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Abstract: In this paper the Max-min Fast Track (MXFT) scheduling algorithm is
improved and compared against a selection of popular algorithms. The improved versions
of MXFT are called Min-min Max-min Fast Track (MMMXFT) and Clustering Min-min
Max-min Fast Track (CMMMXFT). The key difference is using Min-min for the fast
track. Experimentation revealed that despite Min-min’s characteristic of prioritising small
tasks at the expense of overall makespan, the overall makespan was not adversely effected
and the benefits of prioritising small tasks were identified in MMMXFT. Experiments
were conducted using a simulator with the exception of one real world experiment. The
real world experiment identified challenges faced by algorithms which rely on accurate
execution time prediction.
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1 Introduction

Cloud computing is described as a disruptive technology
(1) and is well established commercially with over 80% of
companies utilising cloud based services. However, there
are still challenges to be met (2). These include resource
pooling/server consolidation, Service Level Argeements
(SLAs), Quality of Service (QoS), energy management,
traffic management, stability and fault tolerance (3)(4).
These challenges are underpinned by the NP-Complete
problem of scheduling. There are two important areas
of scheduling, allocating virtual machines (VMs) to
hosts (servers) and brokering cloudlets (tasks) onto VMs
(5)(6). This paper is focused on the later.

One host can contain many VMs. When choosing
the host for a VM, an allocator must ensure a host
has adequate resources to support the VM. Resources
considered can be one or any combination of cores,
processing speed, RAM and bandwidth. Consolidating
the VMs (packing them onto few hosts) means fewer
hosts are required to be active.

Brokering cloudlets onto VMs is the process of
deciding which VMs should run which user applications.
One VM can process one cloudlet at a time. By

effectively scheduling cloudlets onto VMs, the makespan
(execution time) of metatasks (groups of tasks) can be
reduced.

Scheduling in cloud computing presents an
important opportunity for improving the efficiency and
performance of data centers. Server utilisation in the
cloud has been found to be about 30% to 40% (7)
with some sources citing utilisation low as 6% (8).
Through improved scheduling, tasks can be consolidated
on fewer hosts, which increases utilisation and saves
power. Fully relieving hosts is important, because servers
consume 50% of their peak power at idle, which makes
it detrimental to run servers with a light work load (9).
Globally, datacenters consume approximately 1.5-2% of
global electricity and this is predicted to grow at a rate
of 12% annually (10). Based on that prediction from
2011, datacenters may now be consuming as much as
3%-3.9% of global electricity. In 2014 another estimate
was made - datacenters in the United States consume
aproximately 1.8% of US electricity (11). In particular,
our paper looks at reducing the overall makespan of a
collection of tasks on a fixed number of VMs (consumers)
by improving Max-min Fast Track (MXFT) (12).
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This paper makes three main contributions by
proposing

• MMMXFT algorithm which improves on MXFT
with superior small task prioritisation.

• CMMMXFT algortihm which is a further
improvement on the MMMXFT by automatically
adapting to a wider range scenarios than
MMMXFT.

• TAWRR algorithm an online alternative to
CMMMXFT

As well as the proposed algorithms, this paper is an
example of using the ScheduleSim (19) simulator and
offers insight into the performance of commonly known
algorithms.

This paper is structured as follows. Section 2 presents
the related work. Section 3 discribes our proposed
novel algorithms. Section 4 is the methodolgy and
experimental results as well as discussion of our findings.
Finally, section 5 draws conclusions from our findings
and presents our reccomendation for future work.

2 Related Work

2.1 Commonly Known Algorithms

Scheduling is a complex NP-Complete problem and there
are many papers proposing, surveying and comparing
scheduling algorithms. In this paper we compared our
proposed algorithms against commonly know algorithms
with well understood performance.

Random (R)

This algorithm assigns tasks to consumers
randomly, using Java’s built in random function
“java.util.Random”.

Round Robin (RR)

This algorithm assigns tasks to consumer in repeating
cycle. The first task is assigned to the first consumer,
the second task is assigned the second consumers and so
on. When the algorithm runs out of consumers to assign
tasks to, it loops back around.

Weighted Round Robin (WRR)

Building on RR, WRR assigns weights to the consumers
based on their speed - slower consumers are more likely
to be skipped, instead of assigned being a task.

Task Alternating Weighted Round Robin (TAWRR)

Building on WRR, TAWRR (proposed in this paper)
alternates between assigning big and small tasks. For
example, if a consumer last had a big task, next cycle it
will be assigned a small task.

Grouping Round Robin (GRR)

Building on plain RR, GRR breaks the consumers and
tasks into groups before applying the round robin cycle
to each group. GRR groups the slowest consumers with
the smallest tasks, and the fastest consumers with the
biggest tasks.

Shopping Execution Time (SET)

For each task this algorithm randomly selects several
consumers to consider, it then assigns the task to fastest
(lowest execution time) of the selected consumers.

Shopping Completion Time (SCT)

This algorithm is similar to SET. However, it considers
completion time, which takes into account the tasks
already assigned to the consumer. Completion time is
the time it will take the given task to complete on
the consumer in question. The more tasks assigned to
the consumer the less likely it is to have the earliest
completion time for the given task.

Minimum Completion Time (MCT)

This algorithm is also similar to SET however MCT
considers the completion time of every consumer rather
than just a randomly selected subset.

Max-min (MX)

Max-min assigns the biggest tasks first, placing them
onto the fastest consumers. Max-min is a popularly
researched scheduling algorithm. Numerous papers
found that Max-min produces the best overall makespan,
but has poor average task makespan due to placing
numerous small tasks on slower VMs. Max-min is the
opposite of Min-min which assigns the task earliest (Min)
possible completion time to the fastest (Min) VM. The
result of this is the biggest tasks get prioritised.

