t))), and ς3

i j(t) ∈ co[−1, 1] and ς4
i j(t) ∈ co[−1, 1] are some118

measurable functions.119

Remark 1: By applying the differential inclusion and measurable selection theories, memristive connection co-120

efficients can be divided into two portions. Then, we can separate the terms ∂x
i (t) and ∂y

i (t) (i ∈ ν`, `= 1,...,q) in the121

systems (5) and (6). It can be seen from the definitions of ∂x
i (t) and ∂y

i (t) that they reflect the coefficient jumps caused122

by memristor. The rest coupling portions including
∑Zq

j=1 ψi j f j̄(x j(t)),
∑Zq

j=1 φi jg j̄(x j(t − ε j̄(t))),
∑Zq

j=1 ψi j f j̄(y j(t)) and123 ∑Zq

j=1 φi jg j̄(y j(t − ε j̄(t))) (i ∈ ν`, `= 1,...,q) have constant connection coefficients and are similar to the coupling forms124

in traditional NNs [38–40]. Thus, some approaches developed in these researches can be utilized to efficiently tackle125

these portions in the later work. Such a transformation helps to build a model relationship between traditional NNs126

and MNNs and is useful for the synchronization study of MNNs.127

The cluster output synchronization problem will be investigated in this article. Thus, the cluster output form of128

the system (5) is given by129 
˙̃x`(t) = −S ` x̃`(t) +

q∑
J=1

Ψ`J f̃J(x̃J(t)) +

q∑
J=1

Φ`J g̃J(x̃J(t − εJ(t))) + ∂̃x
` (t) + Ĩ`,

Xo
` (t) = W` x̃`(t), ` = 1, ..., q

(7)

where Xo
` (t) denotes the output of `th cluster in the drive system, W` = (wZ`−1+1,wZ`−1+2, ...,wZ` ) is the output weight130

vector, and other notations are x̃`(t) =
(
xZ`−1+1 , xZ`−1+2, ..., xZ`

)T , S ` = diag(sZ`−1+1, sZ`−1+2, ..., sZ` ), Ψ`J= (ψi j)N`×NJ
,131

Φ`J= (φi j)N`×NJ
, f̃J(x̃J(t)) = ( fJ(xZJ−1+1(t)), ..., fJ(xZJ (t)))T , g̃J(x̃J(t−εJ(t))) = (gJ(xZJ−1+1(t − εJ(t))), ..., gJ(xZJ (t − εJ(t))))T ,132

∂̃x
` (t) = (∂x

Z`−1+1(t), ..., ∂x
Z`

(t))T , Ĩ`(t) = (IZ`−1+1, ..., IZ` )
T .133

Similarly, the cluster output form of the system (6) can be written as134 
˙̃y`(t) = −S `ỹ`(t) +

q∑
J=1

Ψ`J f̃J(ỹJ(t)) +

q∑
J=1

Φ`J g̃J(ỹJ(t − εJ(t))) + ∂̃
y
`
(t) + U` + Ĩ`,

Yo
` (t) = W`ỹ`(t), ` = 1, ..., q

(8)

where Yo
` (t) is the output of `th cluster in the response system, and other notations are defined similarly to those in (7).135

Remark 2: Clustered behavior of neuron nodes is crucial for proper NNs functions [41]. In recent years, the136

cluster synchronization of traditional NNs have been extensively investigated [26–29]. Compared with traditional137

NNs, MNNs can better simulate actual NNs and have wider applicability [3]. Unfortunately, no research on cluster138

synchronization of MNNs has been reported. The main difficulty is that MNNs are a type of discontinuous state-139

dependent switching system, which can be treated as the model of traditional NNs with uncertain and mismatched140

coefficients. Therefore, cluster synchronization with respect to MNNs is more difficult to handle. By building the141

aforementioned model relationship, some handling techniques utilized in traditional NNs are referable for our study,142

and the problem is addressed with relative ease.143

Before obtaining the main results, we introduce some useful assumptions, lemmas, and definitions.144

Assumption (H1): For any z1, z2 ∈ R, there exist some constants l` > 0, l∗` > 0 and d` > 0 (` = 1, ..., q), such that145

activation functions f`(·) and g`(·) satisfy146

| f`(·)| ≤ l`,
147

|g`(·)| ≤ l∗` ,
148

| f`(z1) − f`(z2)| ≤ d` |z1 − z2| .
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Assumption (H2): The time delay ε`(t) satisfies 0 < ε`(t) ≤ ε` and ε̇`(t) ≤ µ` < 1 (` = 1, ..., q), where µ` > 0,149

ε` > 0 are some constants.150

Lemma 1: The linear matrix inequality (LMI)151

χ =

(
χ11 χ12
χ21 χ22

)
< 0

is equivalent to any one of the following two conditions:152

(L1)χ11 < 0, χ22 − χ
T
12χ11

−1χ12 < 0
(L2)χ22 < 0, χ11 − χ

T
12χ22

−1χ12 < 0

where χT
11 = χ11 and χT

22 = χ22.153

Lemma 2: Given any vectors q, p ∈ Rn, the following inequality holds.154

2qT p ≤ qT q + pT p.

