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Abstract 

This current study proposed a new computationally efficient and comparatively accurate 

algorithm for calculating both static and dynamic coefficients of friction from high-frequency 

data. Its scope embraced an application in a real-time friction-based system, such as active 

braking safety systems in automobile industries. The signal sources were from a heavy duty 

reciprocating dry sliding wear test platform, focused on experimental data related to friction 



induced by stick-slip phenomena. The test specimen was a polytetrafluoroethylene (PTFE) 

coated basalt/vinyl ester composite material, tested at a large scale. The algorithm was primarily 

aimed to provide scalability for processing a significantly large tribological data in a real-time. 

Beside a computational efficiency, the proposed method adopted to evaluate both static and 

dynamic coefficients of friction using the statistical approach exhibited a greater accuracy and 

reliability when compared with the extant models. The result showed that the proposed method 

reduced the computation time of processing, and reduced the variation of the absolute value of 

both static and dynamic frictions. Although, the variation of dynamic friction was later increased 

at a particular threshold, based on the test duration.  
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1. Introduction 

In engineering applications, stick-slip phenomena are non-beneficial in a tribological 

process, due to the vibration and audible noise [1,2]. The understanding of the stick-slip 

phenomenon is critical, especially in many applications, such as brakes and plain bearings. This 

occurrence predominantly occurs in a contact between two sliding surfaces. The stick-slip occurs 

at the time when static friction exceeds the dynamic friction and friction coefficient reduces 

suddenly [3,4]. Hence, it is essential to study the relationship between different tribological 

signals for a better understanding of a material, especially about its stick-slip behavior. In this 

regards, many attempts have been made to understand the stick-slip occurrences, with the help of 

experimentation, mathematical and theoretical modellings. The theoretical and experimental 

analyses of stick-slip, using rubber materials were studied in the early 1970s [5]. Recently, Real 

et al. [6] developed a new test rig to analyze stick-slip cycles; thereby, the stick-slip signals were 

studied in a detailed manner with hysteric cycles. Dong et al. [7] studied the deformation 

behavior and stick-slip phenomenon of polymer materials under water lubrication, heavy load 

and lower speed conditions. It was evident from their research that the velocity played a major 

role in the deformation and stick-slip phenomenon. Similar work has been carried out on 4 

different polymer groups, sliding against the cast-iron counter surface. An attempt was also made 

to study the stick-slip phenomena using high-speed in-situ imaging and force measurement in the 

polymer materials [8]. The different modes of stick-slip was observed in a low-velocity sliding. 



The uniform waves were visible along with a stick. The slip pulses were also described clearly. 

However, the processing of high-frequency signals on measuring the performance of tribological 

outcome or parameters still required more considerable attention, in terms of their computational 

processing and evaluation.   

Moreover, signal processing in a wear application has started increasing, especially 

towards defect detection in machining application [9]. There were methods for processing a 

signal in the past decades. They were not suitable for handling multi-sensor architecture and its 

related method of data analysis. The use of artificial neural networks and other computational 

programming methods to process a huge data also have their limitations. The friction-induced 

noise/vibration and stick-slip are often a non-linear function [10,11]. Therefore, they require a 

careful and accurate recording of frictional forces to reduce the squeal noise signals. Thereby, a 

high-frequency data acquisition with multiple sensors is a promising alternative to visualize the 

stick-slip trend. The need for improvement in algorithms is essential to avoid errors and obtain 

an efficient data processing.  

In additions, many researchers had used signal processing techniques to analyze the wear 

parameters. For instance, Bhattacharyya et al. [12] analyzed the tool force in a real-time, using 

various signal processing techniques, such as a linear filtering, time domain and wavelet 

transformation. All these methods have been used to achieve a relative high accuracy and 

reliability for wear estimation. These approaches adopted the statistical model to ensure the 

consistency of the signal processing outcomes. They showed better performance in terms of 

accuracy and reliability than the earlier methods of signal processing. Kong et al. [13] developed 

a novel wear assessment technique for a real-time and accurate monitoring of various tool wear 

parameters. The Gaussian process-regression method showed a better performance in data 

processing than the artificial neural network. The removal of noise from the signal and further 

processing were made easier, using the Gaussian method. This techniqueh helped to monitor the 

wear accurately. Neis et al. [14] studied the grown creep parameters caused by stick-slip using a 

tribometer. The correlation between the accelerometer signal and the stick-slip parameter were 

analyzed, using 3 different friction materials. The results showed a high correlation between 

those parameters. Similarly, they correlated the brake creep growth and stick-slip at a low 

velocity, after taken measurements with an accelerometer that was placed on the brake calipers. 



