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Prevalence of haptic feedback in robot-
mediated surgery: a systematic review of 
literature.  
Amirabdollahian, Farshid; Livatino, Salvatore; Vahedi, Behrad; Gudipati, Radhika; Sheen, 

Patrick; Gawrie-Mohan, Shan; and Vasdev, Nikhil  

Abstract  
Background: 

With the successful uptake and inclusion of robotic systems in minimally invasive surgery and 
with the increasing application of Robotic Surgery (RS) in numerous surgical specialities 
worldwide, there is now a need to develop and enhanced the technology further. One such 
improvement is the implementation and amalgamation of haptic feedback technology into RS 
which will permit the operating surgeon on the console to receive haptic information on the type 
of tissue being operated on. The main advantage of using this is to allow the operating surgeon 
to feel and control the amount of force applied to different tissues during surgery thus minimising 
the risk of using excessive force on tissue being used and hence reducing the risk of tissue damage 
due to both the direct and indirect effects of excessive tissue force or tension being applied 
during RS.  
 
Method: 

We performed a two-rater systematic review to identify the latest developments and potential 
avenues of improving technology in the application and implementation of haptic feedback 
technology to the operating surgeon on the console during RS. This review provides a summary 
of technological enhancements in RS, considering different stages of work, from proof of concept 
to cadaver tissue testing, surgery in animals and finally real implementation in surgical practice.  
 
Results: 

We identify that at the time of this review, while there is a unanimous agreement regarding need 
for haptic and tactile feedback, there are no solutions or products available that address this 
need.  
 
Conclusions: 

There is a scope and need for new developments in haptic augmentation for robot-mediated 
surgery with the aim of improving patient care and Robotic Surgical technology further.   
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1 Introduction  
 
Robotic Surgery is transforming minimally invasive surgery (MIS). A major issue currently with 
the expansion of Robotic Surgery is the complete lack of sensory information from the operative 
field to the operating robotic surgeon on the console. [1]. The complete absence of touch or 
haptic feedback to the operating surgeon on the robotic console has disadvantages on the 
elimination of force and tactile cues [2]. It has been shown that the lack of haptic feedback during 
robotic surgery results in unnecessary excessive or in certain circumstances lack of force being 
used during robotic surgery that results in damage to tissue or slipping of tissues during surgery 
[2]. We present a systematic review on the latest developments on robotic surgery and 
concomitant development of haptic feedback in different surgical specialities. Our goal is to 
assess the latest developments before embarking on formulating a haptic solution in a new 
collaboration. Next section introduces our methodology, while section 3 presents the result of 
our analysis followed by the discussion and conclusion (section 4). 
 

2 Methodology  
This systematic review aims to identify if any surgical robotic systems is used with additional 
augmentation of haptic and tactile sensing. Our study surveyed the “robot surgery + haptic” as 
search term with the PubMed to identify studies conducted in this area. The methodology used 
is adapted from [3, 4], consisting of 4 phases: identification, screening, eligibility and inclusion.  
 
At the identification phase, two independent researchers used the search term in a PubMed 
search in November 2015. This resulted in identifying 138 records. An extra 3 unique records 
were identified after considering the references and also conducting a similar search with Web 
of Science and removing duplicate results. This led to a total of 141 studies in the screening phase.  
At this stage, the full abstract of all records were studied in order to rank the studies for 
relevance. The rank ranged from 1-5, 1 referring to least relevant and 5 referring to most 
relevant. A number of features were listed to aid in rank assignment, namely inclusion of a haptics 
or tactile device, its description, its interface, its degrees of freedom, and task dimensionality, as 
well as its intended type of operation, and whether the chosen approach has been tried on 
patients. These features were intended to provide input for the synthesis part of this work. As a 
concise search term was chosen, all articles in the screening list were passed to the eligibility 
check.  
 
However, the researchers could not access the full text of 16 articles. These articles were 
unavailable at the University’s library, the British Library and the University College London (UCL)  
Library. Due to this, a decision was made to exclude these papers as it was not possible to 
completely evaluate them.  
 