Definition 2: Drive-response systems (1) and (4) are said to realize cluster output synchronization if for any initial155

values of the systems, the following equation holds156

lim
t→∞

∣∣∣Yo
` (t) − Xo

` (t)
∣∣∣ = 0

for ` = 1, 2, ..., q.157

Remark 3: Output synchronization for complex networks has been previously studied [42–44]; system output can158

be described as Z(t) = Hx(t), where H denotes the output matrix. The system output forms indicate similarities in159

combining node states via a matrix or vector. However, our study is distinguishing from theirs. First, the dissipation160

coupling assumption condition (i.e., the sum of each row of coupling configuration matrix is 0), which is crucial for161

the synchronization of complex networks, had to be satisfied in these studies. However, this condition is strict for162

MNNs and does not need to be satisfied. Thus, the derived results from these studies are inapplicable to this study.163

Moreover, unlike general dynamic systems [42–44], MNNs, as a class of more complicated state-dependent switching164

dynamic systems, are taken into account in this study, which results in more complexity.165

3. Main result166

In this section, two control schemes are designed for the proposed synchronization model. In the first one, a feed-167

back controller is designed for each cluster to reduce control costs. In the second one, multiple adjustable adaptive168

controllers are designed for each cluster, which can increase the anti-interference capacity of control system. In prac-169

tical applications, two schemes can be flexibly chosen according to specific needs. Then, utilizing the control schemes170

and Lyapunov stability theory, some sufficient conditions are derived to ensure cluster output synchronization.171

The system error is defined as σ̃`(t) = ỹ`(t) − x̃`(t), and subtracting (7) from (8) yields the following error system:172 
˙̃σ`(t) = −S `σ̃`(t) +

q∑
J=1

Ψ`J f̂J(σ̃J(t)) +

q∑
J=1

Φ`J ĝJ(σ̃J(t − εJ(t))) + Π̃`(t) + U`,

σo
` (t) = W`σ̃`(t), ` = 1, ..., q

(9)

where f̂J(σ̃J(t)) = f̃J(x̃ j(t)) − f̃J(ỹ j(t)), ĝJ(ẽJ(t − εJ(t))) = g̃J(x̃J(t − εJ(t))) − g̃J(ỹJ(t − εJ(t))) and Π̃`(t) = ∂̃
y
`
− ∂̃x

` =173

(ΠZ`−1+1(t), ...,ΠZ` (t))
T .174

3.1. The first control scheme175

For convenience of the later study, the following notations are introduced. Let χ` =
q∑

J=1

δJ
δ`

c∗J`
τbm , υ` = ρ +176

q∑
J=1

τ−1∑
m=1

(c`J
τam + c∗`J

τbm ) +
χ`eρε

1−µ`
, o` =

δJ
δ`

eρε
q∑

J=1
cJ`

τaτ , Υ` = 2
N∑̀
i=1

∣∣∣wz`−1+i

∣∣∣ Zq∑
j=1

(
l`∆ψz`−1+i, j +l∗`∆φz`−1+i, j

)
, where δ`, c`J , c

∗
`J , ρ177

are some positive constants, τ ≥ 2 is a integer, am and bm are nonnegative constants and satisfy
τ∑

m=1
am =

τ∑
m=1

bm = 1.178

6



In this scheme, one controller is designed for each cluster. Without loss of generality, assume that the weight179

wZ`−1+1 of the first node Z`−1 + 1 in the cluster ν` (` = 1, 2, ..., q) is not zero. Then, the controller is added to the first180

node and designed as follows181 
uZ`−1+1(t) = −

N∑̀
i=1

wZ`−1+i

wZ`−1+1

(
kZ`−1+iσZ`−1+i(t) +ξZ`−1+isign(W`σ̃`(t))

)
,

uZ`−1+ j(t) = 0, j = 2, 3, ...,N`

(10)

where kZ`−1+i and ξZ`−1+i are control gains to be decided, sign(·) stands for standard sign function.182

Note that by a simple calculation, it can be derived from (10) that183

W`U` = −W`K`σ̃`(t) −W`Γ`Sgn(W`σ̃`(t)) (11)

where W` = (wz`−1+1,wz`−1+2, ...,wz` ), U` = (uz`−1+1, uz`−1+2, ..., uz` )
T , K` = diag(kZ`−1+1, kZ`−1+2, ..., kZ` ), Γ` = diag

(
ξZ`−1+1,184

ξZ`−1+2, ..., ξZ`
)

and Sgn(W`σ̃`(t)) = sign(W`σ̃`(t)) · 1q.185

Theorem 1: Under Assumptions (H1) and (H2), drive system (1) and response system (4) can realize cluster output186

synchronization via the control scheme (10), if for some positive constants υ`, o`,M`J ,M∗`J and Υ` (`, J = 1, 2, ..., q),187

the control parameters K` and Γ` meet the conditions C1) and C2).188

C1): K` + S ` = h`IN`
, where h` meets h` ≥ 1

τ
(υ` + o`), τ ≥ 2 is a known integer.189

C2): W`Γ`1` ≥ Υ` +
q∑

J=1
(M`J + M∗`J).190

Proof: Construct the following Lyapunov-Krasovskii function:191

V(t) =

q∑
`=1

δ`eρt |W`σ̃`(t)|τ +
eρε

1 − µ`

q∑
`=1

χ`

∫ t

t−ε`(t)
Λ`(a)da

in which Λ`(a) = δ`eρε` |W`σ̃`(a)|τ, a ≥ 0. Other notations used in this proof have been defined in the above.192

Taking the upper right derivative of V(t) along the error system obtains193

D+V(t) =

q∑
`=1

[
ρδ`eρt |W`σ̃`(t)|τ + τδ`eρt |W`σ̃`(t)|τ−1sign(W`σ̃`(t))W`D+σ̃`(t)

]
+
χ`eρε

1 − µ`

q∑
`=1

[Λ`(t) − (1 − ε̇`(t))Λ`(t − ε`(t))]

≤

q∑
`=1

[
ρΛ`(t) + τδ`eρt |W`σ̃`(t)|τ−2W`σ̃`(t)W` D+σ̃`(t)

]
+ χ`eρε

q∑
`=1

[
Λ`(t)
1 − µ`

− Λ`(t − ε`(t))]

(12)

where Assumption (H2) has been utilized.194

First, we handle the second term in (12): τδ`eρt |W`σ̃`(t)|τ−2W`σ̃`(t)W`D+σ̃`(t).195

From (11), one can obtain196

τδ`eρt |W`σ̃`(t)|τ−2W`σ̃`(t)W`D+σ̃`(t)

