
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2009, Article ID 127945, 16 pages
doi:10.1155/2009/127945

Research Article

Towards Preserving Model Coverage and Structural
Code Coverage

Raimund Kirner

Institut für Technische Informatik, Technische Universität Wien, Treitlstraße 3/182/1, A-1040 Wien, Austria

Correspondence should be addressed to Raimund Kirner, raimund@vmars.tuwien.ac.at

Received 12 August 2008; Revised 20 January 2009; Accepted 21 February 2009

Recommended by Bernhard Rinner

Embedded systems are often used in safety-critical environments. Thus, thorough testing of them is mandatory. To achieve a
required structural code-coverage criteria it is beneficial to derive the test data at a higher program-representation level than
machine code. Higher program-representation levels include, beside the source-code level, languages of domain-specific modeling
environments with automatic code generation. For a testing framework with automatic generation of test data this will enable high
retargetability of the framework. In this article we address the challenge of ensuring that the structural code coverage achieved at
a higher program representation level is preserved during the code generations and code transformations down to machine code.
We define the formal properties that have to be fullfilled by a code transformation to guarantee preservation of structural code
coverage. Based on these properties we discuss how to preserve code coverage achieved at source-code level. Additionally, we
discuss how structural code coverage at model level could be preserved. The results presented in this article are aimed toward the
integration of support for preserving structural code coverage into compilers and code generators.

Copyright © 2009 Raimund Kirner. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Testing is a mandatory process to assess the correct behavior
of safety-critical systems. Even the increasing use of formal
verification cannot make testing obsolete, as there is always
a gap between the formal model and the real system with all
the issues of integration.

The use of formal (=executable) models increasingly
pervades the software engineering process. Formal models
are used as part of the specification, as high-level software
descriptions with automatic code generation, or as a tool for
formal verification and model-based testing [1].

When generating test data it is beneficial to operate
at the same representation level where the software is
developed, which may be at the source-code level or at a
domain-specific modeling environment like ezRealtime [2],
MATLAB/Simulink [3, 4], Statemate [5], or Scade [6]. The
advantage of test-data generation at this high-level program
representation is on the one side reduced complexity and
availability of explicit knowledge of the program behavior
that might get lost during code generation and compilation.
On the other side, a test-data generator operating on
such a high-level program representation could be easily

retargeted to different platforms. Beside conventional testing,
the support for retargetability is also of high interest for
hybrid timing analysis, that is, an approach to determine the
timing behavior of a program based on the combination of
execution-time measurements and program analyses [7, 8].

Structural code-coverage criteria are metrics to analyze
and quantify the control-flow coverage that is achieved for
a given set of test data. Using a model-based or source-
based test-data generator raises the challenge of ensuring
that adequate structural code-coverage has been achieved
at machine-code level [9]. Code generators and compilers
perform many transformations on the program or model
given as input. Some of these code transformations can com-
promise structural code-coverage by copying, reordering, or
moving conditions inside the program or even creating new
conditions and decisions. For example, optimizations like
loop unrolling, loop inversion, reverse if-conversion, and
condition reordering [10] can disrupt full structural code-
coverage. In general, full structural code-coverage cannot
be guaranteed in this case without taking the burden of
analyzing the machine code.

We propose an approach toward the preservation of
structural code coverage when transforming the program. To

2 EURASIP Journal on Embedded Systems

achieve this, we introduce in Section 3 a notation to formally
define structural code-coverage criteria. In Section 4 we
present coverage preservation criteria for the different vari-
ants of structural code coverage. As described in Section 5,
these criteria can help to extend a compiler with the ability
of preserving coverage achieved at source level. The code
coverage is preserved by prohibiting all code transformations
that can disrupt the concrete structural code coverage metric.
If full coverage preservation is not strictly required, the
compiler may be used in a special mode where all available
code transformations are allowed but a warning is emitted if
structural code coverage may be compromised by an applied
code optimization. Issues of preserving model coverage by
code generators are discussed in Section 6.

2. Related Work

Structural coverage criteria are used as a supplementary cri-
terion to monitor the progress of testing [11]. The DO178b
document introduces the modified condition-decision cover-
age (MCDC) as a supplementary criterion for testing systems
of safety-criticality level A [12]. Vilkomir proposes solutions
to overcome some weaknesses of MCDC [13]. Vilkomir
and Bowen have formally modeled structural code-coverage
criteria using the Z notation [14]. The formalization we
present in this article is basically equivalent, with the
difference that we also support hidden-control flow [15],
which is necessary to model code coverage for languages like
ANSI C or ADA. Further, our notation is more compact,
which has shown to be helpful for developing coverage-
preservation criteria.

Model-based development aims to use high-level system
representations within the system engineering process. For
example, the Object Management Group proposes the
Model-Driven Architecture, which explicitly differentiates
between platform-independent and platform-specific mod-
els [16]. Models can be used to automatically generate source
code. Another model-based approach is model-based testing
where abstract models are used to guide the generation of
test data [1, 17]. Using models to verify the correctness of the
system requires evidence of the model’s correctness [18].

Directly related to our work is the relationship of
achieved model coverage and the resulting code coverage.
Baresel et al. analyzed this relationship empirically, finding
some correlation between the degree of model coverage and
the resulting degree of code coverage [19]. Rajan et al. have
shown for MCDC that the correlation of the degree of model
coverage and the degree of code coverage depends on the
code generation patterns [20]. To test safety-critical systems
we want to do better than relying on accidental coverage
correlations.

Elbaum et al. empirically studied the preservation of code
coverage for software evolution with different change levels.
They concluded that even relatively small modifications in
the software may impact the coverage in a way that is hard
to predict [21]. Their results also motivate our work for the
preservation of code coverage.

A method complementary to our approach is described
by Harman et al. Testability transformation results in a

transformed program to be used by a test-data generator to
improve its ability of generating test data for the original
program [22].

3. Basic Definitions

In this section we give a list of basic definitions. These
definitions are used to describe properties of structural code
coverage and to preserve structural code coverage.

Program P. Denotes the program before (P1) and after
(P2) the transformations for which we want to preserve
structural code coverage.

Control-Flow Graph (CFG). Is used to model the control
flow of a program [23]. A CFG G = 〈N ,E, s, t〉 consists of a
set of nodes N representing basic blocks (see below), a set of
edges E : N × N representing the control flow (also called
control-flow edges), a unique entry node s, and a unique end
node t.

Program Scope of A Program P. Is a fragment of P with
well-defined interfaces for entry and exit. We denote the set
of program scopes in a program Pi as PS(Pi). The concrete
partitioning of a program into scopes is application-specific.
For example, in [24] a program partitioning is used that
allows to trade the number of required test data against the
number of instrumentation points. Another feature of scopes
is that nested scopes can be used to hide details. This feature
allows to reduce the program complexity of the surrounding
scope.

Scoped Path. Of a program scope ps is a sequence of
control-flow edges from an entry point of the scope to an
exit point of the scope. In case of nested program scopes, the
whole inner program scope is a single block in the paths of
the outer program scope. A scoped path of a program scope
ps is uniquely represented by its starting basic block and the
necessary TRUE/FALSE evaluation result of all conditions
along the scoped path. We denote the set of scoped paths in a
program scope ps as PP(ps). The paths within a program P,
that is, the scoped paths where the program scope subsumes
the whole program, is denoted as PP(P).

Basic Block. Of a program P is a code sequence of
maximal length with a single entry point at the beginning
and with the only allowed occurrence of a control-flow
statement at its end. We denote the set of basic blocks in a
program Pi as B(Pi). The set of all basic blocks along a scoped
path pp is denoted as B(pp). Note that in cases of program
paths with cycles, B(pp) will contain multiple instances of
the basic blocks in the program code. If a scoped path goes
through a nested program scope, all the basic blocks from the
nested program scope are hidden for this path. The starting
basic block of a scoped path pp is denoted as BS(pp).

Decision. Is a Boolean expression composed of conditions
that are combined by Boolean operators. If a condition occurs
more than once in the decision, each occurrence is a distinct
condition [25]. However, the input of a decision is the set of
its conditions without duplicates. A decision is composed of
one or more basic blocks. We denote the set of decisions of a
program Pi as D(Pi).

There are source languages, where decisions are hidden
by an implicit control flow. For example, in ANSI C due to

EURASIP Journal on Embedded Systems 3

the short-circuit evaluation the following statement a = (b
&& c); contains the decision (b && c). The short-circuit
evaluation of ANSI C states that the second argument of
the operators && and || is not evaluated if the result of the
operator is already determined by the first argument. See
Section 5.4 for further details. The correct identification of
hidden control flow is important, for example, to analyze
decision coverage.

Condition. Is a Boolean expression. We consider only
lowest-level conditions, that is, conditions that do not
contain operators with Boolean arguments [25]. A condition
is composed of one or more basic blocks. We denote the set
of conditions of a decision d as C(d). The set of all conditions
within a program Pi is denoted as C(Pi).

