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We show that, although the Conjugate Gradient (CG) Algorithm has a singularity at
the solution, it is possible to differentiate forward through the algorithm automatically by
re-declaring all the variables as truncated Taylor series, the type of active variable widely
used in Automatic Differentiation (AD) tools such as ADOL-C. If exact arithmetic is used,
this approach gives a complete sequence of correct directional derivatives of the solution, to
arbitrary order, in a single cycle of at most n iterations, where n is the number of dimensions.
In the inexact case the approach emphasizes the need for a means by which the programmer
can communicate certain conditions involving derivative values directly to an AD tool.

1. Truncated Taylor CG

It is generally supposed to be problematic to differentiate naively through singularities1.
The Conjugate Gradient (CG) Algorithm [1] has a singularity at the solution2, in the
sense that an attempt to run the algorithm starting at the solution will produce a divide-
by-zero error.

Although practitioners sometimes discuss (in conversation) occasions when their
CG code did, or didn’t, converge to correct derivative values when it was forward-
differentiated, there seems to be no theoretical analysis of this problem in the published
literature. Gratton et al [2] consider first derivatives with respect to b of the successive
CG approximations xk to the solution x∗ of Ax = b, but do not take account of the
effect of convergence of the underlying problem on the derivatives, and do not consider
derivatives of xk with respect to A.

We show that, although the CG Algorithm has a singularity at the solution, it is
nevertheless possible to differentiate through the algorithm automatically, even in case
the algorithm is started at the solution itself. This allows us to obtain correct directional
derivatives of the solution, to arbitrary order r, in a single cycle of at most n iterations,
where n is the number of dimensions. Our approach involves re-declaring the active
variables as truncated Taylor series, as used in ADOL-C [4] and elsewhere, and making
adjustments (which we specify below) to the method of calculating certain coefficients,
and to the stopping criteria.

Suppose that we wish to use CG to solve the linear equations Ax = b for x at t = 0,
where A and b are smooth non-linear functions of some variable t, and at the same time
to compute directional derivatives ẋ, ẍ with respect to t, also at t = 0. These derivatives

∗ Email: b.christianson@herts.ac.uk
1For the case of the Euclidean norm at the origin see [3] p. 357 Table 14.9 and p. 363 Exercise 14.1.
2Unlike Newton algorithms, for instance, which do not.
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satisfy

Aẋ+ Ȧx = ḃ Aẍ+ 2Ȧẋ+ Äx = b̈

and so on for higher order derivatives. The trick is to re-purpose a conventional imple-
mentation of CG. For example, we shall denote the value of b at t = 0 by b(0) (simply
adding a notational superscript) and write

b(1) = ḃ, b(2) =
1

2!
b̈, . . . b(r) =

1

r!

r×•
b

to construct the truncated Taylor vector

b = b(0) + b(1)t+ b(2)t2 + . . .+ b(r)tr

Similarly for A. Now solving the truncated Taylor equation Ax = b for x will give the
solution x(0) to the original equation at t = 0 along with the correct derivatives

ẋ = x(1), ẍ = (2!)x(2), . . .
drx

dtr
= (r!)x(r).

We refer to a truncated Taylor series such as α whose elements α(k) are scalars as a
taylor. In practice any implementation must use Taylor series truncated to some finite
order. Although the analysis in this section and the next also applies to untruncated
(infinite) Taylor series (subject to some care with radius of convergence arguments),
the construction is designed to allow all the taylor values calculated during the course
of the algorithm to be computed only to the same fixed order r, with a small number
of exceptions3. There are some occasions in the proofs where, in order to establish a
particular identity, we must imagine that we have calculated elements of higher order4

than r, but these values are not used by the algorithm itself. We write α = 0 to mean
that α(k) = 0 for all k; for a truncated taylor of order r, α(k) = 0 for k > r by convention.

A taylor vector such as b can be thought of as a truncated Taylor series whose ele-
ments b(k) are vectors, although it may in practice be implemented as a vector whose
components are taylors. Similarly A can be thought of as a truncated Taylor series whose
entries are the matrices A(k), but implemented as a matrix composed of taylors.