A fast Fourier transform spectrum data during acceleration were captured in both front and rear 

wheels. The data were used to validate their experimental results by comparison [15]. Masotti et 

al. [16] tested non-asbestos organic brake material using a tribometer for the stick-slip study, and 

the surface morphology of the same material were reported. An algorithm was developed on 

image segmentation technique and it was used to process the image taken from the test and 

calculate the real contact area of the material. Eventually, the correlation between the applied 

torque and the stick-slip were studied.  

The need for a multi-sensor data at a higher frequency for extraction of accurate 

tribological data has been considered, and later it was invented for processing a large data sets. 

Nevertheless, the advancement in cloud-based servers opened a new door to handle big data in a 

cost-effective manner. Instead of investing a huge amount of money in processor and software, 

the cloud-based server provides a platform for researchers to analyze a very huge amount of data 

in a fast speed. It becomes a user-friendly environment for the individual user and the industrial 

members to work on the server without the fear of data loss. Also, cloud servers allow users to 

choose the speed and storage capacity, depends on the application and need. More also, the stick-

slip phenomenon is measured in a various engineering applications, such as automobile, 

environmental studies and aviation, to mention but a few. Every sector tries to capture stick-slip 

using active and passive methods. One of the passive methods is made using wireless 

environmental sensor network. The sampling rate used in this method is very high, similar to the 

use of servers hosted in the Amazon cloud web service to process the data acquired using sensors 

[17]. Dimla [18] reviewed the use of multi-sensor to monitor the wear rate of the tool and its 

various methods. The cutting force and the vibrations were measured using sensors, and all the 

data were analyzed to predict the tool wear. In sensor fusion, where many sensors were 

connected to measure a particular parameter in an attempt to eradicate noise and processing the 

same gives the desired output value with more precision. Application of multi-sensor signal to 

predict the wear and stick-slip was commonly used before to calculate the wear of work pieces 

and tools. Under different machining operations: drilling, turning, broaching and milling 

operations, the use of sensors to calculate wear parameters are now common. Boud and Gindy 

[19] monitored the workpiece and tool using multi-sensor system to obtain cutting force, 

displacement and pressure signals. Acoustic emission signals were effectively used to detect the 

noise and other irregularities during machining. Additionally, Chung and Geddam [20] acquired 



both acoustic and force signals using a multi-sensor system. These signals were monitored 

online, and signal processing technique of fast Fourier transform (FFT) frequency averaging was 

adapted to reduce the noise. Segreto et al. [21] used a sensor fusion method to monitor the tool 

wear when turning the nickel alloy and applied the neural network pattern recognition method. 

This method combined all the sensor data to measure the tool wear precisely. One of the 

unexplored applications of stick-slip occurs in a large scale composite bearing. Furthermore, an 

ease of processing methods with moderate hardware system can make the researchers more 

comfortable to analyze a high-frequency data. Accordingly, the high-frequency data obtained 

from the stick-slip phenomena in a large scale composite bearings can be analyzed through a 

cloud computing concepts.  

Hence, the main aim of this paper addresses the shortcomings of existing processing 

method used for the static and dynamic friction measurements, as highlighted by Bonny et al. 

[23]. They accounted for the average of peak values and therefore, resulted to elimination of 

small peaks, which were identified when processing with aid of formula. However, the current 

research aims to capture the stick-slip phenomenon, precisely with a multi-sensor architecture. A 

high-frequency data was acquired for capturing the stick-slip signals. Therefore, the friction data 

were processed and analyzed from the stick-slip signals obtained from the sliding contact under a 

high loading condition in this study. A cloud server was utilized to perform the task with the aid 

of a novel algorithm to calculate the static and dynamic friction coefficients.  

 

2. Experimental details 

2.1. Materials and methods 

The composite material (Basalt/PTFE–polyester) used in this current research was 

developed in-house, more information about the processing methodologies can be found from 

our earlier work [19]. In this composite, a 50 wt% of basalt fiber was used as primary 

reinforcement due to its better mechanical properties [22]. The top layer of the composite contact 

surface was blended with PTFE to improve the tribological performance. The schematic of the 

layered composite used is shown in Fig. 1.  

