
 

 

A locally active discrete memristor model and its application 

 in a hyperchaotic map  

Minglin Ma*1, Yang Yang1, Zhicheng Qiu1, Yuexi Peng2, Yichuang Sun3,  

Zhijun Li1, Mengjiao Wang1  

1. School of Automation and Electronic Information, Xiangtan University, Xiangtan, Hunan 411105, P.R.China 

2. School of Computer Science & School of Cyberspace Science, Xiangtan University, Xiangtan, Hunan 411105, 

P.R.China 

3. School of Engineering and Technology, University of Hertfordshire, Hatfield AL10 9AB, UK 

Abstract: The continuous memristor is a popular topic of research in recent years, however, there 

is rare discussion about the discrete memristor model, especially the locally active discrete 

memristor model. This paper proposes a locally active discrete memristor model for the first time 

and proves the three fingerprints characteristics of this model according to the definition of 

generalized memristor. A novel hyperchaotic map is constructed by coupling the discrete memristor 

with a two-dimensional generalized square map. The dynamical behaviors are analyzed with 

attractor phase diagram, bifurcation diagram, Lyapunov exponent spectrum, and dynamic behavior 

distribution diagram. Numerical simulation analysis shows that there is significant improvement in 

the hyperchaotic area, the quasi-periodic area and the chaotic complexity of the two-dimensional 

map when applying the locally active discrete memristor. In addition, antimonotonicity and transient 

chaos behaviors of system are reported. In particular, the coexisting attractors can be observed in 

this discrete memristive system, resulting from the different initial values of the memristor. Results 

of theoretical analysis are well verified with hardware experimental measurements. This paper lays 

a great foundation for future analysis and engineering application of the discrete memristor and 

relevant the study of other hyperchaotic maps. 
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1 Introduction 

 

The concept of the generalized memristor was firstly proposed by Chua in 1971[1]. Its appearance 

filled the gap between the electric charge and magnetic flux, and became the fourth basic circuit 

element. Then in 2008, Hewlett-Packard (HP) Laboratories successfully manufactured the real 

memristor using TiO2 and nano-level technology [2], which physically proved the existence of the 

memristor. On this foundation, the memristor attracts extensive attention from scientific 

communities. Due to the non-linear characteristics and memory function of memristor, it has been 

widely applied in the fields of nanotechnology [3, 4], neural network [5–8], circuit design [9–12], 

and secure communication [13], etc. It is worth noting that adding memristor in chaotic system can 
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enhance chaos complexity and memristive coupling maps can generate hyperchaos [14], which 

provides a new research direction for the design of hyperchaotic systems. 

The continuous memristor has been extensively studied for many years. Since locally active 

memristors have more complex dynamic characteristics than passive ones, they have a wider range 

of applications. In recent years, some locally active memristor models have been proposed and 

applied. For example, Wang et al. [15] proposed a locally active memristor and combined it with a 

capacitor and an inductance circuit to realize the simplest chaotic circuit. In the same year, Li et al. 

[16] realized a bistable local active memristor. Weiher et al. [17] further proved the existence of 

locally active memristors from the perspective of material physics experiments. Lin et al. [18] 

introduced the locally active memristor into the artificial neuron model and proposed a locally active 

memristive neuron model. A bistable locally active memristor was proposed in [19], and the 

coexisting firing patterns and phase synchronization in locally active memristor coupled neurons 

with HR and FN models were investigated. Although some locally active memristors have been 

reported, they still have not been used in discrete systems because of their complex mathematical 

models and small active intervals. 

Therefore, it should be noticed that there is rare discussion about the discrete-time memristor 

model, especially the locally active discrete memristor model. On the one hand, the discrete 

memristor is more conducive to its application in discrete domain systems and digital circuits. 