The set of all conditions that directly control edges along
a scoped path pp is denoted as C(pp). Note that in cases
of program paths with cycles, C(pp) will contain multiple
instances of the conditions in the program code. If a scoped
path goes through a nested program scope, all the conditions
from the nested program scope are hidden for this path.
To follow a certain path, it is also important whether a
condition evaluates to TRUE/FALSE. Whether a condition
has to be evaluated as TRUE or as FALSE is given by the
syntactical structure of a program. For a given scoped path
pp we denote by CT(pp) all the conditions that have to be
evaluated as TRUE and by CF(pp) all the conditions that
have to be evaluated as FALSE to follow pp. It holds that
CT(pp)∪ CF(pp) = C(pp) and (CT(pp)∩ CF(pp)) = ∅.

Input Data ID. Defines the set of all possible valuations
of the input variables of a program. (Valuation of a variable
means the assignment of concrete values to it. The valuation
of an expression means the assignment of concrete values to
all variables within the expression.)

Test Data TD. Defines the set of valuations of the input
variables that have been generated with structural code
coverage analysis done at source-code level. Since exhaustive
testing is intractable in practice, TD is assumed as a true
subset of the program’s input data space ID: TD ⊂ ID. If we
would consider exhaustive testing (TD = ID) there would be
no challenge of structural code-coverage preservation.

Reachability Valuation IVR(x). Defines the set of valu-
ations of the input variables that trigger the execution of
expression x, where x can be a condition, decision, or a basic
block.

Satisfiability Valuation IVT(x) , IVF(x). Defines the sets
of valuations of the input variables that trigger the execution
of the condition/decision x with a certain result of x: IVT(x)
is the input-dataset, where xrefers to TRUE and IVF(x) is the
set, where xrefers to FALSE. The following properties always
hold for IVT(x), IVF(x):

IVT(x)∩ IVF(x) = ∅,

IVT(x)∪ IVF(x) = IVR(x).
(1)

Consider the following example of C code to get an
intuition about the meaning of the satisfiability valuations:

void f (int a,b) {
if (a==3 && b==2)

return 1;
return 0;

}.
For this code fragment we assume

IVR(a==3) = {〈a, b〉 a, b ∈ int}. (2)

It follows that

IVR(b==2) = {〈3, b〉 | b ∈ int} (3)

(and not the larger set {〈a, b〉 | a, b ∈ int} due to the hidden
control flow caused by the short-circuit evaluation of ANSI
C; see Section 5.4). It follows that

IVT(b==2) = {〈3, 2〉}. (4)

Only those input data that trigger the execution of condition
b==2 and evaluate it to TRUE are within IVT(b==2). With
〈3, 2〉 the conditions a==3 and b==2 are both executed and
evaluated to TRUE. Further, it holds that

IVF(b==2) = {〈3, b〉 | b ∈ int∧ b /= 2}. (5)

The definition of IVR(x), IVT(x), and IVF(x) depends
on whether the programming language has hidden control
flow (see Section 5.4). Above definitions allow to formally
describe structural code coverage criteria. We will also use
them to describe requirements to preserve structural code
coverage.

3.1. Structural Code-Coverage Criteria. Structural code-
coverage criteria are metrics to analyze and quantify the
control-flow coverage that is achieved for a given set of
test data. Execution traces are used to collect the coverage
information. In general, the satisfaction of a structural code-
coverage criterion is not the primary test-case generation
strategy in functional testing. Instead, structural code-
coverage achieved during testing is analyzed as a supplemen-
tary measure to decide whether the implemented function-
ality has been sufficiently tested and does not contain any
unintended functionality. However, there are also rare testing
scenarios where the satisfaction of a certain code-coverage is
the primary directive for test-data generation. For example,
in measurement-based timing analysis an estimation of the
worst-case execution time (WCET) is derived by systematic
measurements [24].

In the following we review the properties of several
structural code-coverage criteria.

Line Coverage. Is not a serious code coverage criterion,
as without strict coding guidelines there is an ambiguous
mapping from source lines to statements. In the extreme case
one could write the whole program within one source line.
Historically, line coverage was used as an easy hack when
tools for analyzing statement coverage were missing. Thus, we
do not discuss preservation of line coverage in this work.

Statement Coverage (SC). Requires that every statement
of a program P is executed at least once. Statement coverage
alone is quite weak for functional testing [26] and should best

4 EURASIP Journal on Embedded Systems

be considered as a minimal requirement. Using our above
definitions, we can formally define SC as follows:

∀b ∈ B(P). (TD∩ IVR(b)) /=∅. (6)

Note that the boundary recognition of basic blocks B(P)
can be tricky due to hidden control-flow. A statement in a
high level language like ANSI C can consist of more than one
basi cblock. For example, the ANSI C statement f=(a==3 &&
b==2); consists of multiple basic blocks due to the short-
circuit evaluation order of ANSI C expressions.

Decision coverage (DC). Requires that each decision of a
program P has been tested at least once with each possible
outcome. Decision coverage is also known as branch coverage
or edge coverage. Decision coverage implies statement cover-
age:

∀d ∈ D(P). (IVT (d)∩ TD) /=∅∧ (IVF (d)∩ TD) /=∅.
(7)

Condition Coverage (CC). Requires that each condition of
the program has been tested at least once with each possible
outcome. It is important to mention that CC does not imply
DC. A formal definition of CC is given in (8)

∀c ∈ C(P). (IVT(c)∩ TD) /=∅∧ (IVF(c)∩ TD) /=∅. (8)

Note that our definition requires in case of short-circuit
operators that each condition is really executed. This is
achieved by the semantics of IVT(), IVF(). However, often
definitions are used that do not explicitly consider short-
circuit operators (e.g., [27]), thus having in case of short-
circuit operators only a “virtual” coverage since they do not
guarantee that the short-circuit condition is really executed
for the evaluation to TRUE as well as for the evaluation to
FALSE.

Condition/Decision Coverage (CDC). Requires that both,
condition coverage and decision coverage are achieved.

Modified Condition/Decision Coverage (MCDC). Requires
to show that each condition can independently affect the
outcome of the decision [12]. Thus, having n conditions in
a decision, n + 1 test cases are required to achieve MCDC.
Note that MCDC implies DC and CC. A formal definition
of MCDC is given in (9) based on the set of input test data
TD. It requires that for each condition c of a decision d
there exists two test vectors such that the predicate symbol
unique Cause(c,d, td1, td2) holds, which ensures that the
two test vectors show different outcomes for c as well as d but
the same outcomes for all other conditions within d. This is
exactly how MCDC is described above

∀d ∈ D(P) ∀c ∈ C(d) ∃td1, td2 ∈ TD.
unique Cause(c,d, td1, td2).

(9)

unique Cause(c1,d, td1, td2) =⇒
control Expr(td1, td2, c1)∧
control Expr(td1, td2,d)∧
∀c2 ∈ Cd. (c2 /= c1) −→

is invariantExpr({td1, td2}, c2).

(10)

The predicate symbol control Expr(td1, td2, x) tests whether
one of the test data td1, td2 is a member of the input dataset
IVT(x) and the other one a member of the input data set
IVF(x). If this predicate symbol is TRUE it is guaranteed that
the expression x evaluates to both, TRUE and FALSE:

control Expr(td1, td2, x) =⇒
(td1 ∈ IVT(x)∧ td2 ∈ IVF(x))∨
(td2 ∈ IVT(x)∧ td1 ∈ IVF(x)).

(11)

The predicate symbol is invariantExpr(ID, x) tests whether
the input-data set ID ⊆ ID provides a constant outcome
for the evaluation of x. Actually, the predicate symbol
is invariantExpr(ID, x) is used to test whether there exists
a test-data subset {td1, td2} for a given condition, such that
the results of all other conditions remain unchanged. Thus,
this predicate symbol is used to ensure that each condition
can independently control the output of the decision:

is invariantExpr(ID, x) =⇒
(ID ∩ IVT(x) = ∅)∨ (ID ∩ IVF(x) = ∅).

(12)

The above definition of MCDC is the original definition
given in the RTCA/DO178b document [12]. However, this
definition is rather strict, so that people thought of some less
restrictive definitions. For example, it is not possible with the
original definition to cover a decision with strongly coupled
conditions. (Two conditions c1, c2 are strongly coupled,
iff they have the same input data partitioning for their
satisfiability valuation, i.e., (IVT(c1) = IVT(c2) ∧ IVF(c1) =
IVF(c2)) ∨ (IVT(c1) = IVF(c2) ∧ IVF(c1) = IVT(c2)).) As
described in [25], there exist at least three definitions of
MCDC:

(i) Unique-Cause MCDC: this is the original definition
given in [12].

(ii) Unique-Cause + Masking MCDC: this definition of
MCDC is less restrictive as it requires in case of
strongly coupled conditions to test only that one of
them covers the decision (masking) [15].

(iii) Masking MCDC: this is less restrictive than the two
above, as it does not require the Unique-Cause. A
condition is masked if its value cannot influence the
outcome of a decision due to the overruling values of
other conditions. For Masking MCDC it is sufficient
to show that each condition can affect the outcome
of the decision without being masked. However,
Masking MCDC is not required to test whether
conditions do independently cover the decision. It
focuses more on testing the correct implementation
of subexpressions within a Boolean expression.

According to Chilenski the metric Masking MCDC
should be the preferred form of MCDC as it provides
the same error detection probability but allows for more
different test sets and thus the generation of test data more
is cost-effective [25].