2.2. Tribological setup and conditions 



Dry sliding wear tests on PTFE (10 wt%) blended basalt fiber/vinyl ester (layered) hybrid 

composites were performed, using a medium scale flat (MSF) testing machine, available at the 

Laboratory Soete, Ghent University, Belgium. Experiments were performed on a flat-on-flat 

contact, using tailor-made composite tested against steel counter face (100 Cr6 steel). The 

counter plate was machined to 200 x 80 x 20 mm from round bars and subsequently, grounded to 

surface roughness (Ra) of - 0.2 μm. Fig. 2 shows the schematic diagram of the experimental set 

up, with the wear samples on both sides of the sample holders. During testing, various signals 

such as wear, static and dynamic friction forces, temperature, vibration from triaxial 

accelerometer and sound were recorded online. All tests were conducted at 25 °C ambient 

temperature. Three identical tests were performed to study the repeatability of the stick-slip 

phenomena. The test conditions are tabulated in Table 1. 

 

2.3 Method of allocation of computing resource for digital signal processing algorithms 

Data accusation was performed at a sampling rate of 20 kHz. Therefore, for every cycle, 

the total number of data points were 80,000 (4 x 20,000 Hz). The periodic time was 4 seconds. 

The experiment was conducted for about 3 hours and incorporated multiple sensors; therefore, 

each sensor’s corresponding total number of data points for each test was 216 x 106 (3 x 60 x 60 

x 20000 Hz). The acquired data for all channels were extended double precision floating point 

numbers. Therefore, each data point of each channel occupied 128 bit (16 bytes) of storage. 

During data accusation both hardware and software components created a minimum of 3 

channels (time, raw data and data index) for each sensor used. For instance, the accelerometer 

has a time, x-data, y-data, z-data, and a common index channels. Therefore, the minimum total 

storage space for each signal was approximately10 Gigabytes: 16-bytes x 3 (no of channels) x 

216 x 106). The compressed file format used to store the measurement data during the 

experiment was D7D (the DAQ software-DEWE soft-native file format), whereas an 

uncompressed file format used for post-processing and further analysis of the measurement data 

was technical data management streaming (TDMS), national instruments (NI) file format. The 

raw data channels (voltage values) were converted to the corresponding engineering units (EU) 

by the required scaling factor before post-processing. 



During data accusation, the data passed from the external hardware (DAQ card) to the 

system (workstation computer) with the help of data accusation software (DEWEsoft). Some 

simple arithmetic calculations, such as scaling factor multiplications, offset corrections were 

performed with the help of cache memory (static random accessible memory) alongside the 

accusation process, therefore, eliminating the need for a post-processing stage. The buffer 

memory was set to 1 Gigabyte of system memory, known as a dynamic random accessible 

memory (DRAM). Therefore, whenever the buffer was full, the data in the DRAM was moved to 

the secondary storage of the system’s hard disk drive (HDD). This process effectively removed 

the requirement of more physical memory in the workstation computer. Although, the secondary 

storage needed to be fast enough to move the data before the next buffer and prevented data loss. 

In this work, the physical memory requirement for the workstation was about 1 gigabyte. For the 

post-processing as well as running analysis algorithm especially focus on real-time 

implementation, the entire signal data needed to be in the RAM system was approximately 10 

Gigabytes. Also, the operating system (OS) and the programming environment which hosted the 

methods required to be 64-bit memory. A 32-bit environment is limited to only 4 Gigabytes 

memory. For this method of analysis, a total of 24 Gigabyte RAM was needed, because the 

system used about 12 Gigabyte RAM. This included the OS and other preliminary requirements 

for the input signal and another 12 Gigabyte for the output signal after calculation. The only 

drawback of this method was that it required the same amount of RAM, as that of the signal. 

However, the real-time implementation required less memory for the finalized algorithms, based 

on the scalability of the application. A high specification system was used through cloud 

computing. The cloud system (cloud post-processing workstation computer) used a Window 

server 2016 64-bit OS, 32 Gigabyte DDR4 ECC RAM, Intel Xeon processor (8 cores with all-

core boost frequency of about 2.6 GHz). The acquired signal data were transferred to the cloud 

computing system from the DAQ workstation computer. 

 

3. Results and discussion 

3.1. Drawbacks of calculating friction using existing methods   

The experimental analysis in this work involved reciprocating dry sliding wear test 

platform, both static and dynamic friction coefficients were studied from the behavior of the 

friction force, concerning time and machine’s dynamic characteristics. Fig. 4 represents the 



general friction curve pattern for the dry sliding reciprocating wear system, where the multiple 

time zones correspond to representing different characteristics of the friction behavior was also 

indicated. Fig. 4 depicts one complete cycle consists of t1, t2 and t3.  