Both researchers read the full papers available during phase 3 (n = 125), and completed the 
ranking and also classification of each article within the list. The classification task consisted of 
filling in the details of the following features:  
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• Haptic (yes or no)  
• Probe type/interface (text)  
• Speciality (text, e.g. robot-assisted surgery or more specific area of use)  
• Adaptability (text, e.g. can it take new tools or tooltips)  
• Haptic loop (text, e.g. if the article explains how virtual objects are rendered)  
• Degree of freedom (text, related to degree of freedom for the surgeon)  
• Task dimension (text, related to the degree of freedom at the probe)  
• Tactile feedback (yes or no)  
• Unimanual or bimanual (Unimanual or bimanual)  
• Tried on patients (yes or no)  
• Use type (One of the four choices: simulation, patient, cadaver, or animals)  
• Hazard analysis (yes or no, e.g. is there any hazard analysis results provided)  
• Additional notes (text)  

After this process, the rating offered by the researchers were compared and the two raters met 
and discussed the differences. The researchers reached an agreement for all the scores given. 
Considering that a rank ≥ 3 indicated a relevant or highly relevant article, a total of 74 articles 
were selected and included in the next phase of the study.  
 
The Table 1 summarises the process and the number of studies meeting the requirements 
during different phases of the review, while Table 2 presents the distribution of studies in 
different ranked groups.  
 
During the next stages of evaluation, in subsequent sections, articles are fully read by co-authors, 
and their references and citations are examined, to identify new studies up to May 2017, that 
could include new developments in haptic for robotic surgery.  
 

3 Results and Analysis  
Results discussed in this section of the paper concerns the phase 4 results for studies with a rank 
greater or equal to 3 in ranking. Table 3 summarises these findings by grouping studies with 
attributes such as haptics, tactile, score, if the study is a review study and if patients were 
involved in the reviewed study. The following sections synthesise the observations under each of 
the table columns. 
 
3.1 Haptics  
 
Out of the 74 papers selected for further analysis (phase 4), 66 had referred to the word “haptics” 
somewhere in the article. This large number was expected as haptics was used as one of the 
search terms. Out of these, only a small number namely, [S116, S93] were identified as solutions 
tried on patients (see Table 4).  
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Sutherland et al. [S116], present the potential for haptic enhancement using the neuroArm 
system where a haptic corridor is enabled to establish go and no-go areas in removal of glioma 
where brain shifts are apparent during the operation. The neuroArm surgical system links with 
two Omega 7 haptic devices that can provide a grasping force feedback of around 8N. The paper 
implies that this system is used to capture motion kinematics of the bipolar forces, during a real 
surgery in order to provide design requirements for the surgeon’s haptic interface as detailed in 
subsequent publications [5, 6] where amount and range of interaction forces for a number of 
real glioma cases are presented.  
 
Pearle et al. [S93], present clinical results from 10 clinical cases of using the unicompartmental 
knee arthroplasty (UKA) with the MAKO Tactile Guidance System. The study concludes that 
precision and alignment benefit from haptic and tactile augmentation, resulting in better 
operation results. However, the authors also point out that dependence on CT scans and regular 
costs for robotic maintenance are financial drawbacks, while complexity of setup in advance of 
sterile draping of the patient results in longer processes. Also they highlight that CT scans do not 
incorporate soft-tissue data into the gap planning and this is still done by manual flexion and 
extension intra operation.   
 
3.1.1 Papers with a score of 5 in relevance  
 
From the list of selected studies (in Table 3), those that have received a score of 5, as most 
relevant, are presented in Table 5 with description of studies and are considered for their 
contribution to haptics and its use in robot assisted surgery. Most shortlisted papers here provide 
design and evaluation of haptic technology for robot-mediated operation. 
  
Diaz et al. [S24] consider using a haptic pedal for additional provision of tactile information during 
operation. PHANToM desktop has been used in this study as well as the haptic pedal. The study 
focused on reaction times that have been reduced when both tactile warning cues via the hand 
and foot have been deployed. However this approach has not been tested clinically and hence 
no further exploitation/use is found in additional literature search.  
 
Ehrampoosh et al. [S26] use a PHANToM Omni with additional tooling to create tactile textures 
that can be detected during human-robot interaction. This study is a research study with the 
focus of identifying best control strategies to allow for better discrimination of the textures. 
Participants ranging 20-23 years old use the probe to detect real textures enclosed in a box. Study 
shows different levels of accuracy in detecting materials with different degrees of deformability. 
This approach has a good potential and has been followed up by another group showing a probe 
in real operation [7].  
 
Study by Hadavand et al. [S34] covers the design of a 4 + 1 DOF robot that provides a feeling to 
the back of the surgeon’s hand with a minimal moving inertia. The authors propose this as a 
solution to the Fulcrum effect that causes movements of the surgeon’s hand and to tool tip to be 
in opposite directions, and aims at addressing this issue using the new design. The authors report 
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issues with trajectory deviations due to backlash and vibrations which impacts on immediate use 
of this presented design in operations.  
 