=τδ`eρt |W`σ̃`(t)|τ−2W`σ̃`(t)W`

[
− S `σ̃`(t) +

q∑
J=1

Ψ`J f̂J(σ̃J(t))

+

q∑
J=1

Φ`J ĝJ(σ̃J(t − ε`(t))) + Π̃`(t) − K`σ̃`(t) − Γ`Sgn(W`σ̃`(t))
] (13)
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Based on Assumption (H1), one has

W`σ̃`(t)W`Ψ`J f̂J(σ̃J(t)) ≤ 2lJ |W`σ̃`(t)|
∣∣∣W`Ψ`J1NJ

∣∣∣
≤ 2lJ |W`σ̃`(t)|

∣∣∣∣∣∣∣
NJ∑

m=1

N∑̀
n=1

wnψnm

∣∣∣∣∣∣∣ .
Note that 2lJ

∣∣∣∣∣∣ NJ∑
m=1

N∑̀
n=1

wnψnm

∣∣∣∣∣∣ is a limited constant, and thus there exist some positive constants M`J and ĉ`J such197

that 2lJ

∣∣∣∣∣∣ NJ∑
m=1

N∑̀
n=1

wnψnm

∣∣∣∣∣∣ ≤ M`J + ĉ`J |WJσ̃J(t)|, and note that ĉ`J |WJσ̃J(t)| ≤ c`J |WJσ̃J(t)| where c`J = max(ĉ`J , ĉJ`).198

Thus, we have199

W`σ̃`(t)W`Ψ`J f̂J(σ̃J(t)) ≤ M`J |W`σ̃`(t)| + c`J |W`σ̃`(t)| |WJσ̃J(t)| . (14)

Similarly, based on Assumption (H1), there exist positive constants M∗`J and c∗`J such that200

W`σ̃`(t)W`Φ`J ĝJ(σ̃J(t − ε`(t))) ≤ 2l∗J |W`σ̃`(t)|
∣∣∣W`Φ`J1NJ

∣∣∣
≤ |W`σ̃`(t)| (M∗`J + c∗`J |WJσ̃J(t − ε`(t))|)
≤ M∗`J |W`σ̃`(t)| + c∗`J |W`σ̃`(t)| |WJσ̃J(t − εJ(t))|

(15)

Substituting (14) and (15) into (13) yields

τδ`eρt |W`σ̃`(t)|τ−2W`σ̃`(t)W`D+σ̃`(t)

≤ τδ`eρt |W`σ̃`(t)|τ−2
{
W`σ̃`(t)W`

[
(−S ` − K`)σ̃`(t) + Π̃`(t) − Γ`Sgn(W`σ̃`(t))

]
+

q∑
J=1

c`J |W`σ̃`(t)| |WJσ̃J(t)| +
q∑

J=1

c∗`J |W`σ̃`(t)| |WJσ̃J(t − εJ(t))| +
q∑

J=1

(M`J + M∗`J) |W`σ̃`(t)|
}

Based on Assumption (H1), it is derived that

W`Π̃`(t) =

N∑̀
i=1

wz`−1+iΠz`−1+i(t)

≤

N∑̀
i=1

∣∣∣wz`−1+i

∣∣∣ ( ∣∣∣∣∂y
z`−1+i(t)

∣∣∣∣ +
∣∣∣∂x

z`−1+i(t)
∣∣∣ )

≤ 2
N∑̀
i=1

∣∣∣wz`−1+i

∣∣∣ Zq∑
j=1

(l`∆ψz`−1+i, j + l∗`∆φz`−1+i, j)

and let201

Υ`
∆
= 2

N∑̀
i=1

∣∣∣wz`−1+i

∣∣∣ Zq∑
j=1

(l`∆ψz`−1+i, j + l∗`∆φz`−1+i, j) (16)

Then, we have

W`σ̃`(t)W`(−Γ`Sgn(W`σ̃`(t)) + Π̃`(t)) ≤ (−W`Γ`1` + Υ`) |W`σ̃`(t)|

Thus, it is followed that

τδ`eρt |W`σ̃`(t)|τ−2W`σ̃`(t)W`D+σ̃`(t)

≤ τδ`eρt |W`σ̃`(t)|τ−2
{
W`σ̃`(t)W`(−S ` − K`)σ̃`(t) +

q∑
J=1

c`J |W`σ̃`(t)| |WJσ̃J(t)|

+

q∑
J=1

c∗`J |W`σ̃`(t)| |WJσ̃J(t − εJ(t))| − [W`Γ`1` − Υ` −

q∑
J=1

(M`J + M∗`J)] |W`σ̃`(t)|
}
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From the condition C1) and C2), one has202

q∑
`=1

[W`Γ`1` − Υ` −

q∑
J=1

(M`J + M∗`J)]
∣∣∣(W`σ̃`(t))T

∣∣∣ ≤ 0

and203

W`σ̃`(t)W`(−S ` − K`)σ̃`(t) = −h`W`σ̃`(t)W`σ̃`(t)

Therefore, we obtain204

τδ`eρt |W`σ̃`(t)|τ−2W`σ̃`(t)W`D+σ̃`(t)

≤ −τh`δ`eρt |W`σ̃`(t)|τ + δ`eρt
q∑

J=1

τc`J |W`σ̃`(t)|τ−1 |WJσ̃J(t)|

+ δ`eρt
q∑

J=1

τc∗`J |W`σ̃`(t)|τ−1 |WJσ̃J(t − εJ(t))|

(17)