Moreover, due to easy logic programming and higher accuracy, digital circuits have an important 

position in actual engineering. Therefore, the design of the discrete-time memristor mathematical 

model may become another important way to realize the memristor in the future. On the other hand, 

due to its unique iterative method, discrete memristors also provide a new direction for applications 

in secure communication and image encryption. Recently, Chew [20] proposed a discrete memristor 

based on ZnO nanowires synthesized on printed circuit board, but they did not provide the 

corresponding mathematical model. Karthikeyan [21] proposed the concept of a fractional discrete 

memristor, then the discrete memristor and the chaotic system based on the discrete memristor were 

obtained by using the discrete algorithm. Later, the discrete memristor was applied in chaotic map 

[22–24] and hyperchaotic map [25, 26]. Peng et al. [27] derived the discrete model of HP memristor, 

but they did not study the locally active discrete memristor. It should be noted that the above discrete 

memristors conform to the definition of memristors, but there is still a lack of various memristor 

models for theoretical analysis. 

Moreover, there is still a lot of space for designing novel chaotic maps based on discrete 

memristors, which is helpful to explore more application backgrounds of discrete memristors. 

Because the locally active memristor is more conducive to the application of memristor in chaotic 

systems, we believe that it should be interesting to investigate a locally active discrete memristor-

based discrete chaotic map and its dynamics. As far as we know, there have been no reports about 

this in the literature. Moreover, the two-dimensional generalized square map (2D-GSM) is a 

classical 2D discrete-time chaotic system with simple structure. It is worth studying whether the 

performance of the 2D-GSM can be improved further by using the memory and nonlinear 

characteristics of the locally active discrete memristor. As a result, our main motivation is to study 

the dynamic behaviors of a locally active memristor coupled to a two-dimensional map. In fact, the 

dynamic behaviors of discrete-time chaotic system are universal and important in the fields ranging 

from mathematics to information security.  



 

 

The rest of this paper is organized as follows. In Section 2, the locally active discrete memristor 

model is presented, and its related characteristics are investigated in detail. Section 3 shows the 

dynamics analysis of the locally active discrete memristor-based 2D-GSM. Hardware circuit based 

on FPGA is developed and circuit experiments are provided in Section 4. Finally, we conclude the 

results and prospects for future research.  

 

2 Description and analysis of the locally active discrete memristor model   

    

The locally active discrete memristor model is obtained as  
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where i(n) is the current of the memristor, u(n) is the input voltage of the memristor, W[x(n)] is the 

memductance value of the memristor, F(x, u) represents the internal state equation of the memristor 

and α, β,  are three memristive parameters. In this paper, we set α = 0.1, β = 1 and = 9.  

In order to verify the three fingerprints characteristics of the locally active discrete memristor 

model, let u(n) in Eq. (1) be equal to A sin(2πωn), that is, a sinusoidal discrete voltage signal is 

added to the discrete memristor model. And the volt-ampere curves of the locally active discrete 

memristor model are shown in Fig. 1. It shows that the volt-ampere curves present the “8”-shaped 

pinched hysteresis loops across the origin. As the amplitude A increases from 3 to 5, the area of the 

pinched hysteresis loop increases monotonously. As the frequency ω increases from 0.0001 to 

0.0005, the area of the pinched hysteresis loop decreases monotonously. In addition, when the 

frequency increases to infinity, the pinched hysteresis loop will shrink to a single-valued function 

across the origin. After the above analysis, the proposed locally active discrete memristor model 

conforms the definition of generalized memristor [28]. 