De Lorenzo et al. [S20] look at force feedback for needle insertion. This paper is a design paper 
for a 1DoF device with a specific tool in mind. It uses force amplification to bring attention to the 
forces at the tip of the needle. The work is still at proof of concept stage. However the innovation 
of tip and shaft force feedback could have potential use for design of other tools in this domain.  
 
Hadavand et al. [S35] focus on designing a double parallelogram in order to shift the remote 
centre of motion and allow the surgeon’s hand free movement as if it is inside the patient body, 
thus providing a more realistic remote access to the patient body. Although the design has 
progressed beyond the proof of concept stage in subsequent evolutions of this work [8], authors 
have reported errors in trajectory tracking attributed to backlash, and have not yet provided 
experimental evaluation data in support of further incorporating this design as a remote 
interaction tool for a minimally invasive operation mediated by a robot.  
 
Work presented by Sun et al. [S115], highlights design and evaluation effort for a master robot 
used in natural orifice transluminal endoscopic surgery, presented to operate on live pigs during 
dissection and resection operation. The comparative results showed reduction of operation time 
by around 2 minutes using tooling offered in this design, compared to the current standard 
tooling, while presenting good stable grasping and cutting efficiency. However, subsequent 
evolution of the master robot for use with human subjects has not been presented in this or 
following studies by the authors. In similar endoscopic surgery domain, Tavakoli et al. [S121] 
presented design and development work surrounding a master- slave prototype, focusing on 
force-reflective features of platform. There were no follow up studies to show advantage of the 
platform in performing master-slave operations. In another study, Lee et al. [S60] present the 
development of their robot using sensors to provide a reliable force feedback in the context of 
laparoscopic surgery. The master- slave setup capable of 5DOF motion uses torque sensors in the 
pitch joints of the master and slave robots thus allowing to pass interaction forces to the master 
robot. However, further experiments showed limited level of subject discrimination when 
exploring objects. In an innovative approach, authors in [S48, S49] use a pneumatic balloon tactile 
display to offer additional cues to the master control of the Da Vinci robot. Design was followed 
by perception experiments identifying the optimal size for the balloon to offer highest accuracy. 
 
Study by Shapiro et al. [S111] focuses on a bone-mounted robot for orthopaedic surgery. Such 
technologies are thought to provide support for intraoperative joint-surface reconstruction. The 
study is focused on exploring the feasibility of using haptics to feel and scan joint surfaces, in this 
case from a femur model of the bone. Results are compared to 3D laser scan of the femur bone, 
and presented in support of the feasibility of the haptics system. In comparison with earlier 
studies, this study adds a modelling dimension to the operation allowing to match the bone 
surface to an implant.  
 
Work presented by Houston et al. [S38] highlights development of a haptic tweezers as an 
instrument added to the end of an endoscope. This study is focused on design of the tool and 



This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is 
available online at: https://doi.org/10.1007/s11701-017-0763-4 

 

does not offer experiment results with patients or performance tests results regarding 
improvement to operation and handling time.  
 
Research and development activities during the NeuroArm project resulted in a master- slave 
robotics system with a haptic interface [S105]. The haptic interface designed is in shape of a 
forceps with ergonomic design considerations. While this study covers the design of the device, 
no follow-up experiments are offered to highlight usability, and operational features of the haptic 
device, and its added value. Follow up studies with some of the authors explore the use of the 
master-slave platform, the NeuroArm robot, with new bipolar forceps in neurosurgical treatment 
of glioma [S116].  
 
3.1.2 Papers with a scores of 3 and 4 in relevance  
 
Considering the papers with a scores of 3 and 4, respectively, 34 and 26 studies are selected as 
relevant to the search terms (see Table 6). From these, only one study, mentioned previously, is 
used with patients [S116] without an actual focus on haptics use in operation. A number of 
studies used cadaver [S97] and animal body parts [S97, S94, S140] in suitability experiments. One 
study used healthy subjects for perceptual studies related to haptic discrimination [S141]. These 
are highlighted under “Tried On” column in Table 6, showing where the studies have tried their 
development. The majority of these studies have used the robotic intervention or the developed 
haptic tooling in simulation. Figure 1 presents the number of studies in different stages of 
development. This indicates the relative early stage of development for prototypes introduced. 
However, the large number of haptic developments for simulation highlight the necessity for 
having haptic tooling, for both education as well as augmenting senses during operation.   
 