According to the fact

τs1s2 · · · sτ ≤ sτ1 + sτ1 + · · · + sττ, si ≥ 0, i = 1, 2, · · · , τ

it can be deduced that205

δ`eρt
q∑

J=1

τc`J |W`σ̃`(t)|τ−1 |WJσ̃J(t)|

= δ`eρt
q∑

J=1

τ

 τ−1∏
m=1

c`J
am |W`σ̃`(t)|

 c`J
aτ |WJσ̃J(t)|

≤ δ`eρt
q∑

J=1

τ−1∑
m=1

c`J
τam |W`σ̃`(t)|τ + δ`eρt

q∑
J=1

c`J
τaτ |WJσ̃J(t)|τ

(18)

and206

δ`eρt
q∑

J=1

τc∗`J |W`σ̃`(t)|τ−1 |WJσ̃J(t − εJ(t))|

= δ`eρt
q∑

J=1

τ

 τ−1∏
m=1

c∗`J
bm |W`σ̃`(t)|

 c∗`J
bτ |WJσ̃J(t − εJ(t))|

≤ δ`eρt
q∑

J=1

τ−1∑
m=1

c∗`J
τbm |W`σ̃`(t)|τ + δ`eρt

q∑
J=1

c∗`J
τbτ |WJσ̃J(t − εJ(t))|τ

(19)
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In light of (12), (17)-(19), we have

D+V(t) ≤
q∑
`=1

[
ρΛ`(t) − τh`δ`eρt |W`σ̃`(t)|τ + δ`eρt

q∑
J=1

τ−1∑
m=1

c`J
τam |W`σ̃`(t)|τ

+ δ`eρt
q∑

J=1

c`J
τaτ |WJσ̃J(t)|τ + δ`eρt

q∑
J=1

τ−1∑
m=1

c∗`J
τbm |W`σ̃`(t)|τ

+δ`eρt
q∑

J=1

c∗`J
τbτ |WJσ̃J(t − εJ(t))|τ

]
+ χ`eρε

q∑
`=1

[
Λ`(t)
1 − µ`

− Λ`(t − ε`(t))]

≤

q∑
`=1

(−τh` + ρ +

q∑
J=1

τ−1∑
m=1

c`J
τam +

q∑
J=1

τ−1∑
m=1

c∗`J
τbm )Λ`(t) +

δ`
δJ

q∑
J=1

c`J
τaτΛJ(t)

+
δ`
δJ

eρε
q∑

J=1

c∗`J
τbτΛJ(t − εJ(t))

 + χ`eρε
q∑
`=1

[
Λ`(t)
1 − µ`

− Λ`(t − ε`(t))]

Then, according to the definitions of χ`, υ` and o` and utilizing the condition C1), it is derived that

D+V(t) ≤
q∑
`=1

(−τh` + ρ +

q∑
J=1

τ−1∑
m=1

c`J
τam +

q∑
J=1

τ−1∑
m=1

c∗`J
τbm +

χ`eρε

1 − µ`
)Λ`(t) +

δ`
δJ

eρε
q∑

J=1

c`J
τaτΛJ(t)


= −

q∑
`=1

(τh` − υ` − o`)Λ`(t) ≤ 0

Thus, we have V(t) ≤ V(0) for all t ≥ 0. According to the definition of V(t), it is derived that
q∑̀
=1
δ`eρt |W`σ̃`(t)|τ ≤207

V(t). Since V(0) is a limited constant, there exist some positive constants $`, ` = 1, ..., q, such that δ`eρt |W`σ̃`(t)|τ ≤208

$`
τ ≤ V(0). Hence, |W`σ̃`(t)| ≤ δ`−

1
τ$`e−

ρ
τ t, t ≥ 0.209

According to Definition 2, drive system (1) and response system (4) realize cluster output synchronization under210

the control scheme (10). This completes the proof.211

Remark 4: In this control scheme, one feedback controller is devised for each cluster, which helps to save control212

costs and is easily implemented in practice. However, this control scheme may be fragile if the sole controller in cluster213

is subjected to malicious attacks. Specifically, owing to many nodes existing in each cluster, multiple controllers can214

be designed and added to these nodes for output synchronization in each cluster. Thus, a more flexible control scheme215

can be designed.216

3.2. The second control scheme217

The first scheme uses feedback control, and the obtained control gains ki and ξi (i ∈ ν`, ` = 1, · · · , q) may be much218

larger than those practical applications need owing to algorithm conservativeness. Thus, adaptive control, as a method219

to reduce control gain effectively, is utilized in this scheme. Compared with the first one, it aims to reduce the control220

gains and increase the anti-interference capacity of the system by designing some adjustable controllers.221

In the cluster ν` (` = 1, · · · , q), without loss of generality, the weights of the first o` nodes are assumed to be222

non-zero, where o` ≤ N` is a positive integer. Then, the adaptive controllers are added to those nodes and designed as223

uZ`−1+m(t) =


N∑̀
i=1

p`mi(t)wZ`−1+i

wZ`−1+m
[−kZ`−1+i(t)σZ`−1+i(t) − ξZ`−1+i(t)sign(W`σ̃`(t))], m = 1, . . . , o`

0, m = o` + 1, ...,N`

(20)

where p`mi(t) denotes the switching control parameter and its value is 0 or 1, and the adaptive updating laws of kZ`−1+i(t)224

and ξZ`−1+i(t) are designed as225  k̇Z`−1+i(t) = eρtaZ`−1+iσZ`−1+i(t)(W`σ̃`(t))T

ξ̇Z`−1+i(t) = eρtbZ`−1+i |W`σ̃`(t)|
(21)
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where aZ`−1+i > 0, bZ`−1+i > 0, ρ > 0 are some known constants.226

It is noted that when p`mi(t) satisfies
O∑̀

m=1

N∑̀
i=1

p`mi(t) = N`, it can be calculated that227

W`U` = −W`K`(t)σ̃`(t) −W`Γ`(t)Sgn(W`σ̃`(t)) (22)

where W` = (wz`−1+1,wz`−1+2, ...,wz` ), U` = (uz`−1+1, uz`−1+2, ..., uz` )
T , K`(t) = diag(kZ`−1+1(t), kZ`−1+2(t), ..., kZ` (t)), Γ`(t) =228

diag(ξZ`−1+1(t), ξZ`−1+2(t), ..., ξZ` (t)) and Sgn(W`σ̃`(t)) = sign(W`σ̃`(t)) · 1q.229