 
Moreover, non-volatility is also an important characteristic of memristors. Power-off plot (POP) 

is usually used to characterize whether the circuit device is non-volatile. In order to verify the non-

volatility of the locally active discrete memristor, let u(n) = 0, its internal state equation is simplified 

to 

(a)                                           (b) 

Fig. 1 Pinched hysteresis loops of the locally active discrete memristor model in Eq. (1). a The corresponding 

parameters are fixed at ω = 0.0001 and A = 5, 4, 3 b The corresponding parameters are fixed at A = 5 and ω = 

0.0001, 0.0002, 0.0005 
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The POP curve in the x(n+1)x(n) versus x(n) plane of the locally active discrete memristor is 

shown in Fig. 2a. In Fig. 2a, there are three negative slope intersections with the x-axis in the POP 

curve of the locally active discrete memristor. Consequently, according to the non-volatile 

memristor theorem, the proposed locally active discrete memristor model is a non-volatile 

memristor. On the other hand, there are a total of five points intersecting the x-axis in the POP curve 

of the discrete memristor, indicating that the memristor has five equilibrium points. According to 

the judgment method of Ref. [29], the equilibrium points Q1, Q3 and Q5 with negative slopes are 

asymptotically stable, while the equilibrium points Q2 and Q4 with positive slopes are unstable. 

Thus, when the discrete memristor is given different initial states x(0), the memristor gradually 

approaches three stable equilibrium states as shown in Fig. 2b, that is to say 
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( 3) 0,     if  1 (0) 1
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                            (3) 

Obviously, Fig. 2b and Eq. (3) indicate that the state x(n) of the discrete memristor is different 

from the initial state x(0), which shows its non-volatile properties. 

 

In addition, it is also necessary to verify the property of local activity by observing the memristor 

DC V–I plot. If there is a negative slope region in the DC V–I plot, the memristor is called a locally 

active memristor [29]. In order to measure the DC V–I trajectory of the locally active discrete 

memristor, set x(n+1)  x(n) = 0, x(n) = X and u(n) = V, then Eq. (1) derives its balance equation, as 

follows 

0.1 [ sgn( 1) sgn( 1)]V X X X                              (4) 

where V denotes DC voltage, and X is a variable equilibrium state satisfying x(n+1) x(n) = 0, x(n) 

= X. Then, substituting Eq. (4) into Eq. (1), the DC current I can be calculated as 

0.1 [ sgn( 1) sgn( 1)]I XV X X X X                         (5) 

Considering Eqs. (4)–(5), the DC V–I plot of the tri-stable locally active discrete memristor is 

drawn with the input DC voltage V value varying from −1 to 1 V and the variable X value varying 

within (−2.2, 2.2), as shown in Fig. 3a. It can be seen from Fig. 3a that the discrete memristor has 

three negative slope regions, so it is a locally active memristor. Moreover, the pinched hysteresis 

loops of the discrete memristor model with different initial values are shown in Fig. 3b. Therefore, 

 (a)                                            (b) 

Fig. 2 Nonvolatile memory of the locally active discrete memristor: a POP with five equilibria and b an 

asymptotically tri-stable memory plot 



 

 

it is worth studying whether the initial state of the locally active memristor can cause the memristive 

coupling system to produce coexistent attractors.   

 

3 Dynamics of the locally active discrete memristor-based hyperchaotic map   

 

3.1 The locally active discrete memristor-based hyperchaotic map 

 

Generally, the two-dimensional generalized square map (2D-GSM) is obtained by extending the 

one-dimensional map. Its mathematical expression is 
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2 2
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where x(n) and y(n) denote variables of the system, a, b and r are system parameters.  

When the locally active discrete memristor is coupled to the 2D-GSM, the locally active 

discrete memristive hyperchaotic map (DMHM) can be established and written as 

2 2

2 2
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         (7) 

where a, b, r and α are system parameters and k represents the coupling coefficient. In this paper, 

we set a = 10, α = 0.1 and k = 0.1.  

The structure diagram of DMHM is shown in Fig. 4. The locally active discrete memristor is 

added to the original map for status feedback control. 