Where, t1 is the time frame corresponding to static friction data of test cycle, t2 represents the 

positive to negative or vice-versa half cycle transition time, and t3 depicts the time in which the 

reciprocating slider rested before moving in the opposite direction.  

The characteristics of different time zones changes were based on machine configuration 

and system properties. Therefore, many experimental test performances focused on a long 

duration, using a fixed sampling instead of varying sampling rate. Since almost all the 

tribological experimental process is a slow varying process, the fixed sampling method is widely 

preferred. 

To calculate both the friction coefficients and data representing the static friction, the 

dynamic friction in the cycles must be extracted (cycle extraction) and segregated from the 

signal. Therefore, it was done by using eq. 1. 

                                                                                                        (1)                                                    

Where, Y = total number of cycles, S [Signal - x] = signal data from the sensor (such as friction 

force, acceleration, among others),  = sampling frequency, and  = Time for completion of 

one cycle (seconds). 

Equation 1 was used to extract the total number of cycles. The calculation was performed 

by pointwise operation. That is, Y has a separate data sets from the entire cycle. For instance, S 

has 120 seconds duration of friction signal data, with the sampling rate of 5 Hz and period of 2 

seconds, then Y will have 12 separate datasets, such as Y1, Y2, Y3… Y12, each will have a 

signal section equivalent to the duration of 2 seconds and have 10 data points. There are few 

drawbacks associated with this method, as subsequently discussed. 

1) This equation has two assumptions: firstly, the signal data contains an exact number of 

reciprocating cycles, and the secondly, each cycle has fixed data points. In real-world data, 

both assumptions hold in a very few cases. For the first assumption, it not necessary for a 

machine to produce a complete cycle, especially for a heavy duty system. Due to mechanical 



uncertainties, some cycles could be incomplete. For the second assumption, this is related 

only on the values of   and . Although, both values were fixed, it is an accuracy limited 

to machine’s specifications, especially for  of the reciprocating system. For this present 

work, the work cycle time was 4 seconds. Despite of been fixed over the time, there were 

some differences in terms of milliseconds.   

2) It was not possible to precisely get the data section of the signal corresponding to one 

complete cycle, because when the sampling rate was high enough, for example, 20 kHz the 

error of 10 milliseconds in the completion of one reciprocating cycle resulted to an improper 

segregation of the cycle and also caused the error to propagate in the following cycles.  

3) Another potential errors occurred from the mechanical system’s uncertainties and varied the 

air resistances, electrical noise, material dimension tolerances, machine’s start and stop time, 

among others. The signal data also contained data points corresponding to noises, machine’s 

delayed start (data acquisition started before the machine operation) in addition to the 

reciprocating cycle. 

In long duration tests, all these errors proportionally propagated through the time scale. 

Therefore, many researchers prefer to use a few random sample cycles from several instances 

(few 100 cycles from a total of 2500 cycles) for friction calculation instead of all the cycles in 

the experiment. This further diminished the accuracy of the results obtained. After a random 

sample of cycles, each cycle was further divided according to Fig. 4 to calculate the static and 

dynamic friction coefficients. It can be done in 2 ways, one way is to use eq. 1 and  will be 

replaced with t1, t2, and t3, as previously illustrated in Fig. 4, then calculate the average mean. 

Another method is to calculate according to eq. 2, proposed by Bonny et. al. [23]. 

                                                                                                              (2)                                                                         

Where,  = static friction coefficient value of the corresponding cycle,  = minimum 

absolute peak value of the corresponding cycle, and  = maximum absolute peak value of 

the corresponding cycle. 

Equation 2 is widely adopted where each cycle ( ) and  are used for 

calculating the static friction coefficient, and the resultant values for all the cycles are appended 



together to produce friction coefficient plot for the entire experimental signal. For the calculation 

of the dynamic coefficient of friction, eq. 3 was used as similarly adapted from Bonny et .al. 

[23]. 

                                                                                                                (3) 

Where,  = dynamic friction coefficient value of the corresponding cycle,  = Cycle’s 

data value at time t, and T = time for completion of one cycle.  

From eq. 2, it can be concluded that the  is the root mean square (RMS) of the data 

corresponding to a single cycle. There are few drawbacks in the methods mentioned above with 

respect to calculating static and dynamic friction coefficients, using eqs. 2 and 3. These 

limitations are thus stated. 

1) For the static friction coefficient, the equation only emphasizes absolute maximum and 

minimum values instead of data spread throughout a specific time, i.e. values under time 

frame t1 and t3. 