 
3.2 Tactile  
Out of the 74 papers there were 6 papers classified after the feature Tactile Feedback (Table 7). 
Twenty-seven further papers were identified after considering the references.  
We observe that current surgical robotic systems, including those for RMIS as in the da Vinci, 
have not yet integrated haptic and tactile feedback between instruments and tissue during 
surgery, while effectiveness of proposed solutions have only been tested in mock surgical tasks 
[S4, S61, S85]. These have mainly involved synthetic tissue models [S87, S75] and ex-vivo tissues 
[S94]. Attention has been put on both Touch (kinaesthetic) and Tactile (cutaneous) perception, 
which can be provided through haptic devices (grounded and body-based, [S75]), with tactile 
feedback appearing still far from practical adoption in tele-manipulation robots [S61]. 
Researchers have focused on both sensing and rendering [S61, 9] with the first one resulting 
more challenging [S61, S85].  
 
Some of the experimentations of tactile feedback ran on commercial systems [S110], while 
others used these systems augmented with ad-hoc built prototypes [S87, S75, S94, S48]. All those 
systems had been proposed to perform palpation through cutaneous feedback.  
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Some authors have proposed customized devices capable of displaying cutaneous feed- back, 
e.g. [10], [11], [12], and most recently attention has been paid to small wearable devices [13].  
Minamizawa et al. [14] and Tsagarakis et al. [15] propose similar wearable devices relying on 
fingertip deformation and stretch, to simulate perception of objects’ weight by displaying 2-DOFs 
(normal and lateral directions). However, their systems cannot provide forces in pointing 
direction which limits application to a number of grasping actions. The limitation is overcome in 
systems that are less portable, e.g. the wearable tactile device proposed by Solazzi et al. [16] that 
features motors placed on user ś forearm and the presence of cables to convey motor torque.  
 
Bau et al [17] propose a system to display cutaneous sensation to fingers through a touch screen 
when applying an underneath conductive layer reacting to voltages and therefore providing 
different friction forces when voltages alternate. Kuchenbecher [18] propose a similar system 
that brings display friction forces based on vibrations generated by the remote tools when a 
contact is present. Tezuka et al. [19] propose a new tactile device that consists of an array of 
needle-type electrodes that independently activate and provide this way a sensation of 
roughness or smoothness. They experimented effectiveness of the multi-needle shape and 
demonstrated that different types of tactile sensation can be provided on the finger and with 
much less voltage than other shapes.  
 
Some authors focused on developing new devices. King et al. [S48] propose a tactile display 
system that provides cutaneous feedback through pneumatic balloons [20]. They ran 
experiments on a da Vinci console to assess the response for different balloons diameters, which 
resulted in the selection of optimal balloon diameters that provide maximum accuracy. A few 
other authors also proposedcustomized cutaneous feedback devices, [21], [22], [23], [24].  
 
Some authors assess advantages of such systems within different MIS contexts.  
Meli et al. [S75] assess the advantages of cutaneous feedback compared to having it coupled to 
kinaesthetic feedback, and also compared to auditory and visual feed- backs. They used a 
customized cutaneous feedback device (based on [23]) mounted on two grounded X Omega 7 
haptic devices. In absence of delays the best results were obtained with a complete haptic 
feedback while cutaneous feedback was the second best. In presence of delays, cutaneous 
feedback only outperformed all other forms of feedback, by containing oscillations and therefore 
being more stable.  
 
Pacchierotti et al. [S87] propose a novel system that provides feedback at finger-tip through 
deformation and vibration. The prototype system built on da Vinci end effector was composed 
by a commercially available tactile sensor (at the operating table) and custom cutaneous 
feedback device (at the surgeon’s fingers). Experiments were carried out with and without haptic 
feedback and resulted in a significantly higher performance when the feedback was present.  
Perri et al. [S94] proposed a laparoscopic system setup that provided feedback to surgeon’s hand 
through a probe handle connected to a tactile sensing system (TSS) with capacity-based pressure 
sensor [25], [26]. The system included a visualization interface.  
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Its performance was compared to MIS grippers such as an endoscopic grasper and a laparoscopic 
ultra-sound probe [S94]. The results were positive with a performance increase of up to 71%.  
Tactile feedback may or may not be coupled to touch feedback. Pacchierotti et al. [23] investigate 
decoupling cutaneous and kinaesthetic channels, modulating cutaneous force to compensate for 
a lack of kinaesthesia. They run an experiment where users were asked to perform a 1-DoF 
teleoperation task typical in key-hole surgery until a stiff constraint would be perceived. Better 
performance was achieved when cutaneous feedback was present to compensate the lack of 
kinaesthetic force, while over-actuated cutaneous forces performed even better. This work 
shows effectiveness of cutaneous feedback with the proposed tactile device.  
 
Minamizawa, Prattichizzo and Tachi [27] propose a simplify haptic display that integrates tactile 
feedback on fingers and kinaesthetic feedback on an arm. They examine the difference of weight 
recognition according to the applied point of kinaesthetic feedback and come up with a design 
principle that confirms effectiveness of the proposed method.  
 