Min-min (MM)

The opposite of MX, MM assigns the smallest tasks first
and onto the fastest consumers. This prioritises small
tasks.

Max-min Based Algorithms

Underpinning Max-min Fast Track (MXFT) is MX. MX
is the base for many scheduling algorithms. It is an
advantageous choice because MX produces the shortest
overall makespan.
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Max-min Improved (MX)

This algorithm improves and adapts MX for the cloud
(13). By default, MX assigns the tasks with the latest
(Max) possible completion time to the fastest (Min) VM.
Max-min Improved assigns tasks with shortest execution
time to the VM that can complete it earliest. This is the
version we will refer to simply as Max-min or MX going
forwards.

Selective Max-min Min-min

This algorithm proposed by Etminani and Naghibzadeh
is for scheduling in Grid environment (14). The
algorithm is based on the premise that in certain
scenarios MM can outperform MX. It selects between
MM and MX using standard deviation of the expected
completion times of tasks on resources. The standard
deviation is used to decide whether this is a small or
big task relative to the list. This allows the algorithm
to select the VM which MX would have chosen or the
VM MM would have chosen. In the scenarios chosen, the
algorithm always performed as well as either MX or MM.

Duplex/Greedy Max-min Min-min

This algorithm is similar to the Selective algorithm
above. Duplex considers both MX and MM, then uses
the better solution (15)(16). Duplex executes both MX
and MM, then chooses the solution that achieves the
smaller sum of the predicted run-time - minimised over
all VMs (17). The difference to selective is that this
algorithm chooses an algorithm for the whole metatask
rather than an algorithm for each task.

RASA

RASA considers the distribution and scalability of VMs
(18). Like Selective and Duplex mentioned above, RASA
also combines MX and MM. RASA uses MM to execute
small tasks before the large tasks and uses MX to
support concurrency. The RASA algorithm alternates
between MX and MM task by task. If task one was
assigned by MX, task two would be assigned by MM.
This provides a balance between the characteristics
of MX and MM. By balancing the characteristics of
MX and MM, RASA is more applicable for a cloud
computing context as small tasks can be completed in
reasonable amounts of time. This is a quality MXFT
strives for and that we aim to improve in this paper.

Max-min Fast Track (MXFT)

This is the algorithm this paper aims to improve. MXFT
uses two instances of MX, one designated as a fast track
for small tasks using the fastest consumers expediting
the processing of small tasks and another designated as
a normal track processing the rest of the tasks (12).

2.2 Comparison of Algorithms

Scheduling algorithms also have many properties with
some are particularly important in a cloud computing
context. For instance, can the algorithm reschedule
tasks? Does it need to know priorities such as speed of
the consumer/servers? Does the algorithm need to know
the size of tasks? Can the algorithm operate on a task
by task basis (online) mode? Can the algorithm ensure
small tasks are completed in a timely fashion? Can the
algorithm prioritise VIP users? Is the algorithm energy
consumption aware? Can the algorithm work to a target
SLA and switch off unnecessary machines? These are
just some of many properties that could be important to
consider in a cloud context. This paper uses makespan
for comparison across various algorithms.

3 Proposed Methods

3.1 Min-min Max-min Fast Track

In this paper we propose an improvement to MXFT,
Min-min Max-min Fast Track (MMMXFT). The below
broadly describes the steps in the algorithm. The steps
are almost identical to MXFT with the only small
but important change being that MMMXFT uses MM
instead of MX for the the fast track. An implementation
is available in ScheduleSim.

• For each consumer, find their delay times - as they
may already have tasks waiting.

• Sort new tasks - biggest tasks first.

• Place 60% of the number of tasks in the normal
track biggest tasks first.

• Place the remaining smaller task in the fast track.

• Add up the amount of work in the normal and fast
track.

• Work out the ratio of work in the fast track to work
in the normal track.

• Sort the consumers - fastest consumers first.

• Using the ratio, place consumers into the fast tack,
fastest first (skipping every other).

• Place the remaining consumer into the normal
track.

• Perform the normal Min-min algorithm to place
the fast tracked tasks onto the fast track.

• Perform the normal Max-min algorithm to place
the normal tracked tasks onto the normal track.
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Algorithm 1 shows the detailed algorithm. Table 1
defines the variables used in the algorithm. The value
seen in algorithm 1 of 0.6 (60/40)% split of normal track
to fast track can be adjusted.

Table 1 Algorithm notation used in algorithm
descriptions 1.

R Resources, (Consumers or VM).
Rp Combined resources speed.
Rpi A resources speed (processing speed).

Rdi A resources delay, the time until it is free.
T A metatask (tasks to schedule).

T l Number of tasks
Ti A task.
T si A tasks size.
NT Normal track tasks.
FT Fast track tasks.
NTj A task in normal track.
FTj A task in fast track
NT s Normal track tasks combined size.
FT s Fast track tasks combined size.
FR Fast track resources.
NR Normal track resources.
FRj A fast track resource.
NRj A normal track resource.
Eij Execution time of task on a resource.
Cij Completion time of a task on a resource.

3.2 Clustering Min-min Max-min Fast Track

Another algorithm proposed in this paper is
CMMMXFT which extends MMMXFT. CMMMXFT
aims to improve MMMXFT by dynamically setting the
size of the fast track using clustering. The advantage of
this is that the size of the fast track can automatically
suit the tasks to schedule. To achieve this, CMMMXFT
uses K-Means clustering to find one cluster of small
tasks and one cluster of large tasks. CMMMXFT also
has the ability to decide not to use a fast track at all if
the variance of the tasks is below a specified value. An
implementation is available in ScheduleSim.

• Work out the range and standard deviation of the
tasks.

• Decide whether to use a fast track - is the standard
deviation as a percentage of the range smaller than
the threshold if so, do not create a fast track.

• If not using a fast track, perform standard Max-
min.