EURASIP Journal on Embedded Systems 5

Within this article we focus on the original definition
of MCDC. Extending above formal definition of MCDC
to Unique-Cause + Masking MCDC or Masking MCDC
is straight-forward. One has to exchange the predicate
unique Cause(c1,d, td1, td2) by another predicate that for-
malizes the semantics of the alternative MCDC criterion.

Multiple Condition Coverage (MCC). Requires besides
DC and CC that each possible combination of outcomes
of the conditions of each decision is executed at least once.
MCC demands a rather high number of test cases: to achieve
full MCC of a decision with n conditions 2n tests are
necessary. MCC is desired in theory, but MCC tends to be
infeasible for industrial code, because there are too many
conditions per decision [27]. Thus, in this work we do not
address MCC.

Path Coverage (PC). Requires that each path of a program
P has been tested at least once. Since the number of paths
within a program typically grows exponentially with the
program size (PC is even stronger than MCC), we do not
address PC.

Scoped Path Coverage (SPC). Is a coverage metric recently
introduced by the authors. We use this type of code coverage
for measurement-based timing analysis [7]. In this article we
formalize this coverage metric to reason about necessary
properties of a compilation profile for preserving SPC. The
basic idea of SPC is to partition the program P into program
scopes and cover all possible paths within each program
scope. Actually, PC is just the special case of using SPC
in combination with only one program scope covering the
whole program P.

The appropriate partitioning of a program into program
scopes depends on the concrete testing goal. For example, in
case of our research on measurement-based timing analysis
[7] we use the partitioning of the program into scopes to
achieve a compromise between precision of measurement
results (the larger the segments the more precise) and
number of necessary measurements.

SPC requires that each path within a program scope
is tested at least once. Thus, there must be a test datum
that covers all basic blocks along the path. Using our above
definitions, we can formally define SPC as follows:

∀ps ∈ PS(P) ∀pp ∈ PP
(
ps
) ∃td ∈ TD.

(
IVR

(
BS
(
pp
))∩ {td}) /=∅∧

∀cT ∈ CT
(
pp
)
. (IVT(cT)∩ {td}) /=∅∧

∀cF ∈ CF
(
pp
)
. (IVF(cF)∩ {td}) /=∅.

(13)

Note, that the condition “(IVR(BS(pp))∩{td}) /=∅” of (13)
ensures that in the pathological case of having a program
scope that is completely free of conditions, coverage of the
only single path in the program scope is guaranteed.

Whether SPC is feasible in practice, depends on the
program complexity itself and also on the application-
specific partitioning of a program into program scopes.

Examples of test vectors sufficient for full coverage
according to the different coverage metrics are given in
Table 1. The ANSI C code example is a decision including

Program P1

(PS1,B1,D1)

Transformation

?
Program P2

(PS2,B2,D2)

Coverage (P1,TD) ≡ Coverage (P2,TD)

Figure 1: Coverage-preserving program transformation.

three conditions. Note that in C the operators || and &&
influence the control flow of the program due to the short-
circuit evaluation in ANSI C. This small example is meant
to support the definition of different variants of coverage
metric. It is not meant to show the relative costs of the
different variants of structural coverage metric.

The condition coverage (CC) needs a relative high number
of test vectors. This is because of test vectors that enforce the
entering of a program decision do not necessarily enforce
the execution of a specific condition within the decision.
Multiple condition coverage (MCC) has a relative high cost
for testing a single decision. However, when looking at the
whole program, then path coverage (PC) is typically much
more complex, and depending on the definition of program
scopes, scoped path coverage (SPC) requires significantly less
test vectors than PC.

4. Preservation of Structural Code Coverage

The challenge of structural code-coverage preservation is to
ensure for a given structural code coverage of a program
P1 that this code coverage is preserved while the program
P1 is transformed into another program P2. This scenario
is shown in Figure 1. Of course if a program will be trans-
formed, also the sets of basic blocks B, the set of program
decisions D, or program scopes PS may get changed. As
shown in Figure 1, the interesting question is whether a
concrete code transformation preserves the structural code
coverage of interest.

When transforming a program, we are interested in the
program properties that must be maintained by the code
transformation such that a structural code coverage of the
original program by the test-data set TD is preserved to
the transformed program. Based on these properties one
can adjust a source-to-source transformer or a compiler
to use only those optimizations that preserve the intended
structural code coverage.

These coverage-preservation properties to be maintained
have to ensure that whenever the code coverage is fulfilled at
the original program by some test data TD then this coverage
is also fulfilled at the transformed program with the same test
data:

∀TD. coverage(P1,TD) =⇒ coverage(P2,TD). (14)

The code coverage preservation can be applied on any
type of code transformation, for example, on a source-to-
source transformer or a compiler.

In the first step, we have to determine for each code
transformation of the code transformer whether it preserves
a given structural code coverage. We call this the coverage

6 EURASIP Journal on Embedded Systems

Table 1: Example: Sufficient test vectors per coverage metric.

Test vector ANSI C expression Coverage criterion

A B C if(A || (B && C)) SC DC CC MCDC MCC PC SPC

F F F F ×
F F T F × × × × ×
F T F F × × × × × ×
F T T T × × × × ×
T F F T × × × × × × ×
T F T T ×
T T F T ×
T T T T ×

Formal
coverage criteria

Formal coverage
preservation criteria

Code optimization X
(pre/post-cond, transfer)

Model of code
optimization X

(abstract transfer)

Coverage profile X

Coverage criteria

Figure 2: Determination of a coverage profile.

profile of a code transformation. The determination of the
coverage profile is shown in Figure 2. The structural code
coverage metrics of interest have to be formalized and
based on that the coverage preservation criteria have to be
determined. The coverage preservation criteria together with
description of a code optimization are used to calculate
the coverage profile of that optimization. The construction
of a formal model of the code optimization in Figure 2 is
an intermediate step that is necessary if one wants to use
formal verification to determine the coverage profile. In case
the coverage profile is determined manually, such a formal
model of the code optimization is not needed.

In the second step, the coverage preservation has to
be integrated into the code transformer. As an example
we assume the code transformer is a compiler, as shown
in Figure 3. This coverage-preserving compiler will have
an input parameter to set the code coverage metric to be
preserved. The coverage-preserving compiler can have two
operation modes.

Safe Mode. In this mode the coverage-preserving compiler
will apply only those code optimizations that preserve the
given code coverage metric. With this operation mode
we assure coverage preservation at the cost of a potential
degradation of performance.

Full-Optimization Mode. In this mode the coverage-pres-
erving compiler will apply all code transformations but it

Coverage
profile X

Intermediate
code

Intermediate
code

Object code

Source code
Coverage
selection

Coverage preservation guard

Coverage-preserving compiler

Code
optimization X

Figure 3: Application of a coverage profile.

will emit a warning whenever a code transformation has
been used that does not ensure the preservation of the given
coverage metrics. The warning message should be as specific
as possible to support the user in determining additional test
data to regain code coverage for the optimized code.

The determination of the coverage profile for a given
code transformation and the realization of a coverage-
preserving compiler are not the focus of this article. Within
this article we present the foundation for such a coverage
preservation framework and discuss issues that challenge its
applicability.

In the following we present coverage preservation criteria
for several variants of structural code-coverage metrics.
The important aspect is that these preservation criteria are
independent of the concrete test data TD that achieve the
structural code coverage at the original program.

4.1. Preserving Statement Coverage (SC). Equation (15) of
Theorem 4.1 provides a coverage preservation criterion for
statement coverage. Equation (15) essentially says that for
each basic block b′ of the transformed program there exists

EURASIP Journal on Embedded Systems 7

a basic block b of the original program such that reaching b
with a given test vector implies that also b′ is reached with
the same test vector.

Theorem 4.1 (Preservation of SC). Assuming that a set of test
data TD achieves statement coverage on a given program P1,
then (15) provides a sufficient—and without further knowledge
about the program and the test data (there is now knowledge
about the test data or the program assumed), also necessary—
criterion for guaranteeing preservation of statement coverage on
a transformed program P2.

∀b′ ∈ B(P2) ∃b ∈ B(P1). IVR(b′) ⊇ IVR(b). (15)

Proof. Preservation of SC: Part 1, showing sufficiency: Since
TD is assumed to achieve SC on P1, it holds for each
b ∈ B1 that (IVR(b) ∩ TD) /=∅. Since (15) states that
IVR(b′) ⊇ IVR(b) it follows that for each b′ ∈ B2 we also
have (IVR(b′)∩ TD) /=∅. Thus, SC is preserved at P2.

Part 2, showing necessity by indirect proof: Assuming
there exists a basic block b′ ∈ B2 of P2 such that for all
basic blocks b ∈ B1 of P1 it holds that ¬(IVR(b′) ⊇ IVR(b)),
then each IVR(b) contains at least one input that is not in
IVR(b′). If TD consists of exactly those inputs, then b′ is
never reached although SC holds in P1, which implies that
SC is not preserved.

4.2. Preserving Condition Coverage (CC). To define a cover-
age preservation criterion for CC (Theorem 4.2) we use the
auxiliary predicate touches ID(x, ID) given in (16).