Tactile feedback is inherently coupled to visual feedback. Some authors have included visual-
tactile feedback in their experiments, e.g. to assess cutaneous only versus cutaneous plus 
kinaesthetic feedback [S75], or to assess the advantage of a probe-handle tactile feedback versus 
ultra-sound based probes [S94].  
 
Segul et al. [S110] instead focus on assessing congruency between visual and tactile feedback. 
Experiments involved active and passive use of a virtual tool driven by a robot through visuo-
tactile feedback. Both active and passive uses obtained similar results. The experiments showed 
that haptic devices can substitute physical connection between master and slave spaces, and 
therefore tele-manipulators consisting of haptic devices and virtual reality can be used in 
cognitive neuroscience investigations.  
 
3.3 Type of Probe/Interface used  
Another aspect of assessment was to consider use of different robotic platform at different 
stages of development in commercial life. Table 8 presents list of platforms identified as used in 
different studies. The table highlights that PHANToM robot (Geomagic TM) and the da Vinci 
Surgical systems are the most used platforms, followed by the Robocast system, while other 
platforms are at entry level, all with one study. Looking in particular for tools invented for 
extending Da Vinci robot, two studies highlighted present tools [S112, S87] used in simulation 
experiments, without any developments closer to market.  
 
3.4 Surgical Speciality  
Looking at the selected study paper, one aspect of the review is with regards to the specific 
surgical domain in which the devices are used. Table 4 list the studies based on their special 
surgical domains.  
The table highlights that General Surgery and Gasterenterology have the largest of the recorded 
uses based on the current study. The development and introduction of haptic feedback will be of 
great benefit in both paediatric and adult patients. The technology will also benefit all patients 
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from different specialities such as Urology, General Surgery, ENT surgery and cardiac surgery. The 
technology will also offer improvement in the manipulation of fragile specific tissue such as veins 
and arteries during surgery in order to prevent unnecessary damage to these structures 
intraoperative. Haptic feedback development will improve surgical training and precision of 
surgery further [28].  

4 Discussions and Conclusions  
This study considered existing literature around surgery tools with haptic augmentation. From a 
choice of classification features, haptics, tactile, involvement of patients and type of interface 
had sufficient information for further synthesis.  
 
Our results highlight that although a large number of studies exist that consider haptics 
technology for augmenting the robot-mediated surgery, a large majority of these studies do not 
pass the early stages of design and developments, leading to higher technological readiness levels 
that allows for their evaluation in a real intended context for use, e.g. in a real surgical situation.  
This is further evident by very small number of studies that provide solutions for the Da Vinci 
Robot, while another small group continue to use PHANToM robot for simulation and further 
understanding of the context of interaction and user perception. A large proportion of the 74 
studies included in this synthesis present developed tooling for the haptic augmentation, while 
majority of these studies do not progress into clinical experimentation during real surgery. Only 
a very small subset of these advance into a stage of cadaver or animal tissue manipulation. This 
is clearly presented in Figure 1 where number of studies shrink from simulation stage to animal 
testing and finally cadaver and patient tests.  
 
When looking at the various systems that have been proposed for tactile feedback, it appears the 
technology has not consolidated yet. We observe that most of the contributions are based on 
individual hardware solutions and pilot assessments, and these often target specific subject 
areas. The proposed works are indeed inspiring but there is a feeling that more creative solutions 
may be needed to produce effective feedback while more generalised hardware would be 
needed for fast market adoption.  
 
Also by comparing between Tables 5, 6 and 7, we can observe that majority of research consider 
kinaesthetic feedback (Tables 5 and 6), with a smaller number of the studies covering the tactile 
feedback (Table 7). This could be due to the relative maturity of haptics and robotics end-
effectors that support kinaesthetic feedback versus a smaller number of technologies and tools 
that have provided support to tactile feedback at fingertips.  
 
From clinical perspective, almost all of the shortlisted studies highlight the importance of 
additional cues to compensate for the loss of direct sensing, kinaesthetic or tactile. However, in 
the process of development, majority of these studies are stopped at early stage of the 
technological development. This could be due to a number of factors:  
(a)  The development required to provide a rich enough haptic feeling at the remote (master) site 
is bound to the limits of what today’s technology can provide, and even with scaling the master 
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site to 3 or 4 times larger scale than the operation site, current approaches do not manage to 
integrate both tactile and kinaesthetic senses, as well as the surgical task needs.   
(b)  A number of innovative solutions emerge that offer a combination of modalities, to offer 
stiffness or viscous feeling when dealing with different tissues. Yet we remain as relative novelty 
of tissue characterisation using visual or tactile interaction, and are furthermore limited by our 
ability to simulate the characterised tissues in a good enough form that it can be perceived as 
intended in its simulation.   
(c)  Studies that break through the first two barriers find a further challenge ahead related to 
regulations surrounding use of robotic tool in real-operation, or even within animal operation. 
These regulations, while necessary, reduce the ability to rapidly develop and iterate, while 
certification process for use within the intended environment is also a lengthy process and a 
costly endeavour.   
  