• If using a fast track perform the K-Means
algorithm:

• Randomly position two points as centroid in range
of the task sizes.

• Get the tasks nearest to each centroid.

• Calculate the mean of the task sizes nearest to each
centroid.

• Those mean values become the new positions of
centroids.

Algorithm 1 Min-min Max-min Fast Track
1: for all R do
2: {Accumulate total speed for all resources.}
3: Rp+ = Rpi
4: end for
5: sort tasks T biggest execution time first
6: for all T do
7: {Is index in first 60% of the number of tasks?}
8: if i < T l ∗ 0.6 then
9: append Ti to NT

10: {Accumulate total size of normal track tasks.}
11: NT s+ = T si
12: else
13: append Ti to FT
14: {Accumulate total size of fast track tasks.}
15: FT s+ = T si
16: end if
17: end for
18: {Calculate ratio of speed to size.}
19: α = Rp/(NT s + FT s)
20: {Calculate the size the fast track should have.}
21: λ = Rp ∗ FTs
22: sort R fastest first
23: for all R do
24: if FRp < λ then
25: append Ri to FR
26: skip Ri+1

27: else
28: append Ri to NR
29: end if
30: end for
31: for all FTi do
32: for all FRj do
33: {Find completion time.}
34: Cij = Eij + Rdj
35: end for
36: end for
37: while FT not empty do
38: find task Ti costs minimumexecutiontime
39: assign Ti to FRj which gives minimumcompletiontime
40: remove Ti from T
41: update Rdj
42: for all i do
43: update Cij
44: end for
45: end while
46: for all FTi do
47: for all FRj do
48: {Find completion time.}
49: Cij = Eij + Rdj
50: end for
51: end for
52: while NT not empty do
53: find task Ti costs maximumexecutiontime
54: assign Ti to NRj which gives minimumcompletiontime
55: remove Ti from T
56: update Rdj
57: for all i do
58: update Cij
59: end for
60: end while
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• Recalculate the nearest tasks - if tasks where re-
assigned to new a centroid repeat previous two
steps.

• See which centroid is associated with the smallest
tasks by calculating the average task size for each
cluster. The cluster with the smallest tasks is
designated for fast tracking, the cluster with the
larger tasks is designated for the normal track.

• Perform the normal Min-min algorithm to place
the fast tracked tasks onto the fast track.

• Perform the normal Max-min algorithm to place
the normal tracked tasks onto the normal track.

3.3 Task Alternating Weighted Round Robin

The third algorithm proposed in this papers is TAWRR.
This algorithm adapts WRR by attempting to improve
the distribution of tasks onto consumers. TAWRR
algorithm does this by alternating between assigning big
and small tasks to consumers, i.e. if a consumer last had
a small task, next it will have a big task. By doing this,
TAWRR inter-disperses small among big tasks, better
spreading the tasks over the consumers and avoiding
a single consumer receiving several large tasks by
chance and becoming over utilised. An implementation
is available in ScheduleSim.

• Sort the task smallest first.

• Divide the task into two equally sized groups.

• Assign a weighting to each consumer based on its
speed relative to the fastest consumer.

• Cycle over consumers assigning tasks using the
weighting and random number to occasionally skip
slower consumers (Weighted Round Robin)

• If assigning a task to consumer, that last had a big
task, this time assign a small task and vice versa.

4 Experiments and Results

4.1 Implementation of Experiments

Five experiments were conducted to look at the impact
of different variables on the chosen algorithms. In
these experiments, all 14 algorithms were compared
including the three algorithms proposed in this paper
and the aforementioned 11 commonly known scheduling
algorithms.

Two further experiments were conducted to search
for optimal values with the fast track algorithms: MXFT
and MMMXFT. This experiment is not required with
CMMMXFT since that version dynamically configures
it’s fast track size.

In addition, one more experiment was conducted
to compare real world results against results from the
simulator.

All experiments were repeated 20 times. The reason
for this is that the poisson distribution of tasks produces
slightly different sets of consumers and tasks on each
run. The results presented are the average of the 20 runs
to mitigate the effects of noise.

All experiments create tasks and consumers from
normal distribution. The continuous Gaussian formula
(below) was used to create a discrete (Poisson)
distribution.

p(x) =
1

σ
√

2π
e−

1
2 ( x−µσ )2

When:
µ (Mu) determines the position of the normal
distribution.
σ (Sigma) determines width of the normal distribution.

Consumers and tasks were randomly created in the
proportions of the Gaussian distribution. When adding a
task or a consumer to a collection of tasks or consumers
causes the target value to be exceeded, execution stops.
This means there is always less total consumer speed or
task size than the target value.

For all experiments except the “real world”
experiment, ScheduleSim was used. ScheduleSim is
an open source scheduling simulator. ScheduleSim
is not designed to suit a specific domain, instead it
uses generic terminology (producer, tasks, units, steps,
schedulers and consumers) which prevents association of
ScheduleSim to a specific context. ScheduleSim focuses
on making it easy to simulate and prove scheduling
algorithms in a simple environment.

ScheduleSim is implemented as a Java API. To use
ScheduleSim, researchers can download the “.jar” and
reference it in their Java projects. The ScheduleSim
source code can also be downloaded using Git. The
advantage of downloading code (as was done for this
paper) is that it makes it easy to add new schedulers.

The simulator operates by using discrete time steps
instead of an event driven design. This allows fine grain
control and simplifies design. Furthermore, visualising
these steps by producing PNGs and animated GIFs
showing simulation at each step (20). Figure 1 is an
annotated example output image from ScheduleSim.

As ScheduleSim is not domain specific, when using
to simulate algorithms for cloud computing it must be
noted that some aspects specific to cloud computing are
not simulated.
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Figure 1 An ScheduleSim image with annotations explaining the meaning.