The predicate touches ID(x, ID) is only TRUE if the
set of input data ID includes at least the true-satisfiability
valuation IVT(x) or the false-satisfiability valuation IVF(x)
of expression x, where x is either a condition or a decision.
The predicate touches ID(x, ID) is used for the coverage
preservation criterion of CC (and also DC) to test whether
the evaluation of any expression x of the original program to
both, TRUE and FALSE, implies that the test data include
at least one element of ID, needed for the coverage of an
expression in the transformed program

touches ID(x, ID) =⇒
(IVT(x) ⊆ ID) ∨ (IVF(x) ⊆ ID).

(16)

Equation (17) states that for each condition c′ of the
transformed program there exists at least one condition of
the original program whose coverage implies that c′ evaluates
to TRUE and there exists at least one condition of the original
program whose coverage implies that c′ evaluates to FALSE.

Theorem 4.2 (Preservation of CC). Assuming that a set of test
data TD achieves condition coverage on a given program P1,
then (17) provides a sufficient—and without further knowledge
about the program and the test data, also necessary—criterion

for guaranteeing preservation of condition coverage on a
transformed program P2:

∀c′ ∈ C(P2).

∃c ∈ C(P1). touches ID(c, IVT(c′))∧
∃c ∈ C(P1). touches ID(c, IVF(c′)).

(17)

Proof. Preservation of CC: Part 1, showing sufficiency: Since
TD is assumed to achieve CC on P1, it holds for each c ∈
C(P1) that (IVT(c)∩TD) /=∅ and (IVF(c)∩TD) /=∅. Since
(17) states that for each c′ ∈ C(P2) it holds that

∃c ∈ C(P1). (IVT(c′) ⊇ IVT(c)∨ IVT(c′) ⊇ IVF(c)),

∃c ∈ C(P1). (IVF(c′) ⊇ IVF(c)∨ IVF(c′) ⊇ IVT(c)),
(18)

it follows that for each c′ ∈ C(P2) we also have

(IVT(c′)∩ TD) /=∅, (IVF(c′)∩ TD) /=∅. (19)

Thus, CC is preserved at P2.
Part 2, showing necessity by indirect proof: Assuming

there exists a condition c′ ∈ C(P2) of program P2 such that
for all conditions c1, c2 ∈ C(P1) of program P1 it either holds
that

(a) ¬(IVT(c′) ⊇ IVT(c1)∨ IVT(c′) ⊇ IVF(c1)),

(b) ¬(IVF(c′) ⊇ IVF(c2)∨ IVF(c′) ⊇ IVT(c2)),

then it is possible that

(a) ∀c ∈ C(P1): TD∩ IVT(c′)∩ (IVT(c)∪ IVF(c)) = ∅,

(b) ∀c ∈ C(P1): TD∩ IVF(c′)∩ (IVF(c)∪ IVT(c)) = ∅

which in both cases violates the preservation of CC.

Simplification of the CC Preservation Criteria. The goal of
defining the coverage preservation criterion is to decide for
a set of code transformations whether they could potentially
disrupt the structural code coverage achieved on the original
program. Typically, when checking the preservation of
structural code coverage, one would simplify (17) by just
checking whether each condition c ∈ C(P1) is kept equal or
simply is inverted. This would result in the simpler criterion
given in (20)

∀c′ ∈ C(P2) ∃c ∈ C(P1).

(IVT(c′) = IVT(c))∨ (IVT(c′) = IVF(c)).
(20)

Working with the simple constraint of (20) may be suf-
ficient in practice when analyzing the effect of concrete code
transformations, since many transformations do not modify
the conditions within a decision, but only their grouping
into decisions. The simplified criterion is sufficient to allow
only such code transformations that do not introduce new
conditions with new unique satisfiability by the test data.
Further, some transformations just invert a condition, which
can be checked also with this simplified criterion.

8 EURASIP Journal on Embedded Systems

4.3. Preserving Decision Coverage (DC). To define a coverage
preservation criterion for DC (Theorem 4.3) we use the
auxiliary predicate touches ID(x, ID) given in (16), which is
also used for preserving CC.

Equation (21) of Theorem 4.3 provides a coverage
preservation criterion for decision coverage. Equation (21)
essentially says that for each decision d′ of the transformed
program there exists at least one decision of the original
program whose coverage implies that d′ evaluates to TRUE
and there exists at least one decision of the original program
whose coverage implies that d′ evaluates to FALSE.

Theorem 4.3 (Preservation of DC). Assuming that a set of
test data TD achieves decision coverage on a given program P1,
then (21) provides a sufficient—and without further knowledge
about the program and the test data, also necessary—criterion
for guaranteeing preservation of decision coverage on a trans-
formed program P2

∀d′ ∈ D(P2).

∃d ∈ D(P1). touches ID(d, IVT(d′))∧
∃d ∈ D(P1). touchesID(d,IVF (d′)).

(21)

Proof. Preservation of DC: Part 1, showing sufficiency: since
TD is assumed to achieve DC on P1, it holds for each d ∈
D(P1) that (IVT(d)∩TD) /=∅ and (IVF(d)∩TD) /=∅. Since
(21) states that for each d′ ∈ D(P2)

(1) ∃d ∈ D(P1). (IVT(d′) ⊇ IVT(d) ∨ IVT(d′) ⊇
IVF(d)),

(2) ∃d ∈ D(P1). (IVF(d′) ⊇ IVF(d) ∨ IVF(d′) ⊇
IVT(d))

it follows that for each d′ ∈ D(P2) we also have (IVT(d′) ∩
TD) /=∅ and (IVF(d′)∩TD) /=∅. Thus, DC is preserved at
P2.

Part 2, showing necessity by indirect proof: assuming
there exists a decision d′ ∈ D(P2) such that for all conditions
d1,d2 ∈ D(P1) it either holds that

(a) ¬(IVT(d′) ⊇ IVT(d1)∨ IVT(d′) ⊇ IVF(d1)), or

(b) ¬(IVF(d′) ⊇ IVF(d2)∨ IVF(d′) ⊇ IVT(d2)),

then it is possible that

(a) ∀d1 ∈ D(P1) : TD∩IVT(d′)∩(IVT(d1)∪IVF(d1)) =
∅, or

(b) ∀d2 ∈ D(P1) : TD ∩ IVF(d′) ∩ (IVF(d2) ∪
IVT(d2)) = ∅,

which in both cases violates the preservation of DC.

Guaranteeing Decision Coverage. Guaranteeing the preserva-
tion of a structural code coverage criterion that depends on
the coverage of decisions of a program is challenging, since
there are many ways to re-group conditions into hierarchies
of decisions without changing the program semantics.

The criterion given in (21) imposes quite strong restric-
tions on the performed code transformations, since it

requires that for each decision d′ ∈ D(P2) there is an
adequate decision d ∈ D(P1) of the original program such
that decision coverage is preserved. For example, consider the
following code transformation:

if (a==3) {
if (a==3&&b==2) { if (b==2) {

c(); c();
} =⇒ }

}
inlined style

noninlined style.

Such a transformation is quite typical when source-
code is transformed into assembly code. Actually, the only
decision in the original code is (a==3 && b==2). Having
decision coverage on the original code, there are numerous
code transformations possible that do not preserve decision
coverage.

Thus, it would be useful to have another criterion to
guarantee decision coverage at the transformed program.
Equation (22) provides a sufficient criterion for guaranteeing
decision coverage on the transformed program, assuming
that condition coverage is fulfilled on the original program

∀d′ ∈ D(P2).

∃c ∈ C(P1). touches ID(c, IVT(d′))∧
∃c ∈ C(P1). touches ID(c, IVF(d′)).

(22)

The new criterion requires a different, but not stronger,
structural code coverage at the original code to guarantee
decision coverage at the transformed code. This criterion
is typically more flexible when generating assembly code
(which typically does not have control-flow statements with
complex decisions). Further, in case that condition decision
coverage (CDC) is fulfilled at the original program, one may
chose between the criteria of (21) and (22) to guarantee
decision coverage at the transformed program.

4.4. Preserving MCDC. Preserving MCDC coverage on a
transformed program is especially challenging, since the
code transformation may produce arbitrary groupings of
conditions into decisions. Especially the requirement that
each condition can independently influence the outcome of
its conditions, is rather complex to check.

As the MCDC coverage preservation criterion is rather
complex, we derive them in two steps. First, we describe a
rather naive criterion that is relatively ease to understand.
This criterion is sufficient but not necessary (too strict).
Second, we describe a “realistic” (more detailed) criterion
that is sufficient and necessary.

A Naive Coverage Preservation Criterion. A sufficient but not
necessary coverage preservation criterion for MCDC is given
in (23). The predicate symbol unique Cause is used in the
same way as the real criterion: it is used to express that only

EURASIP Journal on Embedded Systems 9

input data that fulfill MCDC at the original program have to
be considered for coverage preservation

∀d′ ∈ D(P2) ∀c′ ∈ C(d′) ∃d ∈ D(P1) ∃c ∈ C(d).

∃〈id1, id2〉 ∈ TD.
unique Cause(c,d, id1, id2) =⇒
unique Cause(c′,d′, id1, id2).