Remark 5: In the existing literatures, controllers are usually unadjustable during synchronization. With respect to230

the characteristic of the proposed model, switching control parameters p`mi(t) (m = 1, ..., o`, i = 1, ...,N`, ` = 1, ..., q)231

are introduced in the scheme (20). It is seen from (20) that the position and the number of the controllers in the cluster232

ν` are adjustable by taking different values of p`mi(t). For example, let s` ≤ o` (` = 1, ..., q) be an arbitrary positive233

integer and take
∑N`

i=1 p`mi(t) = N`, m = s` and
∑N`

i=1 p`mi(t) = 0 , m , s` in (20). Then, one controller is obtained in the234

cluster ν`, and its position is variable depending on the value of s`. Also, multiple controllers can be obtained by the235

proper values of p`mi(t). Importantly, p`mi(t) is time-varying and thus the controllers can be adjusted in real time, which236

can be designed as the switch trigger in practical applications. Hence, if the systems are maliciously attacked, timely237

adjustment of the values of p`mi(t) can help remedy sudden control problems. In the final simulations, an example will238

be given to verify the effectiveness of this control scheme.239

Theorem 2: If Assumptions (H1) and (H2) are satisfied and the control parameter p`mi(t) meets
O∑̀

m=1

N∑̀
i=1

p`mi(t) = N`240

(` = 1, ..., q), drive system (1) and response system (4) can realize cluster output synchronization under the control241

scheme (20).242

Proof: Construct the following Lyapunov-Krasovskii function:243

V(t) = V1(t) + V2(t) + V3(t) (23)
244

V1(t) =

q∑
`=1

αeρt(W`σ̃`(t))T W`σ̃`(t)

V2(t) = α

q∑
`=1

N∑̀
J=1

[wZ`−1+J

ai
(kZ`−1+J(t) − k̂Z`−1+J)

2
+

wZ`−1+J

bi
(ξZ`−1+J(t) − ξ̂Z`−1+J)2

]
245

V3 =

q∑
`=1

∫ t

t−ε`(t)
eρ(ε`+s)ϑ`(W`σ̃`(s))T W`σ̃`(s)ds.

where α, ξ̂i, k̂i, ϑi are some positive constants.246

First, taking the derivative of V1(t) can obtain247

V̇1(t) =

q∑
`=1

[
2αeρt(W`σ̃`(t))T W` ˙̃σ`(t) + αρeρt(W`σ̃`(t))T W`σ̃`(t)

]
=2αeρt

q∑
`=1

(W`σ̃`(t))T W`

[
− S `σ̃`(t) +

q∑
J=1

Ψ`J f̂J(σ̃J(t)) +

q∑
J=1

Φ`J ĝJ(σ̃J(t − ε`(t)))

+ Π̃`(t) − K`(t)σ̃`(t) − Γ`(t)Sgn(W`σ̃`(t))
]

+ αρeρt
q∑
`=1

(W`σ̃`(t))T W`σ̃`(t)

(24)

Considering that

2αeρt
q∑
`=1

(W`σ̃`(t))T W`[Π̃`(t) − Γ`(t)Sgn(W`σ̃`(t))]

≤ 2αeρt
q∑
`=1

N∑̀
J=1

wZ`−1+J(
∣∣∣ΠZ`−1+J(t)

∣∣∣ − ξZ`−1+J(t)) |W`σ̃`(t)| ,
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and by employing (14) and (15), we obtain

V̇1(t) ≤ 2αeρt
q∑
`=1

(W`σ̃`(t))T W`(−S ` − K`(t))`σ̃`(t) + 2αeρt
q∑
`=1

N∑̀
J=1

wZ`−1+J(ΠZ`−1+J(t) − ξZ`−1+J(t)) |W`σ̃`(t)|

+ 2αeρt
q∑
`=1

q∑
J=1

(M`J + M∗`J)
∣∣∣(W`ẽ`(t))T

∣∣∣ + 2αeρt
q∑
`=1

q∑
J=1

c`J

∣∣∣(W`ẽ`(t))T
∣∣∣ |WJσ̃J(t)|

+ 2αeρt
q∑
`=1

q∑
J=1

c∗`J

∣∣∣(W`σ̃`(t))T
∣∣∣ |WJσ̃J(t − ε`(t))| + αρeρt

q∑
`=1

(W`σ̃`(t))T W`σ̃`(t)

According to the adaptive law (21), computing the derivative of V2(t) gets248

V̇2(t) = 2α
q∑
`=1

N∑̀
J=1

wZ`−1+J(kZ`−1+J(t) − k̂Z`−1+J)σZ`−1+J(t)eρt(W`σ̃`(t))T

+ 2α
q∑
`=1

N∑̀
J=1

wZ`−1+J(ξZ`−1+J(t) − ξ̂Z`−1+J)eρt |W`σ̃`(t)|

= 2αeρt
q∑
`=1

(W`σ̃`(t))T W`(K`(t) − K̂`)σ̃`(t)

+ 2αeρt
q∑
`=1

N∑̀
J=1

wZ`−1+J(ξZ`−1+J(t) − ξ̂Z`−1+J) |W`σ̃`(t)|

(25)

Computing the derivative of V3(t) along the error system obtains249

V̇3(t) ≤
q∑
`=1

eρ(ε`+t)ϑ`(W`σ̃`(t))T W`σ̃`(t) − eρt
q∑
`=1

(1 − µ`)ϑ`(W`σ̃`(t − ε`(t)))T W`σ̃`(t − ε`(t)) (26)

where Assumption (H2) has been utilized.250

By (24), (25) and (26), one has

V̇(t) ≤ 2αeρt
q∑
`=1

(W`σ̃`(t))T W`(−S ` − K̂`)σ̃`(t) + 2αeρt
q∑
`=1

N∑̀
J=1

wZ`−1+J(
∣∣∣ΠZ`−1+J(t)