• Networking It should be noted that network
latency is not modelled - meaning that a task can
fully transverse the network from the producer
through any number of schedulers to a consumer
in a single step. Neither packet loss nor bandwidth
are not modelled.

• Virtualisation ScheduleSim has consumers of
fixed sizes and these cannot change during the
simulation. In a real cloud environment resources
can be resized (within limitations of the physical
hosts).

• Scheduler Processing Time Outside of the scope
of the simulator is modelling scheduler processing
time. Schedulers are allowed to do as much
processing as required without time advancing.

• Application Complexity ScheduleSim tasks have
no interdependency and the size of tasks can
be calculated ahead of execution. Furthermore,
ScheduleSim tasks have defined starts and finishes.
However, in a real world cloud environment, an
end-user may use an IaaS instance indefinitely.

• Service Levels ScheduleSim schedulers are free to
assign any consumer to a task. In cloud computing,
often a user selects the size of the resource they
require.

Due to these limitations, we recommended that after
prototyping and proving an algorithm with ScheduleSim,
further experimentation is completed with a simulator
such as, CloudSim (6) and/or with experiments in the
real world.

All experiments were measured using the following
metrics:

Overall Makespan in verbose, the max/latest
finishing-time of the simulation for given tasks.

m = Max{T fj |∀j ∈ T}

Where, m is the makespan, T fj is finishing time of
task j and T is all submitted tasks from all metatasks.

Simply it is the time it has taken all the tasks to
complete.

Task Makespan is the time it has taken the task to
execute counting from when it was submitted to the
scheduler. This metric highlights which size tasks are
getting completed first either by being placed on fast
resource or simply by being processed first.

4.2 Results and Discussion

Experiment A

The objective of experiment A is to test how each
algorithm performs with different sets of consumers.
Sets of consumers vary from many small consumers
through to sets containing fewer but larger consumers.
In a cloud context, we are testing how the algorithms
would perform operating with lots of small VMs servers
through to fewer but more capable VMs. Table 2
shows the parameters used in ScheduleSim. In the
table the variable being adjusted is consumer µ. The
consumer µ variable changes the position of the peak
of the normal distribution. This changes speed of the
consumers created.

Table 2 Experiment A Parameters

Variable Value(s)
Consumer Min Size 2UPS
Consumer Max Size 32UPS

Consumer µ 5UPS, 15UPS and 25UPS
Consumer σ 6UPS

Consumer Target Speed 4000UPS
Task Min Size 20U
Task Max Size 240U

Task µ 110U
Task σ 44U

Task Target Size 200,000U

Figure 2 shows the performance (makespan) of the
algorithms compared to each other with three different
Mu (µ) values. Running the experiment with a µ of 5
results in most consumers having this value for their
UPS (speed).

Almost all algorithms tested found scheduling more
challenging with the lower µ value. As the total combined
UPS of the consumers is a controlled variable and held
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Figure 2 Experiment A results, µ (mu) is the most common speed of consumer.

consistent a lower µ value leads to more consumers being
created. Having more consumers makes the problem
space larger, leading to a higher makespan (worse
performance) of the algorithms. Figure 2 does show some
exceptions to this trend. SET was one such exception
to this trend. The reason for this may be SET does
not utilise a percentage of the slower consumers at µ
5 and over utilises the faster consumers at µ 25. In
Figure 3 on the schedule presented on the left is the
results from µ 5. Here SET is under utilising numerous
consumers. In the middle of the figure is the results
from µ 15, here SET is utilising more consumers. On the
right is the results from µ 25, here SET is over utilising
the fastest consumers. Another exception to the trend
of worse performance with lower µ values (meaning,
more but slower consumers) is RR and GRR. They are
interesting because while they are effected, WRR and
TAWRR are not effected despite of them having RR
behaviour in common. In Figure 4, a possible cause can
be seen. On the left of the figure is the results from µ 5,
here the slowest resources are being often over utilised
(there is several “spikes” where a slow consumer has been
assigned a large task). On the right is the results from µ
15 there are fewer consumers but they are more powerful
when compared to each task and thus less likely to be
over utilised. On the right of Figure 4, there are only
three over utilised servers. This problem is not seen in
WRR and TAWRR since these algorithms weight slower
consumers with a lower probability of receiving a task,
thus partially mitigating this problem.

Focusing on the best performing algorithms, in
Figure 5 the smaller performance differences in the
best algorithms can be seen. MX produces the shortest
makespan. In almost joint second across all µ values
is MXFT, MMMXFT, CMMMXFT and RASA, while
these algorithm are second by a clear margin when
considering overall makespan. As these algorithms do
not lead to excessive waiting time for small tasks,
they may be advantageous when deployed in a cloud

computing context. CMMMXFT marginally performed
worse than MMMXFT in this experiment. However, the
difference in performance is minimal.

Comparing CMMMXFT with RASA across the
different µ values reveals that CMMMXFT is effected
more by consumer µ. CMMMXFT responded worse to
the lower µ value of 5 (more but smaller consumers) than
RASA. However CMMMXFT performed slightly better
with the higher µ value. It should be noted that the
margin that CMMMXFT outperforms RASA by may
not be statistically significant.

Experiment B

The objective of Experiment B is to investigate how
the algorithms perform with different sets of tasks. This
experiment tests the algorithms with lots of small tasks
through to fewer but larger tasks. In Table 3 the task
µ value is varied. Just like in Experiment A where the
consumer size changes, this experiment changes the size
of the tasks.