2) For the dynamic friction coefficient, the RMS calculation is a simple measure of the 

magnitude of the presence in a set of numbers, and it merely illustrates the size of the 

numbers present in a numerical sequence. In this case, it is the dynamic coefficient of 

friction, since it occupies a major portion of the cycle. However, this method would be less 

useful and produce incorrect values when the value of fluctuations is high with the friction 

coefficient values, due to several factors, such as noise (mechanical and electrical), specimen 

composition, mechanical behavior (rotating or reciprocating), to mention but a few.  

Hence, it is imperative and evident that there is need for a novel technique to overcome these 

drawbacks 

 

3.2 Steps followed in the proposed method for friction analysis algorithm 

The process of programming and executing the algorithm was carried out according to the 

Fig. 3 in the cloud system. The final output was then transferred to the local computer to free up 

the computing resources in the cloud. Thus, reducing the cost of computing resources. 



3.2.1. Zero-crossing based on individual cycle extraction 

  It is important to segregate the signals in the proper sequence for the better assessment 

before processing any big data. However, it is not possible to achieve accurate data separated 

from the outcome of the physical systems during the data acquisition due to several factors, such 

as noise, among other factors that were earlier mentioned. The large scale tribological setup was 

connected to many mechanical systems and thus, subjected to mechanical and frictional losses 

between the components. Been a reciprocating sliding system, the signals recorded had 

distinctive properties in both positive and the negative half of each cycle. The test was conducted 

for approximately 3 hours and the recorded data set contained approximately 2700 cycles, 

including data points related to the noise and disturbance factors. Fig. 5a (i) represents a generic 

zero-crossing function. This function triggered at events when a periodic signal data points 

crossed zero. The triggered function was regulated by manually defined hysteresis function, 

which prevented false trigger due to noise.  

The function ensured that the trigger was activated or detected when specific conditions 

were met for both positive and negative half of the cycle.  For a rising edge or a positive part of 

the cycle, sensing started only when the signal passed below the maximum threshold value 

minus hysteresis factor value. For a falling edge or a negative part of the cycle, sensing was 

stopped only when the signal passed above minimum threshold value plus the hysteresis factor 

value. Fig. 5a (ii) represents a generic implementation of zero-crossing with defined hysteresis, 

which rejected 3 noises and detected 6 zero-crossing triggers. 

Fig. 5b represents one cycle extracted from the friction signal, using the zero-crossing 

method. Fig .5c represents extraction of one cycle from the friction signal using equ. 1. From the 

comparison made, this concluded that there was a specific error that came from the result, in 

particular from the mismatch in time and number of data points synchronization, that is the data 

points in between the timeframe did not represent a complete cycle. The zero-crossing method of 

cycle extraction was performed on the entire signal data to get data points corresponding to every 

reciprocating cycle. Then, the period for completion of each cycle was plotted, as shown in Fig. 

6, where y-axis (time) represents the time elapsed for the completion of one cycle and x-axis (no 

of cycles) represents the corresponding cycle’s index number (cycles 1, 2, 3, …, 2700). From 

Fig. 6, it was evident that with the fixed stroke length and velocity of the reciprocating system, 



the cycle time did not remain consistent. However, this can be neglected as a margin of error 

when for a heavy-duty system when calculating friction coefficient. Its effects amplified when 

random cycle sample was used for analysis and resulted to other difficulties in the future analysis 

of stick-slip behaviors.  

Since the zero-crossing method does not rely on the average periodic time for splitting 

signal data for extraction of all cycles, the drawbacks mentioned previously was eliminated. 

Moreover, all the extracted cycles were stored in a 2-dimensional dataset with the cycle index 

number as the first dimension values and its associated data points as the value of the second 

dimension. Therefore, multiples of each cycle were accessed randomly or sequentially with its 

index number.      

 

 3.2.2. Method of directed sorting of data points based on the magnitude 

After the separation of each cycle from the whole test signal data, each cycle’s data points 

at different time zones, as illustrated in the Fig. 4 pertaining to static and dynamic friction values 

needed segregation.  As mentioned previously, the existing methods have drawbacks; therefore, 

to mitigate those drawbacks, a new approach was used. As each cycle can be accessed easily, it 

was used in the following eq. 4; this has been extended to the parallel processing computing, 

such as general-purpose computing on graphics processing units (GPGPU) [24], which enabled a 

significant reduction in computing time. 