  (a)                                            (b) 

Fig. 3 The local activeness of the locally active discrete memristor: a DC V−I loci associated with the 

equilibrium state on interval −2.2 < X < 2.2 b A = 5, ω = 0.0001 and different initial state-dependent pinched 

hysteresis loops  



 

 

 
3.2 Hyperchaotic region  

 

The chaotic attractors phase trajectories of the 2D-GSM and the DMHM with different parameters 

are shown in Fig. 5. When initial states are set as x(0) = 0, y(0) = 0.1, z(0) = 2 and the parameter b 

is set to 0.7, the attractors phase trajectories of the 2D-GSM are separately chaotic, periodic, 

hyperchaotic, quasi-periodic state with the parameter r = 0.8, 0.55, 0.1 and 0.23. However, the 

attractors phase trajectories of the DMHM are all hyperchaotic state with the parameter r = 0.8, 

0.55, 0.1 and 0.23. It can be seen that the DMHM expands the original hyperchaotic region of 

the 2D-GSM and becomes more complicated after adding the locally active discrete memristor. 

 

Then, when initial states are set as x(0) = 0, y(0) = 0.1, z(0) = 2, the parameters of the DMHM 

are still set as a = 10, k = 0.1, b = 0.7 and the parameter r is variable, the bifurcation and its 

Fig. 4 Structure diagram of the DMHM 

                         (a)     

                        (c) 

Fig. 5 Chaotic attractors phase trajectories with parameters a = 10, b = 0.7 and r = 0.8, 0.55, 0.1 and 0.23 of 

a the GSM with x(0) = 0, y(0) = 0.1 b two-dimensional attractor diagrams of the DMHM with x(0) = 0, y(0) = 

0.1, z(0) = 2 c three-dimensional attractor diagrams of the DMHM with x(0) = 0, y(0) = 0.1, z(0) = 2 

                                        (b)     



 

 

corresponding LEs for the 2D-GSM and the DMHM are illustrated in Fig. 6, respectively. From Fig. 

6, it can be seen that the hyperchaotic region of the DMHM is wider than that of the original 2D-

GSM, and its hyperchaotic value range of parameter r = (−1, 0.537], (0.565, 0.81] is obviously much 

wider than that of the 2D-GSM with r = (−1, −0.69], (−0.56, −0.47], (−0.19, 0.22]. In other words, 

after adding the locally active discrete memristor, they are all in a hyperchaotic state, except for the 

only two extremely narrow period windows. These can also prove that the two-dimensional 

hyperchaotic map has expanded the original hyperchaotic region by adding the locally active 

discrete memristor. Therefore, the dynamic behaviors in the DMHM based on the locally active 

discrete memristor model are richer than that in the original one.  

 
Furthermore, in order to measure the closeness of the chaotic sequence to the random sequence, 

the spectral entropy (SE) complexity measure algorithm [30] is used to calculate the complexity of 

the 2D-GSM and the DMHM. The darker color area in the SE complexity figure means the greater 

complexity and the more random of the chaotic sequence. Here, the sample size of the time series 

is set to 40,000. Afterward, the SE complexity of the 2D-GSM and the DMHM are plotted in Fig. 

7, respectively. Comparing Fig. 7a and Fig. 7b, it can be seen that most areas of the original 2D-

GSM are low complexity areas. On the contrary, the DMHM has two large high complexity bands, 

and its high complexity area is much larger than that in the 2D-GSM. The low complexity areas in 

the 2D-GSM have all become to high complexity areas by coupling the locally active discrete 

memristor, which also corresponds to the bifurcation diagram in Fig. 6. It demonstrates that the 

DMHM system is more complicated after adding the locally active discrete memristor, and the 

oscillating signal generated is more random. Thereby the DMHM based on the discrete memristor 

 

   (a)                                            (b)     

    (c)                                           (d)   

Fig. 6 Bifurcation and its corresponding LEs with b = 0.7 and x(0) = 0, y(0) = 0.1, z(0) = 2 a bifurcation of the 

GSM with different r = [1, 0.5] b LEs of the GSM with different r = [1, 0.5] (c) bifurcation of the DMHM 

with different r = [1, 1] (d) LEs of the DMHM with different r = [1, 1] 



 

 

model has better prospects in engineering applications, such as pseudo-random number generators 

or secure communications.  