When looking at technological deployment within different surgical specialism, we can see that 
the technology is expanding its use in different specialisms, with general surgery and 
gasterenterology as most popular and widely used domains.  
 
This study provides the initial input for our planned development work, in designing a haptic 
interface for augmenting the surgical robotic interventions. The initial findings suggest that 
although most studies agree with the ”need”, the need is unmet in current available 
technologies, thus there exist a clear problem that can benefit and enhance our surgical tools.  
Authors involved in this study are part of the team embarking on a new design challenge to meet 
the need, while benefitting from this literature, as well as daily surgical experience of Mr Nikhil 
Vasdev and Mr Gawrie-Mohan.  
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 Table 1: Number of studies passing different stages of the review 

Phase  Number of records  

Phase 1: Initial search  141 

Phase 2: Screening  141 

Phase 3: Full text and ranking  125 

Phase 4: Inclusion (Rank ≥ 3)  74 
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Table 2: Distribution of ranked articles  
Rank  Number of records  

No rank: full text unavailable  16 

Rank 1: least relevant  26 

Rank 2: less relevant  25 

Rank 3: relevant  34 

Rank 4: more relevant  26 

Rank 5: highly relevant  14 

Total  141 
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Table 3: All studies assessed by both raters  
Haptics Tactile Score Review Patients Studies 

NO NO 1 NO NO [S124, S77, S41, S95, S37, S104, S67, S129, S139, S46, S54, S59] 

NO NO 1 NO YES [S25, S27, S19, S118, S56, S2, S43, S13] 

NO NO 2 NO NO [S30,  S31,  S71,  S79,  S42,  S44,   S40, S107, S136, S72, S36, S55] 

NO NO 2 NO YES [S98] 

NO NO 3 NO NO [S11, S50, S51, S6] 

NO NO 3 YES NO [S83] 

NO NO 3 YES YES [S29] 

NO YES 4 NO NO [S94] 

YES NO 1 NO NO [S88, S58, S92, S66, S32] 

YES NO 1 NO YES [S127] 

YES NO 2 NO NO [S15,  S130,  S68,  S14,  S5,  S125, S69, S101, S86, S74] 

YES NO 2 NO YES [S122, S78] 

YES NO 3 NO NO [S62, S138, S102, S73, S110, S47,  S99, S45,  S52,  S132,  S90,  S89,  
S103, S81, S64, S17, S3, S133, S106, S33] 

YES NO 3 NO YES [S93] 

YES NO 3 YES NO [S113, S128, S61, S123, S80, S85] 

YES YES 3 YES YES [S4] 

YES NO 4 NO NO [S12, S87, S135, S75, S126, S57,  S109, S16, S7, S9, S21, S97, S91, S22,  
S114, S1, S8, S112, S119, S120, S140, S141] 

YES NO 4 NO YES [S116] 

YES NO 4 YES NO [S63, S18] 

YES NO 5 NO NO [S24,  S26,  S34,  S20,  S35,  S96, S115, S111, S60, S48, S38, S105, S121, 
S49] 

 
Table 4. Studies tried on patients   

Robot Tried_ON Description Studies 
NeuroArm 
robot Patient NeuroArm integrated in neurosurgical room 

and tried on 18 patients with glioma [S116] 

MAKO TGS Patient 
Demonstration of successful use of robot 
assisted unicompartmental knee 
arthroplasty 

[S93] 
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Table 5. Studies with the score of 5 in relevance  
 

Robot Tried_ON Description Studies 

Haptic pedal Simulation 

Phantom desktop is used alongside 
the Haptic pedal to assess cue via 
multiple channels [S24] 

Phantom Omni Simulation 

Phantom Omni is used alongside 
developed optical force sensor for 
MIS applications [S26] 

RCM robot  
Development of a haptic remote 
centre of motion (RCM) mechanism [S34] 

Coaxial needle insertion 
Development of a coaxial needle 
insertion robot [S20] 

RoboMaster1  Design of RoboMaster1 [S35] 