                                                                                      (4) 

Where,  = absolute values of the selected cycle with the index x,  = the output result of the 

cycle’s data points sorted in the ascending direction of its magnitude, and x = z = range from 1 to 

maximum number of cycles. 

The result ( ) plot of a cycle with the representation of different time zones is shown in 

Fig. 7. After this process; it was possible to split and segregate data points corresponding to the 

static and dynamic friction coefficients and to eliminate the unnecessary data points in the cycle. 

 

3.2.3. Static friction coefficient  



Static friction is a measure of friction coefficient data points over a few milliseconds 

from the moment at which the slider starts to move. This friction coefficient was higher in 

amplitude as compared to the dynamic friction coefficient. The friction coefficient (µ) data point 

values of the cycle corresponding to the time zones t1, t2 and t3 were used with the proposed eq. 5 

to calculate the static coefficient of friction. 

                                                                            (5) 

Where,  = static friction coefficient value for the kth index cycle,  = result of direction 

sorting for the kth index cycle,  = represents accessing of cycles from the start to end, n = 

total number of cycles in the test data, and  = sampling frequency (20 kHz). 

, is the data set of static friction coefficient of all the cycles indexed similar to the 

previously mentioned method of zero-crossing. Therefore, multiples of each cycle data were 

accessed randomly or sequentially with its index number.  

For an experimental test, the total static friction plot was obtained from the appending 

static friction coefficient sets of all the cycles chronologically. Fig. 8 shows the comparison of 

the static friction plot between the proposed method and the existing method. 

 
 

3.2.4. Dynamic friction coefficient 

Dynamic friction is a measure of friction coefficient data points after the end of the static 

friction; up to the time at which the slider moves to the rest position, in case of a reciprocating 

friction system. This friction coefficient was lower in amplitude as compared to the static friction 

coefficient. The friction coefficient (µ) values corresponding to the time zones t1, t2 and t3 were 

used along with the eq. 6 to calculate the dynamic coefficient of friction. 

                                                                     (6) 

Where,  = static friction coefficient value for the lst index cycle,  = result of 

direction sorting for the lth index cycle,  = accessing cycles from the start to end, n = total 

number of cycles in the test data,  = sampling frequency (20 kHz).  is the data set of 

static friction coefficient of all the cycles indexed similar to the static friction coefficient. 



Therefore, multiples of each cycle data were accessed randomly or sequentially with its index 

number. The dynamic friction plot is shown in Fig. 9, and the rest of the process was repeated for 

a static friction. 

 

3.3. Statistical analysis of signal for relations of friction coefficients 

In order to validate the proposed method for calculating friction coefficients, a 

comparison of the magnitude values of the results obtained with the magnitude values of the 

cycles was conducted. It was impossible to manually compare every individual point due to the 

large data set obtained. Therefore, this work used statistical methods of spread measurement and 

one-dimensional analysis of variance (1D-ANOVA) for validation and further analysis. 

 

3.3.1. Spread calculation on the dynamic coefficient of friction 

A mathematical tool (spread calculation) was used to compute the amount of data 

spread/distributed relative to the amplitude based on the interquartile range with upper and lower 

quartile value represented in the Fig. 10. Although, this method was highly specific to the type of 

data distribution inside the signal and this experimental work signal satisfied certain conditions. 

Hence, the spread calculation method was used. For each cycle in a test, the spread was plotted, 

as shown in Fig. 11. The result obtained was very similar to that of the dynamic coefficient of 

friction. More than an approximately 85% of the data points belonged to the dynamic coefficient 

of friction of a cycle. 

 

3.3.2. One dimensional ANOVA on friction signal friction 

The 1D- ANOVA mathematical tool was used to analyze the behaviors of peaks and 

valleys occurred at different periods in the friction region. Thus, it illustrated  the possibility of 

in-depth analysis on the friction signal cycles having more accuracies than existing methods. The 

data point array of a periodic cycle was constructed to be similar to the observations made at 

different levels of some factors and compute 1D-ANOVA. This was basically a method of 

categorizing data. For example, it was similar to Table 2 when categorizing data set of materials 

based on their tensile strengths. 



In ANOVA, observation is a process of classifying the experimental signal based on the 

defined levels. In this work, 4 levels of a cycle whose data points were sorted in ascending order 

of the test, as shown in Fig. 12 was adopted. Each level was classified based on the transient 

time, dynamic friction time, static friction time and slider rest time, as shown in Table 3. 