 
3.3  Quasi periodic region    

 

When the parameter b is fixed to b = 0.5 and the parameter r is variable, the bifurcation and its 

corresponding LEs for the 2D-GSM and the DMHM are illustrated in Fig. 8, respectively. As shown 

in Fig. 8, it can be seen that the quasi periodic region of the DMHM is wider than that of the original 

2D-GSM. In original 2D-GSM, the quasi periodic value range of parameter r is just r = (0.256, 

0.273], but it is magnified about 16 times to r = (0.326, 0.61] in the DMHM. Although the 

bifurcation diagram corresponding to this fluctuation interval seems to be chaotic, the system is in 

a quasi periodic state. For example, when r = 0.6, the attractor phase diagrams of the hyperchaotic 

system are given in Fig. 9a. It is shown that the attractor of this system is a circular ring, which 

proves the quasi periodic state of the DMHM. In addition, the DMHM exhibits quasi periodic and 

periodic states alternately before entering chaos, as shown in Fig. 9. It can be seen that the DMHM 

has expanded the original quasi periodic region by adding the locally active discrete memristor. 

Hence, the dynamic behaviors in the DMHM based on the discrete memristor model are richer than 

that in the original one.  

  (a)                                        (b) 

Fig. 7 SE complexity with a = 10 and variable parameters r = [1, 1] and b = [1, 1] for a the GSM with x(0) = 

0, y(0) = 0.1, b the DMHM with x(0) = 0, y(0) = 0.1, z(0) = 2 



 

 

 

 

 (a)                                               (b)     

 (c)                                              (d)   

Fig. 8  Bifurcation and its corresponding LEs with b = 0.5 and x(0) = 0, y(0) = 0.1, z(0) = 2 a bifurcation of the 

GSM with different r = [0, 0.8] b LEs of the GSM with different r = [0, 0.8] c bifurcation of the DMHM with 

different r = [0, 1.5] d LEs of the DMHM with different r = [0, 1.5] 

  (c)                                           (d) 

Fig. 9 Chaotic attractors phase trajectories of the DMHM with parameters b = 0.5 and a r = 0.6, b r = 0.65, c r 

= 0.75, d r = 0.8 

     (a)                                          (b) 



 

 

3.4  Coexisting attractors   

 

When the parameters are fixed at a = 10, b = 0.5 and parameter r is variable, the bifurcation diagrams 

of the 2D-GSM and the DMHM are illustrated in Fig. 10a, b, respectively. In Fig. 10b, the 

bifurcation diagram of the DMHM with different initial values are represented in different colors, 

that is, blue, green, and red respectively represent the initial value (0 0.1 2), (0 0.1 0) and (0 0.1 2). 

And when the parameters are fixed at a = 10, b = 0.5, r = 1 and the initial value z(0) is variable, 

the bifurcation diagram of the DMHM is shown in Fig. 10c. It can be seen that the DMHM displays 

complex dynamical behaviors of period/ periodic windows, quasi-period, chaos and hyperchaotic 

behaviors, as can be observed from Fig. 10b. Moreover, the current states of the DMHM are three 

different states when r takes a certain value, that is, the phenomenon of coexistence. With the value 

of r ranging from 2.2 to 2, the long-term behavior of the system depends crucially on the choice 

of initial conditions, thus leading to the interesting and striking phenomenon of coexisting multiple 

attractors’ behavior. In addition, the effective value range of parameter r = (2.2, 2] in DMHM is 

also much wider than that of the 2D-GSM r = (1, 0.8], which means that the DMHM greatly 

expands the effective range of the 2D-GSM. This indicates that the introduction of locally active 

discrete memristor can greatly enhance the chaotic complexity and effective range of the original 

discrete map. And the state of the system can be adjusted by selecting different system initial values, 

which can be meaningfully applied in the field of secure communication.   