(23)

This naive criterion is not necessary since it requires the
coverage preservation of the conditions in the transformed
program P2 by a single condition from the original program
P1.

Another drawback of this naive criterion is that it is
based on a concrete set of test data TD that are used to
achieve MCDC at the original program. To ensure coverage
preservation in general, it would be necessary to ensure that
the criterion holds for all possible sets of test data TD that
achieve MCDC at the original program, which tends to be
intractable in practice.

A Realistic Coverage Preservation Criterion. To define an
easier testable (but more complicated) coverage preservation
criterion for MCDC (Theorem 4.4) we use the auxiliary
predicate mult control Expr(ID1, ID2, x) given in (24). The
predicate mult control Expr is similar to the predicate
symbol control Expr(td1, td2, x), with the difference that it
performs the control check on all members of two sets of
input data. The predicate mult control Expr(ID1, ID2, x) is
used for the coverage preservation of MCDC to test whether
the condition x of the original program refers to TRUE
for one input data set ID1 or ID2 and refers to FALSE
for the other. Besides mult control Expr(ID1, ID2, x), also
the predicate unique Cause(c1,d, td1, td2) (10) is used to
describe the preservation criterion for MCDC coverage

mult control Expr(ID1, ID2, x) =⇒
(ID1 ⊆ IVT(x)∧ ID2 ⊆ IVF(x))∨
(ID1 ⊆ IVF(x)∧ ID2 ⊆ IVT(x)).

(24)

The criterion given in equ preserve mcdc states that
for each condition c′ of a decision d′ of the transformed
program there exist two sets of input data ID1 and ID2

whose members achieve the unique Cause criterion needed
for MCDC coverage. Further, there has to be a condition of
the original program such that the ID1 is a subset of either
the true-satisfiability valuation or the false-satisfiability
valuation (tested with the predicatemult control Expr). ID2

the same requirement as ID1.

Theorem 4.4 (Preservation of MCDC). Assuming that a
set of test data TD achieves MCDC coverage on a given
program P1, then (25) provides a sufficient—and without
further knowledge about the program and the test data, also

necessary—criterion for guaranteeing preservation of MCDC
coverage on a transformed program P2

∀d′ ∈ D(P2) ∀c′ ∈ C(d′) ∃ID1, ID2 ⊆ ID.
(
∃d ∈ D(P1) ∃c ∈ C(d) ∃IDtmp ⊆ ID.

mult control Expr
(
ID1, IDtmp, c

)
∧

∀〈id1, id2〉 ∈ ID1 × IDtmp.

unique Cause(c,d, id1, id2)
)

∧
(
∃d ∈ D(P1) ∃c ∈ C(d) ∃IDtmp ⊆ ID.

mult control Expr
(
ID2, IDtmp, c

)
∧

∀〈id1, id2〉 ∈ ID2 × IDtmp.

unique Cause(c,d, id1, id2)
)

∧
∀〈id1, id2〉 ∈ ID1 × ID2.

unique Cause(c′,d′, id1, id2)
)
.

(25)

Proof. Preservation of MCDC: Part 1, showing sufficiency:
Since TD is assumed to achieve MCDC on P1, it holds
for each d ∈ D(P1) and for each c ∈ C(d) that there
exist at least two test vectors td1, td2 ∈ TD such that
unique Cause(c,d, td1, td2). Since unique Cause(c,d, td1,
td2) as defined in (10) for each condition is the formal
definition of MCDC it directly follows that

∀d′ ∈ D(P2) ∀c′ ∈ C(d′) ∃ID1, ID2 ⊆ ID.
· · · ∧ · · ·∧
∀〈id1, id2〉 ∈ ID1 × ID2.

unique Cause(c′,d′, id1, id2)
)

(26)

is a sufficient criterion to ensure that MCDC is preserved at
program P2.

Part 2, showing necessity by indirect proof: Assuming
there exists a decision d′ ∈ DP2 with a condition c′ ∈ C(d′)
such that for all input-data subsets ID1, ID2,⊆ ID it either
holds that

(a) ∀d ∈ D(P1) ∀c ∈ C(d) ∀IDtmp ⊆ ID.

¬mult control Expr
(
ID1, IDtmp, c

)
,

(b) ∀d ∈ D(P1) ∀c ∈ C(d) ∀IDtmp ⊆ ID.
∃〈id1, id2〉 ∈ ID1 × IDtmp.

¬unique Cause(c,d, id1, id2), or

(c) ∃〈id1, id2〉 ∈ ID1 × ID2.

¬unique Cause(c′,d′, id1, id2),

(27)

10 EURASIP Journal on Embedded Systems

then it is possible that

(a) ∀d ∈ D(P1) ∀c ∈ C(d) ∀TD1,TD2 ⊆ TD.
¬mult control Expr(TD1,TD2, c), or

(28)

(for all conditions in the original program P1 condition
coverage is not fulfilled; this case is already excluded by
assumption of having MCDC coverage at P1)

(b) ∀d ∈ D(P1) ∀c ∈ C(d) ∀td1, td2 ∈ TD.
¬unique Cause(c,d, td1, td2),

(29)

(there is no MCDC coverage at the original program P1; this
case is already excluded by assumption of having MCDC
coverage at P1)

(c) ∃d′ ∈ D(P2) ∃c′ ∈ C(d′) ∀td1, td2 ∈ TD.
¬unique Cause(c′,d′, td1, td2),

(30)

(the test data TD do not provide MCDC coverage at
the transformed program P2) which in each case violates
the preservation of MCDC: Case (a) and (b) violate the
preservation of MCDC since they are in contradiction with
the requirement that MCDC is achieved at the original
program. Case (c) states that there exists a condition in
the transformed program for which there are no test data
to achieve unique cause coverage, which is required for
MCDC.

4.5. Preserving Scoped Path Coverage (SPC). To define a
coverage preservation criterion for SPC (Theorem 4.5) we
use the auxiliary predicate is CondTF enclosed(ID,CT ,CF)
given in (31).

The predicate is CondTF enclosed(ID,CT ,CF) is only
TRUE if there is at least one condition from the set of
conditions CT whose true-satisfiability valuation is a subset
of the input data ID or there is at least one condition
from the set of conditions CF whose false-satisfiability
valuation is a subset of the input data ID. The predicate
is CondTF enclosed is used for the coverage preservation
criterion of SPC to test whether for a condition in the
transformed program with true/false-satisfiability valuation
ID there exist two conditions in the original program whose
true/false coverage are a subset of ID

is CondTF enclosed(ID,CT ,CF) =⇒
∃cT ∈ CT. IVT(cT) ⊆ ID∨
∃cF ∈ CF. IVF(cF) ⊆ ID.

(31)

As stated in Theorem 4.5, (32) provides a coverage
preservation criterion for SPC. Equation (32) says that for
each scoped path pp′ of the transformed program there
exists a scoped path pp such that the reachability of the
first basic block of pp implies the reachability of the first
basic block of pp′. Further, Equation (32) states that for each
condition c′ of pp′ that has to be evaluated to TRUE, there

exists a condition c of a scoped path in the original program
that will imply the True evaluation of c′ (by predicate
is CondTF enclosed). Finally, Equation (32) states that for
each condition c′ of pp′ that has to be evaluated to FALSE,
there exists a condition c of a scoped path in the original
program that will imply the FALSE evaluation of c′ (by
predicate is CondTF enclosed).

Theorem 4.5 (Preservation of SPC). Assuming that a set
of test data TD achieves scoped path coverage on a given
program P1, then (32) provides a sufficient—and without
further knowledge about the program and the test data, also
necessary—criterion for guaranteeing preservation of scoped
path coverage on a transformed program P2

∀ps′ ∈ PS(P2) ∀pp′ ∈ PP
(
ps′
)
.

(∃ps ∈ PS(P1) ∃pp ∈ PP
(
ps
)
.

IVR
(
BS
(
pp′
)) ⊇ IVR

(
BS
(
pp
)))∧

(∀c′ ∈ CT
(
pp′
) ∃ps ∈ PS(P1) ∃pp ∈ PP

(
ps
)
.

is CondTF enclosed
(
IVT(c′), CT

(
pp
)
, CF

(
pp
)))∧

(∀c′ ∈ CF
(
pp′
) ∃ps ∈ PS(P1) ∃pp ∈ PP

(
ps
)
.

is CondTF enclosed
(
IVF(c′), CT

(
pp
)
, CF

(
pp
)))

.

(32)

Proof. Preservation of SPC: Part 1, showing sufficiency: Since
TD is assumed to achieve SPC on P1, it holds for each cT ∈
CT(pp) and each cF ∈ CF(pp) with pp ∈ PP(ps) ∧ ps ∈
PS(P1) that there exists test data td ∈ TD with

(
IVR

(
BS
(
pp
))∩ {td}) /=∅

)∧
(∀cT ∈ CT

(
pp
)
. (IVT(cT)∩ {td}) /=∅

)∧
(∀cF ∈ CF

(
pp
)
. (IVF(cF)∩ {td}) /=∅

)
.

(33)

Since (32) states that
(∃ps ∈ PS(P1) ∃pp ∈ PP

(
ps
)
.