 

 

3.3.3. The theoretical background of ANOVA analysis on friction signal 

The proposed procedure of 1D-ANOVA calculation on friction signal expressed the 

experimental data corresponding to a cycle. This was necessary to perform the ANOVA on the 

friction test signal. A summation of 3 parts was carried out, as expressed in eq. 7. 

                                                                                                                    (7)                                                                                                           

Where, Xim = mth observation from the ith level, µo = overall mean, ai = ith level of the 

classification (ANOVA levels 0, 1, 2 and 3), and Eim = random fluctuation. 

In ANOVA computation, there were 3 considered properties: ANOVA hypothesis, 

ANOVA assumptions, ANOVA general method. ANOVA hypothesis, also referred to as the null 

hypothesis, stating that no level affects the experimental outcome and then looks for evidence to 

the contrary. ANOVA assumptions states that the data of measurements at each level are 

normally distributed with mean µi and variance σ2, and have an assumption that ai sum to zero. 

Finally, the assumption that for each i and m, Eim is normally distributed with mean 0 and 

variance σ2. Though, a dynamic friction coefficient part was not exactly a normally distributed 

quantity in this work. This assumption was compensated by assuming that the distribution was 

almost high flat at that region, since it occupied about 85% of the total data.     

                                                                                                                                    (8) 

From the ANOVA expressions (eqs. 9-13: 

Xim = mth observation made at the ith level for m = 0, 1, …, ni – 1 and i = 0, 1, …, k – 1.  

Where, ni is the number of observations at ith level and k represents the number of levels. 



 

                                                                                                                          (9) 

                                                                                                                                    (10) 

                                                                                                                         (11) 

                                                                                                                               (12) 

                                                                                                                   (13)                                                                                                           

Where, TSS = total sum of squares, SSA = measure of variation related to category levels, SSE = 

measure of variation related to random fluctuation, and MSA = mean square quantity. 

Fig. 13 represents the ANOVA results obtained from the plots with highlighted cycle 

samples at 6 different time zones, as S1-S6, respectively. Fig. 14 represents the friction force 

signal’s sample cycles between these 6 time-frame. Fig. 15 represents the fast Fourier transform 

for those sample cycles, respectively. 

 

3.3.4. SSE: Measure of variation related to random fluctuation 

The SSE value for each cycle was computed according to eq. 13; the output of this function 

reacted proportionally to the rate of change in random noise input data. The random influence 

noise varied and propagated linearly with time in this work. Change in signal value was regarded 

as random noise concerning subsequently mentioned cases throughout the test elapsed time. 

1) During the initial run, significant changes in dynamic and static friction time zones were 

regarded as noise, since the material removal was minimum at these instances, caused by 

minimal material’s friction coefficients. 

2) More than halfway through experimental test time, the friction coefficients were maximum 

and constant for some periods. Therefore, changes in dynamic and static frictions were also 

regarded as noises at these time instances. 



These random noises could be from electrical interferences, machine disturbances, among other 

sources.  

 

3.3.5. SSA: Measure of variation related to category levels 

The SSA value for each cycle was computed according to eq. 11. The output of this 

function responded proportionally to the rate of changes in the percentage of data points 

occupying the specific timeframe by category levels. For a cycle, the dynamic friction occupied 

nearly 80% of the total data points, approximately 15% of static friction and other 5% was due to 

noise, slider rest, among other sources, within this work. Changes in these percentage values 

were inferred using the SSA and regarded as irrelevant data points. 

 

3.3.6. MSA: Mean square quantity 

The MSA is calculated according to the eq. 12. The output of this function reacted to a 

change in amplitude of the friction signal. In other words, a spike or another factor contributed a 

significant changes in the amplitude, as observed using MSA. These changes occurred at 

different number of levels or behavior of the levels. 

 

4. Inference from the computation 

As shown in Fig. 13, the selection of time frame (S1-S6) for the concerned sample cycles 

was based on the observational changes in the ANOVA results (SSE, SSA and MSA). For 

example, a sample cycle from the time frame S1 was from the instance few minutes after the test 

system started, i.e. the time at which the influence of friction behavior would be minimum. Both 

Figs. 14 (S1) and 15 (S1) confirmed this phenomenon, where the sample cycle plot in the region 

of S1 and its associated FFT frequency plot showed that there was no other associated frequency 

components other than the cycle’s reciprocating operation frequency and its harmonics. 