∣∣∣ − ξ̂Z`−1+J) |W`σ̃`(t)|

+ 2αeρt
q∑
`=1

(M` j + M∗` j)
∣∣∣(W`σ̃`(t))T

∣∣∣ + 2αeρt
q∑
`=1

q∑
J=1

c`J

∣∣∣(W`σ̃`(t))T
∣∣∣ |WJσ̃J(t)|

+ 2αeρt
q∑
`=1

q∑
J=1

c∗`J

∣∣∣(W`σ̃`(t))T
∣∣∣ |WJσ̃J(t − εJ(t))| + αρeρt

q∑
`=1

(W`σ̃`(t))T W`σ̃`(t)

+ eρt
q∑
`=1

eρε`ϑ`(W`σ̃`(t))T W`σ̃`(t) − eρt
q∑
`=1

(1 − µ`)ϑ`(W`σ̃`(t − τ`(t)))T W`σ̃`(t − ε`(t))

Now, we tackle the second term : 2αeρt
q∑̀
=1

N∑̀
J=1

wZ`−1+J(
∣∣∣ΠZ`−1+J(t)

∣∣∣ − ξ̂Z`−1+J) |W`σ̃`(t)|. First, note that

∣∣∣Πz`−1+J(t)
∣∣∣ ≤ ∣∣∣∣∂y

z`−1+J(t)
∣∣∣∣ +

∣∣∣∂x
z`−1+J(t)

∣∣∣ ≤ 2
Zq∑
i=1

(l`∆ψz`−1+J,i + l∗`∆φz`−1+J,i)

Then, by taking ξ̂Z`−1+J = ξ̂∗Z`−1+J+ξ̂∗∗Z`−1+J , where ξ̂∗Z`−1+J = 2
Zq∑
i=1

(l`∆ψz`−1+J,i + l∗`∆φz`−1+J,i) and
N∑̀

J=1
ξ̂∗∗Z`−1+J =M`J+M∗`J ,
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we have

2αeρt
q∑
`=1

N∑̀
J=1

wz`−1+J(
∣∣∣Πz`−1+J(t)

∣∣∣ − ξ̂z`−1+J) |W`σ̃`(t)| ≤ −2αeρt
q∑
`=1

(M`J + M∗`J)
∣∣∣(W`σ̃`(t))T

∣∣∣
Thus, one has

V̇(t) ≤ 2αeρt
q∑
`=1

(W`σ̃`(t))T W`(−S ` − K̂`)σ̃`(t) + 2αeρt
q∑
`=1

q∑
J=1

c`J

∣∣∣(W`σ̃`(t))T
∣∣∣ |WJσ̃J(t)|

+ 2αeρt
q∑
`=1

q∑
J=1

c∗`J

∣∣∣(W`σ̃`(t))T
∣∣∣ |WJσ̃J(t − ε`(t))| + eρt

q∑
`=1

(αρ + eρε`ϑ`)(W`σ̃`(t))T W`σ̃`(t)

− eρt
q∑
`=1

(1 − µ`)ϑ`(W`σ̃`(t − ε`(t)))T W`σ̃`(t − ε`(t))

Let K̂` = d`IN`
− S `, where d` > 0 is a constant to be decided, and one obtains

V̇(t) ≤ eρt
q∑
`=1

(−2αd` + αρ + eρε`ϑ`)(W`σ̃`(t))T W`σ̃`(t) + 2αeρt
q∑
`=1

q∑
J=1

c`J

∣∣∣(W`σ̃`(t))T
∣∣∣ |WJσ̃J(t)|

+ 2αeρt
q∑
`=1

q∑
J=1

c∗`J

∣∣∣(W`σ̃`(t))T
∣∣∣ |WJσ̃J(t − ε`(t))| − eρt

q∑
`=1

(1 − µ`)ϑ`(W`σ̃`(t − ε`(t)))T W`σ̃`(t − ε`(t))

Introduce the following notations : ϕ1 = (|W1σ̃1(t)| , |W2σ̃2(t)| , ...,
∣∣∣Wqσ̃q(t)

∣∣∣)T , ϕ2 = (|W1σ̃1(t − ε`(t))| ,251

|W2σ̃2(t − ε`(t))| , ...,
∣∣∣Wqσ̃q(t − ε`(t))

∣∣∣)T
, ϕ = (ϕ1 ϕ2)T , Ω = diag( − 2αd1 + αρ + eρε1ϑ1,.., − 2αdq + αρ + eρεqϑq),252

Ξ = diag(ϑ1 − ϑ1µ1, ..., ϑq − ϑqµq).253

Then, we can obtain

V̇(t) ≤ eρt[ϕT
1 Ωϕ1 + 2αϕT

1 Cϕ1 + 2αϕT
1 C∗ϕ2 − ϕ

T
2 ΞΘϕ2]

= eρtϕT Σϕ

where Σ =

(
Ω + 2αC αC∗

αC∗T −Ξ

)
254

Let d` >
αρ+eρτϑ`+2αλmax(C)

2α , ` = 1, ..., q, and it is inferred that255

Ω + 2αC < 0 (27)

Because C∗ is norm-bounded, there exists a positive constant γ(C∗T C∗) such that
∥∥∥C∗T C∗

∥∥∥ ≤ γ(C∗T C∗). Thus,256

taking 0 <
√
α < λmin(−Ω − 2αC)β/γ(C∗T C∗), where β = min{ϑi(1 − µi), i = 1, ..., q}, one has257

Ω + 2αC + α2C∗T Ξ−1C∗ < 0. (28)