Parasurg  
Development of hybrid parallel 
robot for MIS [S96] 

Notes Animals 

Developed endoscopic platform 
tested with porcine stomach models 
and 5 live pigs [S115] 

MBARS  

Adding haptic capabilities to MBARS 
robot used in knee joint 
arthroplasty [S111] 

  

Sensor-Based Force Feedback in a 
Compact Laparoscopic Surgery 
Robot [S60] 

Pneumatic balloon 
tactile display Simulation 

Tested sensed accuracy through 
synthetic stimulations. Systems 
mountable on da Vinci system [S48] 

Microgripper  
Development of shape memory 
alloy actuated microgripper [S38] 

  Development of haptic forceps [S105] 

Endoscopic end-effector 
Development of an endoscopic end-
effector [S121] 

Pneumatic balloon actuator 
Perception tests with the pneumatic 
balloon actuator [S49] 
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Table 6. Studies with the score of 3 and 4  
 

Robot Tried_ON Description Studies 
Phantom 
Omni 

Cadaver/Simulati
on 

Endoscopic probe - controlled by Phantom 
Omni [S12] 

da Vinci 
Surgical 
System Simulation 

SynTouch BioTac tactile sensor mounted on da 
Vinci system working on simulate heart tissue [S87] 

Phantom 
Omni Simulation 

Application of pseudo haptic and forcefeedback 
together for palpation [S62] 

NeuroArm 
robot Patient 

NeuroArm integrated in neurosurgical room and 
tried on 18 patients with glioma [S116] 

CIS Virtual 
Training 
Platform Simulation Platform development for education [S138] 

  

A framework for virtual fixtures for tissue 
manipulation haptics [S135] 

Omega 7 Simulation 
Omega 7 with an add-on wearable finger-tip 
device [S75] 

Omega 6  
Omega 6 haptic device to control Anubis 
endoscope compared to conventional control [S102] 

Endoscopic  
robotic system 

Development of an endoscopic robotic system 
with multi-dof manipulator [S126] 

Acrobot 
Sculptor Simulation Dry bone model cam resection [S73] 
Endoscopic 
snake robot Simulation 

Control and derivation of Snake robot and its 
assessment is simulation [S57] 

Needle 
steering  

Development of a needle steering biopsy guide 
with MRI compatibility [S109] 

Mimic dV-
Trainer Simulation 

Mimic dV-Trainer with HMD simulating 
augmenting an operation with a da Vinci system [S110] 

RIO Robotic 
Arm Simulation 

Performance of robotic system versus manual 
resection of tumour in modelled femurs [S47] 

Robocast  
Optical sensors and robot assistance in keyhole 
neurosurgery tested on a model brain/skull [S16] 

Phantom 
Omni Simulation 

Two phantom Omni robots, one for each hand 
on master side for teleoperation [S99] 

  

A framework to control multiple robotic 
systems in master-slave scenarios [S7] 

KAIST- Ewha 
colonoscopy Simulation Simulation platform developed at KAIST [S45] 

 Simulation Haptic Controller modelling and simulation [S52] 
Air jet Haptic lump display Development and characterisation [S9] 
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Phantom  
Augmented reality and master slave operations 
using Phantoms [S132] 

Blazer II HTD Simulation Electrophysiological catheter [S90] 
Phantom 
Omni  

VR based simulation system for laproscopic 
rectum surgery [S89] 

Robocast  
Development of the Robocast system and its 
evaluation using Omega 3 device [S21] 

Phantom 
Omni Simulation 

Omni is used for centering based on Lumen 
position for simulated colonoscopy [S103] 

Paramis Animals 
Platform developed for MIS, tested with one 
porcine liver [S97] 

  

Development of force reflecting robot for 
catheter navigation [S91] 

  

Gaze Contingent Motor Channeling to improve 
cognitive load during operation [S81] 

Robocast  
Introduction to Robocast project and path 
planner components [S22] 

Phantom 
Desktop Simulation 

Phantom desktop as Master, with a 1DOF 
developed device as slave to estimate 
environmental forces [S114] 

  

Master-slave needle insertion using 
commercially avaiable Phantom and Puma 
robots [S1] 

  

Algorithms for force estimation algorithms in 
Master-Slave systems [S8] 

MAKO TGS Patient 
Demonstration of successful use of robot 
assisted unicompartmental knee arthroplasty [S93] 

da Vinci  
Surgical system 

Addition of a new Axial force free joint to the 
system, early stage prototype [S112] 

 Simulation Algorithms for collision detection in haptics [S64] 
modiCAS 
system  

Development of a cooperative interface and 
haptic constraints [S17] 