Table 3 Experiment B Parameters

Variable Value(s)
Consumer Min Size 2UPS
Consumer Max Size 32UPS

Consumer µ 17UPS
Consumer σ 6UPS

Consumer Target Speed 4,000UPS
Task Min Size 20U
Task Max Size 240U

Task µ 20U, 120U and 220U
Task σ 44U

Task Target Size 200,000U

Different to Experiment A where the algorithms
performed better with less complexity/fewer options to
chose conversely, in this experiment the general trend
is the lower the µ the better the algorithms performed,
which is shown in Figure 6. This is maybe because
with smaller pieces the algorithms can pack the tasks
together tighter. A real world metaphor is that, with
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Figure 3 ScheduleSim visualisation, SET algorithm in Experiment A with µ 5, 15 and 25

Figure 4 ScheduleSim visualisation, comparing the RR algorithm for Experiment A with µ 5 and 15. Note the difference in
the number of over utilised consumers.

Figure 5 Experiment A results, showing only the best performing algorithms.

sand you can more completely fill a volume than with
golf balls.

R and RR performed consistently badly for all task
µ values, unlike in Experiment A where adjustment of

the consumer µ made conditions favourable for them.

TAWRR’s performance in this experiment is
interesting as it outperforms WRR at µ 20 and
is outperformed by WRR at µ 220. The difference
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Figure 6 Experiment B results, µ (mu) is the most common size of task.

Figure 7 ScheduleSim visualisation, WRR and TAWRR algorithms in Experiment B with µ 20

between the WRR and TAWRR is a small. TAWRR
(Task Alternating WRR) simply states that when the
algorithm assigns a task to a consumer if a small task was
assigned last, then the next task to be assigned is large,
and vice-versa. In this experiment, this led to TAWRR
spreading the tasks more evenly when compared to
WRR seen in Figure 7 on the left with TAWRR on
the right. It is possible to see TAWRR’s alternation of
small (lightly shaded) and big tasks (darkly shaded) in
Figure 7. The particular schedule shown in Figure 7
WRR outperformed TAWRR. However, on average with
µ 20 TAWRR outperformed WRR.

Zooming into the best performing algorithms, in
Figure 8 the results look similar to Experiment A.

Interestingly, in this experiment, MMMXFT slightly
outperforms MXFT and RASA with the higher µ values
of 120 and 220. However, this is a small difference and
may not be significant.

Uniquely to MM in Figure 8, MM appears to be
unaffected by varying the task µ. MM is used in
MMMXFT and this possibly explains why MMMXFT
slightly outperforms MXFT with higher task µ values
and then underperforms compared to MXFT with lower
taks µ values.

Experiment C

The objective of this experiment is to access how the
algorithms respond to different amounts of load. This
experiment tests the algorithms with increasing amounts
of tasks. In Table 4 you can see the increasing load the
algorithms were trailed with.

In Figure 9 the results are very predictable. The more
the total units the longer the overall makespan. A subtle
feature of the results is the rate the performance gets
worse as more tasks are added. As the load rises linearly
over the three intervals, algorithms that are not effected
by the scale of the load will exhibit a linear rise in
makespan over the three experiments. However, not all
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Figure 8 Experiment B results, showing only the best performing algorithms.

Figure 9 Experiment C results, this experiment change the total combined units of the tasks sent.

Table 4 Experiment C Parameters

Variable Value(s)
Consumer Min Size 2UPS
Consumer Max Size 32UPS

Consumer µ 17UPS
Consumer σ 6UPS

Consumer Target Speed 4,000UPS
Task Min Size 20U
Task Max Size 240U

Task µ 110U
Task σ 44U

Task Target Size 150,000U, 450,000 and 750,000U

the algorithms exhibited this. With RR, TAWRR and
GRR, the increase in makespan seems to be non-linear
across this experiment. As only three values where tested
the relationship is not fully clear. However, it is clear that
the difference between 150,000U to 450,000U is greater
than the distance between 450,000U to 750,000U for
RR,TAWRR and GRR. Furthermore, R has the opposite
relationship - adding more tasks makes the makespan
worse. In Figure 10 you can see that a lot of the R
makespan comes from a few over utilised consumers.

The results of Experiment C were further analysed
in Figure 12 which shows the makespan of different
groups of tasks based on size. The x axis shows the tasks
grouped into 10 groups. This is based on their units
(size). Group 0 represents the smallest tasks and Group
10 represents the largest tasks. The y axis shows the
average makespan for each group. The objective of this
graph is to assess the makepsan experienced by different
sized tasks.

MX and MM take opposite paths in Figure 12. MX
places the biggest tasks on the fastest consumers. In
the Figure 12 you can see the result of this. Small
tasks are being processed slowly and thus suffering a
high makepsan, while the big tasks are being processed
quickly and thus have low makespans. In contrast, MM
places the smallest tasks on the fastest consumers. In
Figure 12 you can see the result of this. Small tasks
are being processed almost instantly and large tasks are
being processed very slowly.
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Figure 10 ScheduleSim visualisation, R algorithm in Experiment C with total units 450,000

Figure 12 highlights the important improvement
made to MXFT. MXFT proposed previously to this
paper (12) uses two instances of MX. One for the fast
track and one for the normal track. The consequence of
this can be seen in Figure 12. The smallest tasks (Group
0) on the left are not be prioritized. MXFT requires a
margin value to be specified, in this experiment that
value was 0.4, meaning 40% of the number of tasks will
be sent to the fast track. The fast track instance of MX
running on the smallest 40% of the tasks can be seen
in Figure 12, in the stepper downwards slope acting on
the first 4 groups before MXFT spikes upwards for the
second instance of MX acting on the normal track.

The proposed improvement to MXFT called Min-min
Max-min Fast Track (MMMXFT) uses an instance of
MM instead of MX for the fast track. As MM prioritises
small tasks, this gives MMMXFT a useful advantage in
the cloud for meeting SLAs of small tasks. In Figure
12 the improved profile of MMMXFT can be seen as
small task are prioritised fully. The RASA algorithm has
very similar profile to MMMXFT. Both the proposed
algorithm (MMMXFT) and RASA prioritise both small
and large tasks. Prioritising small tasks to prevent them
from having to wait excessively for large tasks to finish
and prioritising the largest tasks to achieve a good
overall makespan.