Moreover, this was similar for the S2, S3 and S4 samples (Fig. 14), which was taken at the 

time instances, when the influence of friction behavior started to occur. Therefore, data points in 

these sample cycles having mutually exclusive frequencies were regarded as noise (i). It is 

necessary to differentiate and prove that the different frequency components correspond to the 

noise or the useful signal. It was done by analyzing the frequencies (Fig. 15) persisted 

throughout the tests (ii) and frequencies originated at the random time (iii). The process was 



done similarly to that of the previous samples (S2, S3 and S4) by observing changes in the 

ANOVA results of the sample cycle from time frame S5 and S6. From Figs. 14 and 15, it can be 

concluded that both samples were almost identical in terms of time and frequency, based on the 

ANOVA results obtained. Furthermore, the highlighted area of interest on Fig. 13, between 

which the sample cycles was taken, i.e. the time frame at which the influence of friction was 

much higher than the noises. 

Where, 

(1) Frequencies = ~300 Hz and ~340 Hz (i).      

 

(2) Frequencies = ~220 Hz and ~280 Hz (ii). 

 

(3) Frequencies = ~50 Hz, ~100 Hz and ~150 Hz (iii). 
 

 

 

5. Conclusion 

Static and dynamic friction coefficients for material have been determined using different 

methodologies: zero-crossing detection and a new algorithm. These novel techniques mitigated 

some of the drawbacks of the existing methods, such as random sampling method. The ANOVA 

computation on the friction signal also emphasized that the use of a randomly sampled signal on 

a long time experimental test resulted to an erroneous values. By comparing different ANOVA 

results with specific time frames, different frequency components were identified and 

differentiated. This was beneficial as the noise parts of the signal were detected. The 

identification of noise portions are quite difficult with the conventional methods. By 

incorporating different signal processing methodologies, such as time, frequency and time-

frequency domain analysis, it was possible to analyze the in-depth behavior of the stick-slip 

phenomena of the friction system. Improved implementation of the proposed computing methods 

would facilitate real-time computing and compensation on the friction related application 

systems, such as automotive braking system. Consequently, it would be possible to use the 

braking system in a pulsed switching manner to achieve improved performance in the static and 

dynamic friction regions. 
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Fig. 1. Fabricated BFPTFEC laminate, using hand layup technique (i) schematic view (ii) side 

view. 

Fig. 2. Schematic diagram of experimental setup used for friction and wear measurements. 

Fig. 3. Algorithm flow for computing static and dynamic friction coefficients. 

Fig. 4. Friction curve plot for reciprocating sliding piston. 

Fig. 5a (i). Generic zero-crossing function. 

Fig. 5a (ii). Generic zero-crossing with defined hysteresis. 

Fig. 5b. Comparison between cycle extraction on (i) proposed and (ii) conventional methods. 

Fig. 6.  A completion time of each cycle. 

Fig. 7.  Result of a cycle’s data points sorted in the ascending direction of its magnitude. 

Fig. 8. Comparison of static coefficient of friction curve plots between two methods. 

Fig. 9. Comparison of dynamic coefficient of friction curve plots between two methods. 

Fig. 10. Spread computed result for the test data. 

Fig. 11. Interquartile range (IQR) analogy (Image courtesy: Centers for disease control and 

prevention, USA). 

Fig. 12. ANOVA level classification. 

Fig. 13. ANOVA results for the test signal. 

Fig. 14. Sample friction cycles at time frames of S1-S6. 

Fig. 15. FFT sample cycle at time frames of S1-S6. 

 

 

 

 

 

 

 

 

 

 



Table 1 

 Specifications of wear test 

Property Value 

Type of test platform Linear reciprocating 

Operating type Uniform, sinusoidal 

Normal load 10 kN 

Friction force 100 kN 

Velocity 50 mm/S 

Time frame for each cycle 4 seconds 

Total displacement per cycle 200 mm 

Stroke length per half cycle 100 mm 

Total operation time ~3 hours 

Total number of cycles ~2700 

Specimen material dimension (area and thickness) 2500 mm2 x 7 mm 

 

Table 2 

Example of ANOVA level classifications 

No. of levels Material types *Yield strength (MPa) 

Level 0 Wood 69 

Level 1 Light metal  270 

Level 2 Heavy metal  1000 

Level 3 Very heavy metal  2500 

*Strength values was tabulated for example purposes only and does not implies to real-world material properties. 

 

 



Table 3 

 ANOVA level classification for the test signal 

No. of levels Categories based on time zone range 

Level 0 Cycle transition time 

Level 1 Dynamic coefficient friction time 

Level 2 Static coefficient friction time 

Level 3 Slider rest time 

 

 

 

 