By Lemma 1, the inequalities (27) and (28) imply that Σ < 0.258

Thus, it is obtained that V(t) ≤ V(0) for all t ≥ 0. According to (23), one has
∑q
`=1 αeρt(W`σ̃`(t))T W`σ̃`(t) ≤ V(0).259

Thus, there exist some constants δ`, ` = 1, ..., q, such that αeρt(W`σ̃`(t))T W`σ̃`(t) ≤ δ`2 ≤ V(0). Hence, |W`σ̃`(t)| ≤260
√
αδ`e−

ρ
2 t, t ≥ 0.261

According to Definition 2, drive system (1) and response system (4) realize cluster output synchronization under262

the control scheme (20). This completes the proof.263

Remark 6: Feedback and adaptive controls are used to realize the synchronization of MNNs in this article, and264

they are also effective for the synchronization of traditional NNs. In many existing studies such as [28, 29, 45], some265

simple linear feedback and adaptive controllers were considered: u(t) = kσ(t) and u∗(t) = k∗(t)σ(t). However, they266
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cannot ensure the synchronization of MNNs due to parameter mismatches, as indicated in [18, 19]. It can be found267

from the proofs of Theorems 1 and 2 that the control terms ξsign(·) and ξ(t)sign(·) in (10) and (20) play a crucial268

role in eliminating the synchronization errors of MNNs. Some studies on traditional NNs [46, 47] also considered the269

control terms ξsign(·) and ξ(t)sign(·), and the differences between their controllers and ours lie in two aspects. On the270

one hand, for the proposed cluster output synchronization model, the controller design is specific and different, such271

as containing the information of output weights, which is vital for cluster output synchronization. On the other hand,272

the switching control parameters p`mi(t) are introduced in the proposed synchronization model, as discussed in Remark273

5. Therefore, compared with the existing controllers in traditional NNs, the proposed one is more flexible and has a274

better anti-interference capacity.275

Remark 7: Computational complexity is significant for analyzing operation efficiency of controllers. It is seen276

from (10) that the computation burden of the first scheme mainly includes a set of scalar addition, multiplication,277

division and comparison. Specifically, the scheme (10) involves 3N` −2 additions, 4N` multiplications, 1 division and278

1 comparison where N` denotes the number of nodes in cluster ν`(` = 1, 2, · · · , q). By transforming these basic opera-279

tions into multiplications [48], computational complexity of the first scheme is approximately 7N` +9 multiplications.280

Applying the Big O notation, computational complexity can be expressed as O(N`). It is observed from (20) and (21)281

that the second scheme involves not only the basic operations (i.e., addition, multiplication, division and comparison),282

but also differentiation. Thus, on the one hand, by transforming the basic operations into multiplications, (20) and283

(21) totally involve o`N` + 10o` + 12N` −1 multiplications where o` ≤ N` denotes the number of the non-zero weights284

in cluster ν`. The corresponding computational complexity using the Big O notation is O(o`N`). On the other hand,285

to handle the differentiation in (21), computational complexity is O(sk3N`) when applying Runge-Kutta method [49],286

where k is the number of stages of generating implicit Runge-Kutta method and s is the number of steps. Therefore,287

the overall complexity for the second control scheme is O(o`N` + sk3N`). It is clear that computation complexities of288

two schemes grow linearly as the variables increase except k.289

Remark 8: The purpose of synchronization in NNs is to control the networks toward the expected states for cer-290

tain functions (e.g., accurate information expression [13]). Thus, fruitful results have been presented with regard to291

MNNs synchronization, which include various synchronization models such as quasi-synchronization [15], lag syn-292

chronization [16], adaptive synchronization[50], asymptotic synchronization [21], and exponential synchronization293

[18]. However, their model structures are monotonous and focus on the one-cluster networks. In fact, NNs include294

multiple clusters where the nodes from the same cluster collaborate and work together via the combination behaviors295

such as the weighted sum of nodes states [33–35]. Therefore, this article proposes cluster output synchronization296

model for MNNs. Figs.1 and 2 indicate that the proposed model can be reduced to the node-to-node model if one297

node exists in each cluster. Thus, our study can corroborate previous results, such as those in [20, 50], as special cases.298

1
x

Cluster1

2
x

3
x

Cluster2

4
x

Figure 3: The network topology among four neuron nodes and the arrow represents the direction of information transfer.
299

4. Numerical simulation300

In this section, we utilize several numerical simulations to verify the accuracy of the theoretical results.301

Consider four-neuron MNNs (1) with the network topology shown in Fig. 3, where the nodes can be divided into302
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two clusters, and the matrices of memristive connection coefficients in (2) and (3) are303

←

Ψ = (
←

ψi j)4×4 =


−0.4 1.2 0.25 0
1.1 −0.55 0 0.5
0 0.5 −1.5 3

0.33 0 1 −2


304

~Ψ = (~ψi j)4×4 =


−0.5 1.3 0.26 0
1.2 −0.45 0 0.45
0 0.51 −1.2 2.4

0.32 0 0.8 −1.6


305

←

Φ = (
←

φi j)4×4 =


−0.7 2.5 1.1 0
1.4 −0.2 0 0.1
0 0.2 −0.3 2.1

0.15 0 0.2 −1.4


306

~Φ = (~φi j)4×4 =


−0.9 2.1 1.12 0
1.3 −0.3 0 0.12
0 0.14 −0.33 2.4

0.1 0 0.22 −1.6


307

In cluster 1, consider weight output vector W1 = (1 2), activation function fi(x) =gi(x) = sin(x), outside input308

Ii = 0, time-varying delay εi(t) = et/(et + 1), where i = 1, 2, self-inhibition s1 = 0.8, s2 = 0.9. In cluster 2, take309