TAWRR has a very interesting profile. This can
be explained by how it works. TAWRR sorts tasks
from smallest to biggest. The first half of the tasks
are designated as mall tasks and the second half are
designated as large tasks. TAWRR then performs WRR
with the addition that if the algorithm previously
assigned a large task to a consumer then it will assign a
small task. Because the tasks are sorted by size (smallest
first), the smallest of the small tasks and the smallest of
the large tasks are assigned first causing them to finish
earliest. Figure 12 shows the profile this produces.

GRR also has a very a interesting profile. The peaks
and troughs seen in Figure 12 are caused by it’s grouping
behaviour. The grouping sorts the tasks smallest first
and sorts the consumers slowest first. Then, in that
order the tasks and consumers are broken into equal
sized groups, both the consumers and tasks are broken
into the same number of groups. For instance, if there
was 50 tasks and 20 consumers and the number of
groups was set to 5, the grouping process would create

5 groups of tasks each with 10 consumers, and 5 groups
of consumers each with 4 consumers. The troughs are
where the tasks at the start of a group are finishing
first. Each peak is at the end of a group. Although in
Figure 12 GRR appears to favour small tasks, this may
not always the case. Considering how GRR works, it
does nothing to ensure that the task groups are matched
to the consumer groups other than the sorting. The
experiment setup from which these results are taken
have greater variation in size of the tasks than the
consumers which could lead to groups not optimally
matching. The ScheduleSim visualisation in Figure
11 shows such a mismatch. Notice that despite the
smallest group of tasks being assigned to slowest group
of consumers the slowest consumers were still too slow
and as result they massively extend what could have
been a very effective schedule.

Another insight that can be drawn from Figure 12
is that MCT, SCT, SET, WRR, RR and R all treat
tasks fairly, not favouring any particular size of task.
This was expected as their implementations do not sort
on or consider task size. MCT and SCT simply consider
completion time of each task on consumers. While SET
and WRR consider the UPS (speed) of the consumers,
R and RR consider nothing at all.

Again in Figure 13, there is similar ranking of the best
algorithms to the previous experiments. The ranking of
the algorithms and difference between their performance
at different load levels suggests that the algorithms seen
in Figure 13 do not degrade under high load. This
experiment did not test very low load levels (where there
are fewer tasks than consumers), so the inverse should
not be assumed.

Experiment D

Experiment D assesses how the algorithms handle
different distributions of consumers, from all consumers
being quite uniform through to the consumers varying
greatly in size. To achieve this, the σ value of the normal
distribution was adjusted. In table 5, the experiment can
be seen with the varying σ value.

Figure 14 shows that a lower consumer σ (sigma),
(lower variation in the size of consumers) leads to a
lower makespan (better performance). There are several
exceptions to this, with one example being SET. With
SET, the trend is in fact reversed. SET performed best
with high consumer σ (high variation in the size of
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Figure 11 ScheduleSim visualisation, GRR algorithm in Experiment C with at the highest load 750000

Figure 12 Experiment C results, showing the finishing time of tasks of different sizes. CMMMXFT is missing but would
perform very similar to MMMXFT.

Figure 13 Experiment C results, showing only the best performing algorithms.

Table 5 Experiment D Parameters

Variable Value(s)
Consumer Min Size 2UPS
Consumer Max Size 32UPS

Consumer µ 17UPS
Consumer σ 4UPS, 10UPS and 16UPS

Consumer Target Speed 4,000UPS
Task Min Size 20U
Task Max Size 240U

Task µ 110U
Task σ 44U

Task Target Size 200,000U

consumers). A possible explanation for this is that the
lower amount of choice (due to less variation in size
of consumers) negated the algorithm’s logic of selecting

faster consumers. In Figure 14 with σ at 4 (low variation)
the performance of SET is very poor and similar to R.
However, in Figure 15 with high consumer σ, SET avoids
choosing the slowest consumers, leading to much better
performance.

Another exception to the trend is the GRR algorithm.
GRR as implemented in ScheduleSim groups the sorted
consumers and tasks and then pairs the groups together.
This does not take into consideration the UPS (speed)
of the groups of consumers or the total units of the
groups tasks. In Figure 16 in the left of the figure is
σ 4 where GRR is working well with the large tasks
(dark) being placed on the fastest consumers (longest
bars on the left). However, on the right of the figure
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Figure 14 Experiment D results, higher σ (sigma) means more variation in the speed of the consumers.

Figure 15 ScheduleSim visualisation, SET algorithm in Experiment D with σ 16

with σ 10 GRR is performing poorly by over utilising the
slowest consumers. This over utilising can be explained,
the greater variation in the size of the consumers causes
a group of very small consumers to form, which is easily
over utilised. This echoes Figure 11 from Experiment C.

Figure 17 shows MX performing very well compared
to the other algorithms. All algorithms were not heavily
impacted by consumer σ (compared with difference seen
in Figures 8 and 5). A slight trend favouring not much

variation of the consumers is perceptible, not significant.
In this experiment, RASA, MXFT, MMMXFT and
CMMMXFT all performed comparably.

Experiment E

Experiment E assesses how the algorithms handle
different distributions of tasks, from all tasks being quiet
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Figure 16 ScheduleSim visualisation, GRR algorithm in Experiment D with σ 4 and 10

Figure 17 Experiment D results, showing only the best performing algorithms.

uniform through to tasks varying greatly in size. Table
5 shows experiment setup with the the varying task σ
value.