IVR
(
BS
(
pp′
)) ⊇ IVR

(
BS
(
pp
))) (34)

it follows that

((
IVR

(
BS
(
pp′
))∩ {td}) /=∅

)
. (35)

As (32) also states that

∀c′ ∈ CT
(
pp′
) ∃ps ∈ PS(P1) ∃pp ∈ PP

(
ps
)
.

is CondTF enclosed
(
IVT(c′), CT

(
pp
)
, CF

(
pp
)) (36)

it follows that

(∀c′T ∈ CT
(
pp′
)
.
(
IVT

(
c′T
)∩ {td}) /=∅

)
. (37)

Finally, as (32) states that

∀c′ ∈ CF
(
pp′
) ∃ps ∈ PS(P1) ∃pp ∈ PP

(
ps
)
.

is CondTF enclosed
(
IVF(c′), CT

(
pp
)
, CF

(
pp
)) (38)

EURASIP Journal on Embedded Systems 11

it follows that
(∀c′F ∈ CF

(
pp′
)
.
(
IVF

(
c′F
)∩ {td}) /=∅

)
. (39)

Thus, SPC is preserved at P2.
Part 2, showing necessity by indirect proof: Assuming

there exists a scoped program path pp′ ∈ PP(ps′) | ps′ ∈
PS(P2) such that for all scoped program paths pp ∈ PP(ps) |
ps ∈ PS(P1) it either holds that

(a) IVR
(
BS
(
pp′
)) ⊂ IVR

(
BS
(
pp
))

, or

(b) ∃c′ ∈ CT
(
pp′
)
.

¬is CondTF enclosed
(
IVT(c′), CT

(
pp
)
, CF

(
pp
))

, or

(c) ∃c′ ∈ CF
(
pp′
)
.

¬is CondTF enclosed
(
IVF(c′), CT

(
pp
)
, CF

(
pp
))

,
(40)

then at least one of the following cases is possible:

(a) ∀td ∈ TD. (IVR
(
BS
(
pp′
))∩ {td}) = ∅) (41)

(the first basic block of a scoped program path of the
transformed program P2 is not executed with the given test
data TD)

(b) ∀td ∈ TD. (∃c′T ∈ CT
(
pp′
)
.
(
IVT

(
c′T
)∩ {td}) = ∅)

(42)

(one of the conditions of a scoped program path of the
transformed program P2 that has to be evaluated to True
evaluates to False for all test vectors of TD)

(c) ∀td ∈ TD. (∃c′F ∈ CF
(
pp′
)
.
(
IVF

(
c′F
)∩ {td}) = ∅)

(43)

(one of the conditions of a scoped program path of the
transformed program P2 that has to be evaluated to False
evaluates to True for all test vectors of TD) which in each
case violates the preservation of SPC.

5. Application of Coverage Preservation

In Section 4 we present some formal criteria that must
be fulfilled to preserve a given structural code coverage
criterion. In this section we discuss how to apply these
coverage-preservation criteria to permit only those code
transformations that preserve structural code coverage.

There are only two types of code transformations that can
disrupt the preservation of structural code coverage:

(i) transformations that change the reachability of state-
ments or conditions. For example, reordering the
conditions within a decision can change the reach-
ability of conditions and thus also statements,

(ii) transformations that add new conditional control-
flow paths into the program. For example, branch
optimization can introduce new conditional bran-
ches.

(1) while (a>5 && b>3) (1) while (b>3 && a>5)
(2) { (2) {
(3) BODY; =⇒ (3) BODY;
(4) } (4) }

Figure 4: Example: condition reordering.

In the following we provide examples of how to deter-
mine with help of the introduced formalism whether a code
transformation disrupts structural code coverage.

We use a small sample code and show how a concrete
code transformation changes the code. We use a compact
scheme to address elements of the code samples. For
example, s1 denotes the statement at source line 1. If there are
multiple statements at the source line, we identify them by
an additional index letter, for example, s1a, s1b, and so forth.
Similarly, di and ci address the decisions and conditions at
source line i. Based on this notation we use our formalism to
describe by a graph the coverage relations between different
program elements. IVX(x1) → IVY (x2) denotes that the
coverage of type X at element x1 implies the coverage of
type Y at element x1. The possible coverage types are “R”
(reaching), “T” (true-evaluation) and “F” (false-evaluation).
A dotted line between elements from the original and the
transformed code denotes that the two elements have the
same coverage. A dotted arrow from an element of the
original code to an element of the transformed code denotes
that a coverage of the original node by the concrete test data
implies also the coverage of the element in the transformed
code. Structural code coverage is achieved, if all elements of
the transformed code have a connection to an element of the
original code. Elements of the transformed graph, for which
coverage is not preserved, are marked by a surrounding box.

5.1. Transformations That Change Reachability. In this sec-
tion we will demonstrate how to identify code transforma-
tions that can disrupt structural code coverage by changing
the reachability of program elements. As a case study, we have
chosen condition reordering, a common code optimization
that is typically used to enable other code optimizations. As
shown in Figure 4, condition reordering changes the order of
conditions within a decision.

The result of applying our formalism to the original and
the transformed program is shown in Figure 5. As a major
result we see that the element IVF(c1b) is surrounded by a
box, which means that this coverage is not preserved during
optimization. This means that the second condition at line 1
of the transformed program (a > 5) is not guaranteed to be
evaluated to FALSE.

The coverage-relation graph in Figure 5 contains cover-
age types for statements, conditions, and decisions. From
this graph we can conclude which structural code-coverage
criteria are preserved by condition reordering. For example,
missing the coverage of IVF(c1b) but not of IVR(c1b) implies
that SC is still preserved. Also DC is preserved. However,
coverage criteria that are based on the coverage of conditions
are not guaranteed to be preserved. For example, preserva-
tion of CC or MCDC is not guaranteed. For simplicity, we

12 EURASIP Journal on Embedded Systems

IVT (c1b), IVT (d1), IVR(s3) IVT (c1b), IVT (d1), IVR(s3)

IVF (c1b) IVF (c1b)

IVT (c1a), IVR(c1b) IVT (c1a), IVR(c1b)

IVF (c1a) IVF (c1a)

IVF (d1) IVF (d1)

IVR(s1), IVR(d1), IVR(c1a) IVR(s1), IVR(d1), IVR(c1a)

Figure 5: Coverage preservation of condition reordering.

(1) if (a>5 && b>3)
(1) while (a>5 && b>3) (2) {
(2) { (3) do {
(3) BODY; =⇒ (4) BODY;
(4) } (5) } while (a>5 && b>3);

(6) }

Figure 6: Example: loop inversion.

do not discuss preservation of SPC, because analyzing SPC
preservation would make it necessary to unroll the program
to make the different scoped program paths explicit.

5.2. Transformations That Add New Paths. In this section we
will demonstrate how to identify code transformations that
can disrupt structural code coverage by adding new control-
flow paths to the program. As a case study, we have chosen
loop inversion, a common code optimization that transforms
a while-loop into a do-while-loop, as shown in Figure 6.

Loop inversion creates new control-flow paths. As shown
in Figure 7, coverage preservation cannot be established for
the exit test of the transformed loop: for the decision and
conditions of source line 5 the TRUE/FALSE evaluation is not
preserved. Again, this has no impact on the preservation of
statement coverage. But coverage preservation of CC, DC, or
MCDC is not guaranteed.

5.3. Transformations That Preserve Coverage. In this section
we will demonstrate how to identify code transformations
that preserve structural code-coverage. As a case study, we
have chosen loop reversal, a typical code optimization enable
further loop optimizations or vectorization of computations.
As shown in Figure 8, loop reversal changes the condition in a
program, but as we will see, it still preserves structural code-
coverage.

Concluding from Figure 9, coverage preservation is
achieved for all conditions, decisions, and basic blocks of
the program. Thus, coverage of SC, CC, DC, and MCDC is
preserved by loop reversal.

As a general pattern, if for each relevant expression of
the transformed program there is a line or arrow to that
expression originating from any expression of the same type
in the original program, then the code coverage is preserved.

5.4. Modeling Hidden Control Flow. Some programming
languages include statements that provide hidden control
flow. For example, the logical operators && and || of ANSI
C/C++ have a short-circuit evaluation semantics, which in
fact already is conditional control flow. The short-circuit
evaluation of ANSI C/C++ states that the second argument
of the operators && and || is not evaluated if the final result
of the operator is already determined by the first argument.

For example, lets look at the following code:

(1) if (a && (b || c)) {· · · }

Above code might be translated into the following
assembly code, which demonstrates how the short-circuit
evaluation of ANSI C/C++ works:

(1) if (!a) goto skip;
(2) if (b) goto process;
(3) if (!c) goto skip;
(4) process:
(5) · · ·
(6) skip:

If we do not explicitly address the hidden control-flow
with the coverage preservation framework, we risk to loose
full structural code-coverage as soon as the program is
transformed into a new program with explicit control flow
instead of the hidden, implicit control-flow.

5.5. Towards Automatic Calculation of Coverage Profiles.
In this section we have demonstrated that the formalism
provided in this article is helpful for determining the
coverage profile of a code transformation. However, in
Section 4 we argue that the calculation of the coverage profile
could be done automatically, given the formal coverage
preservation criterion and a formal description of the code
transformation.