W2 = (1 3), fi(x) = gi(x) = tanh(x), Ii = 0 , εi(t) = et/(2et + 2), i = 3, 4, s1 = 1.2, s2 = 1.1. The initial value of310

the drive system (1) is considered as x(t) = (−5, 7,−1, 2)T . The response system (4) whose initial value being set as311

y(t) = (1,−1.3, 2,−1)T has the same structure as the system (1).312

It can be calculated from the above parameters that εi(t) < εi = 1, ε̇i(t) < µi = 0.5, li = l∗i = 1 (i = 1, . . . , 4),313

M = (Mi j)2×2 =

[
4.2 2.41
2.96 2.7

]
, M∗ = (M∗i j)2×2 =

[
7.4 2.66
1.09 3.87

]
, Υ1 = 3.54, Υ2 = 7.88. To guarantee the conditions314

in Theorem 1, one can take the control gains K1 =

[
3.9 0
0 3.8

]
, K2 =

[
4.0 0
0 4.1

]
and ξi = 7(i = 1, ..., 4) in the315

feedback control scheme (10), and choose other parameters ρ = 0.1, τ = 2, ai = bi = 0.5, δi = 1, i = 1, 2. Then,316

it can be calculated that h1 = 4.7 > 0.5(υ1 + o1) = 0.77, h2 = 5.2 > 0.5(υ2 + o2) = 0.62, w1ξ1 + w2ξ2 = 21 >317

Υ1 +
2∑

J=1
(M1J + M∗1J) = 20.2 and w3ξ3 + w3ξ3 = 28 > Υ2 +

2∑
J=1

(M2J + M∗2J) = 18.5, which guarantees the conditions318

in Theorem 1.319

Under the aforementioned settings, the node state trajectories in clusters 1 and 2 are depicted in Figs. 4 and 5,320

respectively. It is seen from the figures that the node xi(t) in the drive system is not synchronized with the node yi(t)321

(i = 1, · · · , 4) in the response system, which is confirmed by Fig. 6 where the node error signals do not tend to zero322

over time. In contrast, it can be observed from Fig. 7 that the combination outputs of error signals in each cluster323

quickly approach to zero, which validates the theoretical results of Theorem 1.324

In the following, we will demonstrate the effectiveness of the adaptive control scheme (20).325

Define switching control matrices P1(t) = (p1
i j(t))2×2 and P2(t) = (p2

i j(t))2×2 , and take P1(t) = P2(t) =

(
1 1
0 0

)
. In326

light of (20), we obtain two adaptive controllers u1 and u3 which are applied to clusters ν1 and ν2, respectively. Suppose327

that the adaptive control parameters in (21) are (a1 a2 a3 a4) = (0.15 0.2 0.25 0.3), (b1 b2 b3 b4) = (0.3 0.4 0.5 0.6),328

and ρ = 0.05. If the initial values in (21) are taken as ki(t) = 0.15 and ξi(t) = 0.5 (i = 1, ..., 4), the time responses of329

the node errors are presented in Fig. 8. It is seen from the figure that there is no synchronous behavior between the330

nodes. However, the simulation result of the combination outputs shown in Fig. 9 indicates that the systems realize331

cluster output synchronization. Meanwhile, the trajectories of the control gains ki and ξi (i = 1, ..., 4) are given in Figs.332

10 and 11, respectively, which are obviously smaller than the obtained ones in the above scheme (10).333

Next, to show the anti-interference capacity of the control scheme (20), we consider the case that the controllers334

u1 and u3 are attacked when t = 1.5s, that is, u1 = u3 = 0 for t > 1.5s. The simulation result is depicted in Fig.335

12, where the error signals are increased from the attack instant. In order to handle this problem, one can adjust336

P1(t) = P2(t) =

(
0 0
1 1

)
at t = 1.5s and obtain two new controllers u2 and u4 which avoid the attacks to the original337
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Figure 4: The node states of the drive and response systems in
cluster 1 under the first control scheme.
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Figure 5: The node states of the drive and response systems in cluster 2
under the first control scheme.
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Figure 6: The node errors σ1(t), σ2(t), σ3(t) and σ4(t) under the
first control scheme.
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Figure 7: The combination outputs of error signals in clusters 1 and 2
under the first control scheme.
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Figure 8: The node errors σ1(t), σ2(t), σ3(t) and σ4(t) under the
second control scheme.
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Figure 9: The combination outputs of error signals in clusters 1 and 2
under the second control scheme.
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Figure 10: The trajectories of the control gains ki, i = 1, .., 4.
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Figure 11: The trajectories of the control gains ξi, i = 1, ..., 4.
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Figure 12: The combination outputs of error signals subject to
the attack.
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Figure 13: The combination outputs of error signals after the adjustment
at the time t = 1.5s.
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Figure 14: The combination outputs of error signals after the adjustment at the time t = 3s.

nodes. Then, the simulation result presented in Fig. 13 indicates that the combination outputs can still tend to zero. If338

we take t = 3s to make the adjustment, Fig. 14 shows the simulation result, where the combination outputs are clearly339

reduced and tend to zero from the adjustment instant. These results demonstrate the anti-interference capacity of the340

control scheme (20).341

5. Conclusion342

Herein, cluster output synchronization is studied for MNNs, which is distinct from current node-to-node models343

and provides a more practical model structure for exploring NN synchronization. Two specific control schemes were344

devised for the proposed model. The first involves designing one feedback controller for each cluster, which saves345

control costs, and the other involves utilizing multiple adjustable adaptive controllers to decrease control gains and346

increase the anti-interference capacity of the control system. These two can be flexibly chosen according to specific347

needs. Simultaneously, a model relationship between MNNs and traditional NNs was established. Via the control348

schemes, the model relationship and Lyapunov stability theory, sufficient conditions were obtained to guarantee cluster349

output synchronization. Finally, several simulation examples were employed to illustrate the effectiveness of the350

proposed model. Although the cluster output synchronization model is first presented, it is still a simplified model for351

actual operation patterns in NNs. Thus, further developing some more sophisticated models will be a challenging and352

meaningful topic in the future.353
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