Force reflective interface 
Development and evaluation of a force 
reflective master slave system for endoscopy [S119] 

Froce 
reflective 
interface Simulation 

Tool/tissue interaction in the force reflective 
system [S120] 

da Vinci Surgical System 
Augmented reality for sensory substitution was 
added to conventional robot suturing on a tube [S3] 

MEMSurgery Animals 
Development of testbed for vascular surgery 
and evaluation with Wistar rats [S133] 

LANS  
Development of the LANS tool actuator 
mounted on a NeuroMate robot [S106] 
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Opthalmic surgery  
assistant 

Development tested in a master-slave 
configuration with a Phantom premium 1.5 [S140] 

Laproscopic 
grasper Animals 

Develeoped a laproscopic grasper with 
measurement capability and tried on animal 
tissues [S33] 

Micro-
needle 
electrode 
array Simulation 

New Tactile device that consists of an array of 
needle-type electrodes offering tactile feedback [S141] 

 
Table 7. Studies indicating tactile sensing addition   
 

Robot Tried_ON Description Studies 
da Vinci Surgical 
System Simulation 

SynTouch BioTac tactile sensor mounted on da 
Vinci system working on simulate heart tissue [S87] 

Omega 7 Simulation 
Omega 7 with an add-on wearable finger-tip 
device [S75] 

Mimic dV-
Trainer Simulation 

Mimic dV-Trainer with HMD simulating 
augmenting an operation with a da Vinci system [S110] 

Tactile sensing 
Instrument Animals 

Tactile sensing Instrument (TSI) with 60-element 
pressure sensors detecting tumor in animal 
tissue [S94] 

Pneumatic 
balloon tactile 
display Simulation 

Tested sensed accuracy through synthetic 
stimulations. Systems mountable on da Vinci 
system [S48] 

Micro-needle 
electrode array Simulation 

New Tactile device that consists of an array of 
needle-type electrodes offering tactile feedback [S141] 

 
Table 8. Different robotic probe/interfaces used by studies 
 

Robot  Studies 
Acrobot Sculptor  [S73] 
Air jet Haptic lump display  [S9] 
Blazer II HTD  [S90] 
CIS Virtual Training Platform  [S138] 
Coaxial needle insertion  [S20] 
da Vinci Surgical System  [S87, S112, S3, S50, S51, S6] 
Endoscopic end-effector  [S121] 
Endoscopic robotic system  [S126] 
Endoscopic snake robot  [S57] 
Force reflective interface  [S119] 
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Froce reflective interface  [S120] 
Haptic pedal  [S24] 
KAIST- Ewha colonoscopy  [S45] 
LANS  [S106] 
Laproscopic grasper  [S33] 
MAKO TGS  [S93] 
MBARS  [S111] 
MEMSurgery  [S133] 
Micro-needle electrode array  [S141] 
Microgripper  [S38] 
Mimic dV-Trainer  [S110] 
modiCAS system  [S17] 
Needle steering  [S109] 
NeuroArm robot  [S116] 
Notes  [S115] 
Omega 6  [S102] 
Omega 7  [S75] 
Opthalmic surgery assistant  [S140] 
Paramis  [S97] 
Parasurg  [S96] 
Phantom/Omni/Desktop [S12, S62, S26, S99, S89, S103][S114][S132] 
Pneumatic balloon actuator  [S49] 
Pneumatic balloon tactile display  [S48] 
RCM robot  [S34] 
RIO Robotic Arm  [S47] 
Robocast  [S16, S21, S22] 
RoboMaster1  [S35] 
Tactile sensing Instrument  [S94] 

 
Table 9. Different surgical specialties listed by the literature  
 

Specialty  Studies  
Anaesthesia  [S20] 
Cardiology [S138, S135, S90, S91, S6] 
Gastroenterology [S102, S126, S57, S45, S115, S103, S120, S121] 

General Surgery 

[S87, S62, S63, S75, S11, S24, S26, S34, S110, S29, 
S99, S7, S18, S113, S35, S52, S9, S96, S132, S128, 
S89, S97, S81, S94, S61, S1, S123, S60, S48, S112, 
S38, S49, S50, S51, S33, S141] 
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Gynaecology [S83]  
Neurosurgery [S12, S116, S16, S21, S22, S106]  
Ophthalmology [S140] 
Orthopaedics [S4, S73, S47, S111, S93, S17]  
Radiology  [S109] 
Surgical Education [S114, S8, S64, S3, S105]  
Urology [S80] 

 

 
Figure 1. Number of studies at different stages of development 
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Figure 2. Robotics use in different clinical domains   

 
 
 
 