The code transformations can be formalized in an
axiomatic semantics [28, 29], that is, by providing precon-
ditions, postconditions, and invariants of the code trans-
formation. Even model checking can be used to analyze
code transformations [30]. There exist specific frameworks
to model code transformations, for example OPTIMIX
[31]. Such frameworks seem to be well-suited as a starting
point for future research on automating the calculation the
coverage profile of a code transformation.

EURASIP Journal on Embedded Systems 13

IVT (c5b), IVT (d5)

IVF (c5b)

IVT (c5a)

IVF (c5a)

IVF (d5)

IVT (c1b), IVT (d1), IVR(s3)
IVT (c1b), IVT (d1), IVR(s3),

IVR(s4), IVR(c5a)

IVF (c1b) IVF (c1b)

IVT (c1a), IVR(c1b) IVT (c1a), IVR(c1b)

IVF (c1a) IVF (c1a)

IVF (d1) IVF (d1)

IVR(s1), IVR(d1), IVR(c1a) IVR(s1), IVR(d1), IVR(c1a)

Figure 7: Coverage preservation of loop inversion.

(1) i=0; (1) i=max-1;
(2) while (i<max) (2) while (i≥0)
(3) { =⇒ (3) {
(4) a[i]=b[i++]; (4) a[i]=b[i--];
(5) } (5) }

Figure 8: Example: loop reversal.

IVT (d2), IVT (c2), IVR(s4) IVT (d2), IVT (c2), IVR(s4)

IVF (d2), IVF(c2) IVF (d2), IVF(c2)

IVR(s1), IVR(s2),
IVR(d2), IVR(c2)

IVR(s1), IVR(s2),
IVR(d2), IVR(c2)

Figure 9: Coverage Preservation of Loop Reversal.

6. Challenges for Preservation of
Model Coverage

The structural code-coverage criteria presented in
Section 3.1 are typically applied to source code or machine
code. They have been developed already before model-based
development became an issue. However, these structural
code-coverage criteria are also getting started to be applied
to implementation models of modeling environments
like MATLAB/Simulink/Stateflow [3, 4] from Mathworks,
Statemate [5] from Telelogic, or Scade [6] from Esterel
Technologies. An implementation model in general is a
program implementation in a domain-specific modeling
language for which automatic code generation is used to
generate the source-level implementation. In this section
we discuss some important differences for identifying

the structural code-coverage at source-code level and
implementation-model level:

(i) The modeling language may use a different imple-
mentation style (e.g., data flow instead of control
flow).

(ii) The modeling language may use components of
high abstraction (hiding details of complex imple-
mentation), which complicate the identification of a
structural code-coverage metric’s scopes within the
model.

(iii) Code generation may be parametrizable (i.e., model
semantics and implementation depends on the code
generation settings).

(iv) Many modeling environments are under continu-
ous development. Thus, the semantics of language
constructs may change over time. Further, modeling
languages are rarely standardized, often each tool
provider has its own modeling language.

Though it brings in further challenges, structural code-
coverage is also used for such modeling languages [19, 20].
One can still identify the control-decisions in such models,
though above arguments illustrate why this can be tricky.

With the use of a structural code-coverage metric on
modeling languages one can also directly use the cov-
erage preservation criteria we presented in Section 4. To
demonstrate how to do this, we examine some elements of
the MATLAB/Simulink modeling environment. The main
conclusions from the given examples may also apply to other
modeling languages. We also discuss potential problems that
lead to further research in that area.

The identified potential problems do not only apply to
implementation models with automatic code generation but
also to manual coding.

14 EURASIP Journal on Embedded Systems

1

In1

2

In2

3

In3

Switch

1

Out1

Figure 10: Simulink model switch.

(1) if (In2 ≥ Switch Threshold) {
(2) Switch = In1;
(3) } else {
(4) Switch = In3;
(5) }
(6) Out1 = Switch;

Figure 11: Implementation of switch element.

6.1. A Simple Example. The Switch element of MATLAB/
Simulink is used to control the data flow. A simple model
using that element is given in Figure 10.

The semantics of the Switch element is best described by
the code given in Figure 11 that is generated out of the simple
model.

The code shows a single decision with one condition
inside. In this concrete example it is valid to define the
scope of decision coverage (or MCDC) as the single MAT-
LAB/Simulink element. The generated source code for this
element contains the whole decision, thus generating test
data for decision coverage (or MCDC) based on the hidden
control-flow of the Switch element results in a full decision
coverage (or MCDC) at source code level.

Coverage criteria that are not based on the decisions,
are easier to preserve, since coverage of conditions or basic
blocks can be directly derived from the coverage of a single
Matlab/Simulink element. Thus, structural code coverage
like SC, CC, or SPC can be directly preserved based on the
hidden control-flow.

In the following we show that it is not always that easy
to apply decision-based structural code-coverage criteria like
DC or MCDC to the Matlab/Simulink language and to
ensure their preservation.

6.2. Identifying Code Structures in Models. In Section 6.1 we
have seen how to use the implicit control flow of a data-
flow element to apply a structural code-coverage metric.
Given that a code generator creates explicit control flow, for
example, as C code, there is the question whether it is valid
to analyze Matlab/Simulink elements in isolation because
the code generator can combine the logic of several data-
flow elements into a single C statement. Looking only at
the Matlab/Simulink elements without considering that the
concrete behavior of the code generator, does not allow, for

1

In1

2

In2

3

In3

And

Logical
operator

Or

Logical
operator1

1

Out1

Figure 12: Simulink model expr or and.

example, to identify the set of conditions that will be grouped
into a single decision.

To give an example, we use two logical operators as
shown in Figure 12. Basically, the logical or as well as the
logical and form a condition. But the choice of how to
map these conditions into decisions in the generated code
is left to the code generator. For example, in the non-inlined
implementation variant of this model we get two decisions:

expr = (In2 && In3); /∗ decision 1 ∗/
Out1 = (In2 && In3); /∗ decision 2 ∗/

The decisions in this code example are the assignments
of a logical expression to a program variable. This is just a
compact form instead of using an if/then construct. Now
lets look at the inlined implementation variant of this model,
which is generated by default by the code generator Real-
Time Workshop of Matlab 6.5.1 and Simulink 5.1. In the
inlined implementation variant we get a single decision:

Out1 = (In1 || (In2 && In3));

Actually, achieving structural code coverage on the non-
inlined implementation variant requires in general a smaller
number of test data. For example, Rajan et al. have shown
that full MCDC coverage at the non-inlined implementation
variant yielded only about 13.6% MCDC coverage at the
inlined implementation variant [20].

Without the knowledge about the behavior of the code
generator it is not possible to formulate a preservation
criterion for decision coverage (DC) or MCDC coverage
that is both, sufficient and necessary independently of the
exploited implementation variant. Maybe more surprisingly,
this problem also arises for condition coverage (CC) because
given that c2 = (In2 && In3), the chosen implementation
variant in this concrete example influences the set IVT(c2)
(where the condition c2 is reached with an evaluation
to True). The problem also arises for statement coverage
(SC) because inlining reduces the reachability valuation of
(In2 && In3).

6.3. The Complexity of Model Coverage. In Section 6.2 we
raised the question of how much model elements have to be
considered together to identify the scopes of structural code-
coverage criteria. Now we argue that this scoping problem
can also arise within a single element due to the rather
complex code that may be generated for a Matlab/Simulink
element.

EURASIP Journal on Embedded Systems 15

1

In1

Look-up
table

1

Out1

Figure 13: Simulink model lookup table.

(1) real Look Up Table;
(2) unsigned int iLeft;
(3) BINARYSEARCH real T Near iL(&iLeft, In1,
(4) Look Up Table XData, 10);
(5) Look Up Table = Look Up Table YData[iLeft];
(6) Out1 = Look Up Table;

Figure 14: Implementation of the lookup table using binary search.

For example, consider the lookup table used in the
model given Figure 13. The lookup table in this example
approximates a function by using a vector for some concrete
data of the x-axis of a function (Look Up Table XData)
and a vector for the corresponding data of the y-axis of
the function (Look Up Table YData). There are different
ways of how to map with help of the look-up table an
arbitrary input value of the approximated function to
the corresponding function value. With Matlab 6.5.1 and
Simulink 5.1 the code generator Real-Time Workshop offers
the following lookup policies: interpolation-extrapolation,
interpolation-use end values, use input nearest, use input
below, and use input above. Using the lookup policy use input
nearest we get the implementation shown in Figure 14 of the
lookup table using binary search. This implementation uses
the library function BINARYSEARCH real T Near iL given
in Figure 15.

Without plotting the implementations for the other look-
up policies, one can see that the Look-Up Table element
results in rather complex control flow.

To conclude, specifying structural code-coverage criteria
at the model-level that are both, sufficient and necessary, is
not possible without knowledge about the behavior of the
code generator.

7. Summary and Conclusion

Structural code-coverage criteria are a useful supplementary
criterion to monitor the progress of testing. There are several
application scenarios where the test data have been obtained
at a different program representation as where the test data
are executed: when using model-based testing, when the
software has evolved over time, or the test-data generation
is done on higher program representations to achieve easy
retargetability of the test-data generation. In all such cases
there is the question of whether the structural code coverage
achieved at the original program representation is also
fulfilled at the transformed program representation.