 
Correspondingly, without changing the parameters in Fig. 10b, the attractor phase diagrams with 

different initial values are plotted in Fig. 11, where blue, green, and red relate to the initial conditions 

selected from the corresponding regions of Fig. 10, respectively. Fig. 11a shows that the system is 

chaotic when the initial value represented by red is selected, while it shows several fixed points with 

initial values represented by green and blue. Fig. 11b shows that the system is quasi-periodic when 

the initial value represented by blue is selected, while it shows several fixed points with initial values 

represented by green and red. Fig. 11c shows that the system is chaotic when initial values 

represented by blue and red are selected, while it shows several discrete line segments with the 

initial value represented by green. Therefore, the phase diagram shows a variety of complex 

coexistence phenomena, which is consistent with the situation illustrated in Fig. 10. Thus, the 

phenomenon of coexisting attractors is confirmed in the discrete memristive hyperchaotic system. 

            (a)                            (b)                            (c)   

Fig. 10  a Bifurcation of the states x(n) for the 2D-GSM with a = 10, b = 0.5, different r = [1, 0.8] and x(0) = 

0, y(0) = 0.1 b bifurcation of the states x(n) for the DMHM with a = 10, b = 0.5, different r = [2.2, 2] and x(0) 

= 0, y(0) = 0.1, z(0) = 2 (blue), x(0) = 0, y(0) = 0.1, z(0) = 0 (green), x(0) = 0, y(0) = 0.1, z(0) = 2 (red) c 

bifurcation of the states x(n) for the DMHM with a = 10, b = 0.5, r = 1, different z(0) = [3, 3]  



 

 

 

Finally, when the system parameters are set at a = 10, k = 0.9, r = 1.3 and the initial values y(0), 

z(0) are set as variables, the SE complexity of the DMHM is depicted in Fig. 12. The red or darker 

color indicates that the system generates chaotic or hyperchaotic behavior, while the yellow and 

white indicate that the system exhibits quasi-periodic or fixed points state. The existence of multiple 

colors in this figure proves that the state of the system is different when the initial value of the 

system is different. It also proves that the memristive hyperchaotic map has the phenomenon of 

coexisting attractors. Besides, these results imply that the bifurcation routes are closely related to 

the initial values, leading to the occurrence of the coexisting phenomenon.  

As a conclusion, the system sensitivity is not only related to system parameters, but also greatly 

dependent on initial state values of the discrete memristor. Such initial value induced multi-stability 

has not previously been reported in discrete locally active memristor-hyperchaotic systems.  

 

3.5  Transient chaos behavior of system  

 

Under different iteration times, the time sequences of the system state x(n) and its corresponding x–

y phase plane plots are shown in Fig. 13, respectively. Noted that in Fig. 13a, b, the time series of 

system state x(n) presents the phenomenon of transient chaos and transient period alternating within 

the time interval n = (1, 40000) colored in royal blue, and the whole is presented a hyperchaotic 

phase plane plot in the x–y plane. Then, it is worth noting that in Fig. 13c, d, the time series of 

system state x(n) exhibits periodic iteration within the time interval n = (31000, 32500) colored in 

royal blue, and the whole is shown as the period plane plot in the x–y plane. Therefore, the DMHM 

         (a)                            (b)                             (c)   

Fig. 11 Coexisting attractors of the DMHM with different initial values and parameters a a = 10, b = 0.5, r = 

1.7, b a = 10, b = 0.5, r = 0.4, c a = 10, b = 0.5, r = 0.8 (x(0) = 0, y(0) = 0.1, z(0) = 2 (blue), x(0) = 0, y(0) = 

0.1, z(0) = 0 (green), x(0) = 0, y(0) = 0.1, z(0) = 2 (red))   

(a)                                            (b) 

Fig. 12 SE complexity of the DMHM with variable initial values y(0) and z(0) and parameters a r = 1.3, b = 0.5, 

b r = 1.3, b =0.55 



 

 

has the phenomenon of transient chaos and transient period alternating in the time series, that is, the 

system presents different states due to different iteration times. 