Table 6 Experiment E Parameters

Variable Value(s)
Consumer Min Size 2UPS
Consumer Max Size 32UPS

Consumer µ 17UPS
Consumer σ 6UPS

Consumer Target Speed 4,000UPS
Task Min Size 20U
Task Max Size 240U

Task µ 110U
Task σ 40U, 140U and 240U

Task Target Size 200,000U

The Experiment E results show how the variation
of the size of tasks impacts the algorithms. The most
interesting result in Figure 18 concerns the RR based
algorithms. RR suffers a severe loss of performance
when there is a large variety of tasks. However, WRR
and TAWRR using their consumer weighting mechanism
largely counter the loss of performance seen with RR.
GRR improves further on the performance of WRR and
TAWRR. GRR outperforms WRR and TAWRR with the
high σ values, this may be because GRR always places
big tasks on the fastest consumers. Whereas WRR and

TAWRR leave this to probability, and thus occasionally a
large tasks is placed on a slow consumer and this extends
the overall makespan.

In Figure 19, again the rank of algorithms is fairly
consistent with the other experiments. MX producing
the best overall makespan, RASA, MXFT, MMMXFT
and CMMMXFT all performing comparably.

Experiment F

The purpose of Experiment F is to explore how the size
of the fast track (controlled by the margin parameter)
effects overall makespan and task makespan. The
margins trailed where 0.2 to 0.7, in increments of 0.05.

Table 7 Experiment F Parameters

Variable Value(s)
Consumer Min Size 2UPS
Consumer Max Size 32UPS

Consumer µ 17UPS
Consumer σ 6UPS

Consumer Target Speed 8,000UPS
Task Min Size 20U
Task Max Size 240U

Task µ 110U
Task σ 44U

Task Target Size 800,000U
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Figure 18 Experiment E results, higher σ (sigma) means more variation in the size of the task.

Figure 19 Experiment E results, showing only the best performing algorithms.

Experiment F varies the margin value supplied to
MXFT. Figure 20 shows the trend of the higher margin
values (size of fast track) the higher (worse) the overall
makepsan. A possible hypothesis is that performance is
lost due to breaking the problem into two. Each instance
of MX is not aware of the other, and cannot utilise each
others spare capacity. Furthermore, the MX instance
processing the normal track has less small tasks to fill
space in schedule with. It would be fair to assume that
after 0.5 the trend would be mirrored (i.e. would take a
downward turn). However, Figure 20 shows that this is
not true, as 0.55 onwards continues the upward trend.
A possible explanation is that the tasks assigned to the
fast track were previously being completed in time that
would have otherwise have been left empty around the
normal track’s larger tasks. To make an analogy to real
life imagine filling two jars with golf balls and sand.
Place a mixture of golf balls and sand in one jar and
just sand in the other. Taking sand from the mixed jar
placing it in the sand jar may cause an overflow. Whilst

not reducing the level of mixed jar, since the sand was
previously fitting into space in between the golf balls.

MXFT’s weakness is that it does not prioritise small
tasks as much as is possible. As it runs two instances
of MX, inside each instance of MX, small tasks are not
prioritised and get executed last. In Figure 21 this is
clear, regardless of the margin. The group 1 tasks (the
smallest tasks) are always executed latest out of the first
four groups. In Figure 21, we can see that 0.25 - 0.35
are around optimal for the tasks in the experiment for
trying to optimise makepsan of the smallest Groups (1
to 4 out of 10).

Experiment G

This has the same purpose as Experiment F. However,
experiment G investigates the impact of the size of the
fast track with MMMXFT rather than MXFT. Again
the margins trailed were 0.2 to 0.7, in steps of 0.05. The
experiment parameters are the same as in Experiment
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Figure 20 Experiment F results, varying the MXFT margin value, a higher margin value places more tasks in the fast track.

Figure 21 Experiment F results, task makespan results showing the impact of varying the MXFT margin on task size
groups 1 to 4.

Figure 22 Experiment G results, varying the MMMXFT margin value, a higher margin value places more tasks in the fast
track.

F, see Table 7.

Again, the same trend between the size of the margin
and the overall makespan can be observed.

MMMXFT is simpler to use than MXFT. The bigger
the fast track, the more small tasks are prioritised. The
smallest tasks (Group 1 tasks) are always prioritised
first. As the fast track gets larger, the fast track
prioritises bigger groups more and more. Figure 23
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Figure 23 Experiment G results, task makespan results showing the impact of varying the MMMXFT margin on task size
groups 1 to 4.

shows the result of this. In the figure, the relationship
is not linear between the amount of prioritisation ( i.e.
lower task makespan ) and increasing the size of the fast
track (i.e margin). Thus there is a trade off between the
prioritisation of small tasks against the importance of
creating a schedule with good overall performance that
must be balanced. In summary, the bigger the margin
the linearly worse the makespan however, the more
small tasks are prioritised.

Experiment H

The purpose of this experiment is to ascertain if the
ScheduleSim findings can be reproduced in the real
world. For this only R, RR, MX and MMMXFT were
trailed since the corresponding code had to be produced
for the real world experiment. Rather than using the
normal distribution to generate the consumers and tasks
in this experiment they were supplied in list, an overview
is in Table 9.

Table 8 Experiment H (ScheduleSim) Parameters

Item Count Value(s)
Consumers 4 24UPS
Consumers 4 25UPS
Consumers 4 26UPS

Tasks 100 234U
Tasks 100 255U
Tasks 100 264U

Table 9 Experiment H (Real World) Parameters

Item Count Description
Server 4 Azure BS1 (single core)
Server 4 Azure BS2 (dual core)
Server 4 Azure B4MS (quad core)

TSP Problem 100 9 cities
TSP Problem 100 10 cities
TSP Problem 100 11 cities

Figure 24 shows performance of the real world server
used in the comparison experiment. In particular, Figure

24 shows the performance of the fastest servers used
the experiment. These are Microsoft Azure B4MS cloud
IaaS instances, each with 4 (Intel(R) Xeon(R) CPU
E5-2673 v4 @ 2.30GHz) cores. The workload for the
comparison experiment was brute force solving instances
of the travelling salesman problem. Three different task
sizes were tested with, 9 city problems, 10 city problems
and 11 city problems.