Within this article we analyzed the problem of preserving
structural code coverage when transforming the program

(1) void BINARYSEARCH real T Near iL(
(2) unsigned int *piLeft, real u,
(3) const real *pData, unsigned int iHi)
(4) {
(5) unsigned int iRght;
(6) *piLeft = 0;
(7) iRght = iHi;
(8) real diffLeft, diffRght;
(9) if (u ≤ pData[0]) {

(10) iRght = 0;
(11) } else if (u ≥ pData[iHi]) {
(12) *piLeft = iHi;
(13) } else {
(14) unsigned int i;
(15) while ((iRght - *piLeft) > 1)
(16) i = (*piLeft + iRght) >> 1;
(17) if (u < pData[i])
(18) iRght = i;
(19) else
(20) *piLeft = i;
(21) } /* while */
(22) diffLeft = u - pData[*piLeft];
(23) diffRght = pData[iRght] - u;
(24) if (diffRght ≤ diffLeft) {
(25) *piLeft = iRght;
(26) } /* if */
(27) } /* if */
(28) }

Figure 15: BINARYSEARCH real T Near iL.

model or program code. We introduced a notation for
formalizing structural code-coverage. This notations is con-
venient to also express test-data independent criteria for
preserving the code coverage. These criteria may be used to
prove whether a given program transformation does always
preserve the structural code coverage of interest. Further,
the presented preservation criteria are naturally applied on
source-to-source program transformations or on optimizing
program compilation. And they may be also applied on
model coverage, for which we identified some additional
challenges.

Future work is to develop automatic proofs to decide
whether a program transformation preserves structural code
coverage. In our current analysis we focused on preservation
of full coverage. It is also interesting to look on preservation
of partial structural code coverage.

Acknowledgments

We would like to thank Susanne Kandl and the anony-
mous reviewers for valuable comments on earlier versions
of this article. The research leading to these results has
received funding from the Austrian Science Fund (Fonds
zur Förderung der wissenschaftlichen Forschung) within the
research project “Sustaining Entire Code-Coverage on Code
Optimization” (SECCO) under contract P20944-N13.

References

[1] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A.
Pretschner, Eds., Model-Based Testing of Reactive Systems:
Advanced Lectures, vol. 3472 of Lecture Notes in Computer
Science, Springer, Berlin, Germany, 2005.

16 EURASIP Journal on Embedded Systems

[2] F. Cruz, R. Barreto, L. Cordeiro, and P. Maciel, “ezRealtime: a
domain-specific modeling tool for embedded hard real-time
software synthesis,” in Proceedings of the Conference on Design,
Automation and Test in Europe (DATE ’08), pp. 1510–1515,
Munich, Germany, March 2008.

[3] The MathWorks Inc., Using MATLAB Version 6, The Math-
works, Natick, Mass, USA, 2002.

[4] The MathWorks Inc., Using Simulink Version 5, The Math-
works, Natick, Mass, USA, 2002.

[5] D. Harel, H. Lachover, A. Naamad, et al., “STATEMATE: a
working environment for the development of complex reactive
systems,” IEEE Transactions on Software Engineering, vol. 16,
no. 4, pp. 403–414, 1990.

[6] F.-X. Dormoy, “Scade 6: a model based solution for safety
critical software development,” in Proceedings of the 4th
European Congress on Embedded Real Time Software (ERTS
’08), pp. 1–9, Toulouse, France, January-February 2008.

[7] I. Wenzel, R. Kirner, B. Rieder, and P. Puschner,
“Measurement-based timing analysis,” in Proceedings of
the 3rd International Symposium on Leveraging Applications of
Formal Methods, Verification and Validation, pp. 1–15, Porto
Sani, Greece, October 2008.

[8] R. Kirner, P. Puschner, and I. Wenzel, “Measurement-based
worst-case execution time analysis using automatic test-data
generation,” in Proceedings of the 4th International Workshop
on Worst-Case Execution Time Analysis, pp. 67–70, Catania,
Italy, June 2004.

[9] R. Kirner, “SCCP/x: a compilation profile to support testing
and verification of optimized code,” in Proceedings of the
International Conference on Compilers, Architecture, and Syn-
thesis for Embedded Systems (CASES ’07), pp. 38–42, Salzburg,
Austria, September-October 2007.

[10] S. S. Muchnick, Advanced Compiler Design & Implementation,
Morgan Kaufmann, San Fransisco, Calif, USA, 1997.

[11] M. Whalen, A. Rajan, M. Heimdahl, and S. Miller, “Coverage
metrics for requirements-based testing,” in Proceedings of the
International Symposium on Software Testing and Analysis
(ISSTA ’06), pp. 25–36, Portland, Me, USA, July 2006.

[12] “Software considerations in airborne systems and equipment
certification,” RTCA/DO-178B, 1992.

[13] S. A. Vilkomir and J. P. Bowen, “From MC/DC to RC/DC:
formalization and analysis of control-flow testing criteria,”
Formal Aspects of Computing, vol. 18, no. 1, pp. 42–62, 2006.

[14] S. A. Vilkomir and J. P. Bowen, “Formalization of software
testing criteria using the Z notation,” in Proceedings of the
25th Annual International Computer Software and Applications
Conference (COMPSAC ’01), pp. 351–356, Honolulu, Hawaii,
USA, October 2001.

[15] J. J. Chilenski and S. P. Miller, “Applicability of modified
condition/decision coverage to software testing,” Software
Engineering Journal, vol. 9, no. 5, pp. 193–200, 1994.

[16] Object Management Group, “MDA Guide Version 1.0.1,”
document no. omg/2003-06-01, June 2003.

[17] M. P. E. Heimdahl, M. Whalen, A. Rajan, and S. P. Miller,
“Testing strategies for model-based development,” Tech.
Rep. NASA/CR-2006-214307, National Aeronautics and Space
Administration, Hampton, Va, USA, April 2006.

[18] A. Rajan, M. Whalen, and M. Heimdahl, “Model validation
using automatically generated requirements-based tests,” in
Proceedings of the 10th IEEE High Assurance Systems Engineer-
ing Symposium (HASE ’07), pp. 95–104, Dallas, Tex, USA,
November 2007.

[19] A. Baresel, M. Conrad, S. Sadeghipour, and J. Wegener,
“The interplay between model coverage and code coverage,”

in Proceedings of the 11th European International Conference
on Software Testing, Analysis and Review (EuroSTAR ’03),
Amsterdam, The Netherlands, December 2003.

[20] A. Rajan, M. Whalen, and M. Heimdahl, “The effect of
program and model structure on MC/DC test adequacy
coverage,” in Proceedings of the 30th International Conference
on Software Engineering, pp. 161–170, Leipzig, Germany, May
2008.

[21] S. Elbaum, D. Gable, and G. Rothermel, “The impact of soft-
ware evolution on code coverage information,” in Proceedings
of the IEEE International Conference on Software Maintenance
(ICSM ’01), pp. 170–179, Florence, Italy, November 2001.

[22] M. Harman, L. Hu, R. Hierons, et al., “Testability transforma-
tion,” IEEE Transactions on Software Engineering, vol. 30, no.
1, pp. 3–16, 2004.

[23] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers, Principles,
Techniques, and Tools, Addison-Wesley, Reading, Mass, USA,
1997.

[24] I. Wenzel, B. Rieder, R. Kirner, and P. Puschner, “Automatic
timing model generation by CFG partitioning and model
checking,” in Proceedings of the Conference on Design, Automa-
tion and Test in Europe (DATE ’05), vol. 1, pp. 606–611, IEEE,
Munich, Germany, March 2005.

[25] J. J. Chilenski, “An investigation of three forms of the modified
condition decision coverage (MCDC) criterion,” Tech. Rep.
DOT/FAA/AR-01/18, Boeing Commercial Airplane Group,
Seattle, Wash, USA, April 2001.

[26] G. J. Myers, The Art of Software Testing, John Wiley & Sons,
New York, NY, USA, 1979.

[27] K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L. K.
Rierson, “A practical tutorial on modified condition/decision
coverage,” Tech. Rep. NASA/TM-2001-210876, National Aero-
nautics and Space Administration, Hampton, Va, USA, May
2001.

[28] R. Floyd, “Assigning meaning to programs,” in Mathematical
Aspects of Computer Science, vol. 19 of Proceedings of Symposia
in Applied Mathematics, pp. 19–32, American Mathematical
Society, Providence, RI, USA, 1976.

[29] C. A. R. Hoare, “An axiomatic basis for computer program-
ming,” Communications of the ACM, vol. 12, no. 10, pp. 576–
580, 1969.

[30] D. Lacey, N. D. Jones, E. V. Wyk, and C. C. Frederiksen, “Com-
piler optimization correctness by temporal logic,” Higher
Order and Symbolic Computation, vol. 17, no. 3, pp. 173–206,
2003.

[31] U. Aßmann, “How to uniformly specify program analysis and
transformation with graph rewrite systems,” in Proceedings
of the 6th International Conference on Compiler Construction
(CC ’96), P. Fritzson, Ed., pp. 121–135, Springer, Linköping,
Sweden, April 1996.