As is clear from the above analysis, the locally active memristive hyperchaotic system generates 

multiple patterns and multiple stabilities with the existence of the transient chaos and the transient 

period types of patterns. And the state form of multiple stabilities of the locally active memristive 

hyperchaotic system can be changed by choosing different iteration times, which greatly improves 

the complexity of the original two-dimensional map and is more conducive to use in secure 

communication.  

 
3.6  Antimonotonicity 

 

Antimonotonicity refers to the phenomenon that periodic orbits can be generated and then disappear 

through reverse period doubling bifurcation with the monotonic change of a certain system 

parameter in various nonlinear systems [31]. Parlitz et al. [32–33] reported the phenomenon of 

antimonotonicity in the Duffing oscillator. And Kocarev et al. [34] showed that antimonotonicity is 

a typical phenomenon in Chua’s circuit. Later, memristor-based jerk circuits [35] and 4-D chaotic 

system [36] also reported the phenomenon of antimonotonicity. The above systems are all 

continuous nonlinear systems. As a discrete system, the DMHM also produces the antimonotonic 

phenomenon with the monotonic increase of the system parameter r. 

  Also, in order to prove the phenomenon of antimonotonicity in DMHM, we have produced some 

bifurcation diagrams as system parameter r is varied in the range of 1.5 ≤ r ≤ 0. And the ample 

results are depicted in Fig. 14. It can be seen that a period-8 bubble is observed at b = 0.45 in Fig. 

14a, and the branch develops a stable period-16 bubble at b = 0.46in Fig. 14b. As b is further 

                   (a)                                          (b) 

                   (c)                                           (d) 

Fig. 13 The DMHM with parameters b = 0.5 and r = 0.6, a x(n) sequence with parameter n = [1, 40000], b 

attractor with parameter n = [1, 40000], c x(n) sequence with parameter n = [31000, 32500], d attractor with 

parameter n = [31000, 32500] 



 

 

increased to 0.47, more bubbles are generated until an infinite tree (such as chaos) finally occurs in 

Fig. 14c. Similarly, we have another period-8 bubble at b = 0.48 in Fig. 14d. At the same time, there 

is also a bubble tree on the left side of the whole bubble tree at b = 0.5 in Fig. 14e. In short, it can 

be seen that the DMHM has a complex bubble tree phenomenon, which is more complicated than 

the original system. 

 
Hence, it can be concluded that the DMHM has complex dynamics and its dynamical behaviors 

depend on the system parameters r, b and initial values. The system sensitivity is not only related to 

system parameters, but also greatly dependent on initial state values of the discrete memristor. In 

                                         (e) 

Fig. 14 Bifurcation with x(0) = 0, y(0) = 0.1, z(0) = 2 of the DMHM a with different r = [1, 0] and b = 0.45, 

b with different r = [1, 0] and b = 0.46, c with different r = [1.5, 0] and b = 0.47, d with different r = [1.5, 

0] and b = 0.48, e with different r = [1.5, 0] and b = 0.5 

                 (c)                                            (d) 

                 (a)                                           (b) 



 

 

summary, after the above analysis, the dynamic behavior in DMHM based on the locally active 

discrete memristor model is more abundant than that in the original model.  

 

4 Hardware implementation 

 

4.1  Hardware circuit design  

 

Since the DMHM system is a 3D discrete dynamical system, it is more convenient and simpler to 

implement it in a digital hardware platform than in an analog hardware platform. So to validate the 

numerical results of the DMHM system, we design digital experiments using FPGA circuit boards 

on the hardware platform. The hardware platform consists of one Altera EP2C8Q208C8 as the core 

controller, one interface board with Video Graphics Array (VGA), and some peripherally-linked 

circuits, as can be observed from Fig. 15. In experimental measurements, the time series and phase 

trajectories of the DMHM system are captured on the display screen by the VGA output terminal. 