The real world server differed from ScheduleSim
consumers in two way. Firstly, the real servers perform
inconsistently, and this is not currently modelled in
ScheduleSim. In Figure 24 you can see the range of
results collected. The smallest tasks (9 city problems
with 9! iterations to try) vary the most. Because of
their short time span, they can be greatly effected by
the server being busy with other background tasks.
Secondly, in the real world, larger tasks benefited from an
economy of scale that was not taken into consideration
in ScheduleSim. In Figure 24 the slight downward trend
can be seen, favouring the large 11 city problems.

Another challenge for ScheduleSim with modelling
the real world experiment was the lack of variation
in the performance of different servers. The real world
fastest servers performed only 12% faster than the
slowest overall server. The workload (brute force solving
travelling salesman problems) was multithreaded and a
bigger benefit was expected. This lack of variation is
similar to Experiment D, indicated in Figure 14 where
the σ value was 4. As ScheduleSim models the speed of
consumers with low integer values, the real world IPS
was adjusted to suit ScheduleSim, 2359468 (real world)
Iteration Per Second (IPS) became 24 (ScheduleSim)
Units Per Step (UPS), 2549294 (real world) IPS became
25 (ScheduleSim) UPS and 2635902 (real world) IPS
became 26 (ScheduleSim) UPS.

Figure 25 shows the same trends seen with the fastest
servers. Massive variation in the small 9 city problems
and a slight economy of scale with the larger problems.
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Figure 24 Experiment H fast server testing.

Figure 25 Experiment H medium server testing.

Figure 26 experiment H slow server testing

Moreover Figure 26 shows the trends again.

Figure 27 shows the results of the experiment
conducted outside of ScheduleSim. Notice that rather
than the “steps” ScheduleSim uses, in the real world
experiments the makespan is measured in seconds. Of the
4 algorithms trailed for this experiment, MX produced
the shortest makespan. This was expected as MX is
very rarely surpassed by other algorithms in terms
of makespan. Interestingly and unexpectedly RR came
second. A possible explanation for this is that the very
little variation in the speed of consumers meant that
RR’s choices were fairly optimal. Furthermore, the tasks
were sent to the scheduler pre-sorted smallest first. Had

these conditions not arisen, RR may have performed
much worse. In joint third was R and MMMXFT, R
often performs poorly which was expected. However,
MMMXFT underperformed in this experiment.

Both R and RR have O(n) complexity. In Figure
28, the execution time of the scheduling algorithm can
be seen. This is the amount of time that it took the
scheduling algorithm to decide where to assign the tasks.
As expected R and RR executed very quickly whereas
MX and MMMXFT took much longer.

As in the real world experiment, MX performed
best and was closely followed by RR. However, unlike
in the real world experiment where MMMXFT and R
performed the same, MMMXFT performed much better
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Figure 27 Experiment H, real world experiment results.

Figure 28 Experiment H, real world experiment results (scheduler execution time)

than R. This is likely related to the variation seen in
Figures 24, 25 and 26. In the real world experiment,
MMMXFT could have performed poorly because some
small tasks were taking much longer than expected,
causing the fast track to be executing long after the
normal track had finished. In ScheduleSim there is no
noise, so schedulers can accurately predict makespans.

5 Conclusion and Future Work

Summarising our findings, MMMXFT improves on
MXFT as it has a similar overall makespan but suprior
small task prioritisation. This makes it more suitable
in a cloud computing context where small tasks may
have SLAs that imply they cannot wait for large tasks
to complete.

Adjusting the margin of MXFT and MMMXFT does
not have a big impact on the overall makespan, but can
make a big difference to the finishing time of small tasks.

With MMMXFT, the larger the margin the less impact
it has. In our experiments, it appeared that it was not
very beneficial for small tasks if the margin exceeds 0.5
for MMMXFT. For MXFT a margin of between 0.25
and 0.35 appeared optimal for our experiments.

A benefit of using CMMMXFT was not seen in
the experiments and graphs produced. However, this
could be because the method of creating tasks for the
experiments used a single normal distribution. Thus the
clustering could not perform optimally since in every
experiment there was really only one significant cluster.
If the task patterns allowed for the superposition of
two normal distributions then a clear benefit to using
CMMMXFT may emerge.

With some small adjustments to TAWRR, the
algorithm could be a good online alternative to RASA
and the Fast Track algorithms. TAWRR was third best
online algorithm tested.
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Figure 29 Experiment H (part 2), the real world experiment replicated in ScheduleSim.

Our work leads on to several opportunities for future
research. The following is are some examples.

One such opportunity is investigating the impact of
partial information. For instance, where task sizes and
consumer speeds are only partially correct - as if they
were estimated. This would be worthwhile as there is
likely numerous services where the makespan can only
be predicted or is possibly not know at all, or only
known at runtime.

Furthermore, this work considers scheduling
algorithms operating in batch mode. The algorithms
operate on batches (metatasks) creating a schedule
first then deploying it. While this is advantageous as
the algorithms are operating with more information,
but for some use cases, an online approach is simply
required to instantly process tasks. In online mode, tasks
are assigned to conumers individually as they arrive.
Redesigning and testing the algorithms to work under
these conditions would expand the applicability of this
work. TAWRR, MCT and SCT could easily be adapted
to operate in online mode.

TAWRR could be adapted to use the clustering
seen in CMMMXFT. The implementation of TAWRR
simply divides tasks in half after sorting them based on
size. However, substituting this for clustering may prove
more robust given an interesting profile of tasks.
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