 

4.2  Experimental results  

 

In order to actually observe the chaotic signals generated from the DMHM, the digital experiment 

is practically implemented in Fig. 15. Following the results in Fig. 13, the transient chaos behavior 

of the DMHM is experimentally captured in Fig. 15. And, according to the results in Fig. 5, the 

experimental hyperchaotic attractors phase trajectories of the DMHM with different parameters are 

displayed in Fig. 16. Then according to the results in Fig. 9, the experimentally displayed quasi-

periodic, periodic and chaotic attractors of the DMHM are shown in Fig. 17. Similarly, 

corresponding to the results in Fig. 11, the experimental phase diagram showing a variety of 

complex coexistence phenomena are displayed in Fig. 18. The phase diagrams and time-series 

obtained from the experiments of the microcontroller-based DMHM system confirm all the 

predicted dynamic behaviors. Therefore, the digital experiments perfectly validate the numerical 

results, which manifest the feasibility of the hardware implementation for the presented locally 

active discrete memristor and the DMHM system.  



 

 

  

 

 

 

Fig. 15 The experimentally displayed transient chaotic voltage sequences and the attractor of the DMHM with 

parameters b = 0.5, r = 0.6 and n = [1, 40000] 

(a)                    (b)                      (c)                   (d) 

Fig. 16 The experimentally displayed hyperchaotic attractors of the DMHM with parameters a = 10, b = 0.7, 

x(0) = 0, y(0) = 0.1, z(0) = 2, and a r = 0.8, b r = 0.55, c r = 0.1 and d r = 0.23 

 (a)                    (b)                      (c)                   (d) 

Fig. 17 The experimentally displayed quasi-periodic, periodic and chaotic attractors of the DMHM with 

parameters b = 0.5 and a r = 0.6, b r = 0.65, c r = 0.75, d r = 0.8 

 

          (a)                           (b)                          (c) 

Fig. 18 The experimentally displayed coexisting attractors of the DMHM with parameters r = 0.8, b = 0.5 and 

initial values a x(0) = 0, y(0) = 0.1, z(0) = 2, b x(0) = 0, y(0) = 0.1, z(0) = 0, c x(0) = 0, y(0) = 0.1, z(0) = 2 



 

 

5 Conclusion 

 

In this paper, a locally active discrete memristor model has been proposed for the first time and 

proved to satisfy the three fingerprints characteristics of generalized memristor. Then, the locally 

active discrete memristor is introduced into the two-dimensional generalized square map (2D-GSM), 

and the locally active discrete memristive hyperchaotic map (DMHM) is obtained. The DMHM 

shows different complex dynamics behaviors. Numerical simulations and hardware experiments 

have led to the following results: 

(a) Compared with the original system, the DMHM expands its hyperchaotic region after adding 

the locally active discrete memristor, so it can produce more complex behaviors. 

(b) The DMHM has quasi periodic state and periodic state before entering chaos, and the quasi 

periodic region is wider about 16 times than that of the original 2D-GSM.  

(c) The dynamical behaviors of the DMHM system are affected by initial values, which leads to 

the appearance of coexisting attractors. Besides, the effective value range of parameter r in the 

DMHM is much wider than that of the 2D-GSM. 

(d) The DMHM has the phenomenon of transient chaos and transient period alternating in the 

time series, that is, the system presents different states due to different iteration times. 

(e) The DMHM has antimonotonicity behavior with two bubble trees, and periodic orbits can 

be created and then annihilated via reverse period-doubling bifurcation scenarios as a bifurcation 

control parameter slowly changes.  

Finally, the effectiveness of the DMHM system is verified by FPGA hardware. These results 

show that the locally active discrete memristor model is worthy for further study, and it can be 

applied to pseudo-random number generator or secure communication as well. Its application 

prospects in the field of traditional engineering are broader due to its many useful features. The next 

work should be the stability analysis and its application in discrete neural network. 
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