If u, v are taylor vectors then we write c = u · v to denote the taylor with

c(k) =

k∑
`=0

u(`) · v(k−`),

u2 denotes u · u, and so on for all the usual vector and matrix linear algebra notations.
The usual algebraic identities lift to taylors, so for example (αu) ·v = α(u ·v). For further
information on calculating taylor values see [3], Section 3.2: as an example, if α(0) 6= 0

3These exceptions are confined to certain intermediate quantities involved in the calculation of the taylor values
designated αi and βi; these exceptions require calculation to order less than 2r in all cases, as we shall see.
4But even in these cases, we need never consider elements of higher order than 4r.
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and γ = 1/α then the elements of γ can be recursively calculated as

γ(0) =
1

α(0)
; γ(k) =

−1

α(0)

k−1∑
`=0

γ(`)α(k−`)

Truncated Taylor Conjugate Gradient Algorithm (TTCG)

As usual we assume A(0) to be symmetric and positive definite. The TTCG algo-
rithm to solve Ax = b looks just like the conventional CG algorithm, but the variables
A, b, xi, gi, pi, αi, βi, etc. are taylors.

start:
set i := 0
let x0 be an initial approximation to x
g0 = Ax0 − b
p1 = −g0

loop:
i := i+ 1
choose αi to solve αi(p

T
i Api) = g2

i−1
xi = xi−1 + αipi
gi = Axi − b = gi−1 + αiApi

if gi = 0 then terminate
choose βi to solve βig

2
i−1 = g2

i
pi+1 = βipi − gi

go to loop

We prove various properties of this algorithm formally in the next section, but give here
a brief overview of our route to the main result of this paper. We already know from the
conventional (order zero) case of CG that the truncated Taylor CG algorithm produces

(if arithmetic is exact) an orthogonal sequence g
(0)
i . In a space of finite dimension n we

therefore must have for some i0 that g
(0)
i0

= 0. However truncated Taylor CG need not

terminate at this point5 as the fact that g
(0)
i0

= 0 does not imply that g = 0 to order r.
Continuing on with the algorithm from this point produces a further sequence of gi with

g
(0)
i = 0.

For each i, define g(ki) to be the first non-zero element of gi if there is one, so g
(ki)
i 6= 0

and g
(`)
i = 0 for all ` : 0 ≤ ` < ki ≤ r, and define g

(∗)
i = g(ki) in this case; define g

(∗)
i = 0

iff gi = 0, in which case ki is undefined.

We shall show in section 2 that, provided we use exact arithmetic, the g
(∗)
i form an

orthogonal sequence, with ki monotone non-decreasing with i, and so for some i∗ ≤ n
we must have gi∗ = 0. At this point TTCG will terminate and give correct values for
x, ẋ, ẍ and so on to order r. In section 3 we consider briefly some of the consequences of
using inexact arithmetic, particularly on re-formulating the stopping criterion and the
adjustment of ki.

We conclude this section by remarking on the calculation of αi and βi. As soon as

5For example, set x0 = 0 and suppose that b(0) is an eigenvector of A(0) but that b(1) is not. Terminating the

algorithm as soon as g
(0)
i = 0 may give wildly incorrect values for the derivatives of x.
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ki−1 > 0, these calculations involve taking the quotient of two taylors which are both
divisible by a power of t. Although we only need to calculate αi, βi themselves as far as the
element of order r− ki−1, the cancellation of t requires6 us to compute the intermediate
elements g2

i−1, g
2
i , piApi to order r + ki−1. A simple implementation is to store certain

truncated taylor vectors in a “normalized form” and re-normalize automatically when
we operate on them: for example we may represent gi = vtki explicitly as the pair (ki, v),
where v(0) 6= 0 unless gi = 0, and similarly for pi.

2. Termination and Convergence

Throughout this section, we shall assume that the arithmetic used is exact.

Definition 1 Let v be a taylor (scalar or vector). For k ≥ 0 we say that tk divides v,
and write tk|v iff v(`) = 0 for all ` : 0 ≤ ` < k. For v 6= 0 we define the order of v to be
the largest value of k such that tk|v. If v(0) 6= 0 then the order of v is zero; 1 = t0 divides
every v because in this case the quantification over ` is empty.

Definition 2 For each i, we define ki as the order of gi.

Theorem 2.1 At each stage i ≥ 1, αi and βi are well defined with α
(0)
i 6= 0; ki ≥ ki−1;

pi+1 is of order ki; gi−1 · gi = 0; pTi+1Api = 0; and gi · pi = 0.

Proof. The proof is by induction: for i ≥ 2 we suppose the case for i − 1 and deduce it
for i. We first show that αi is well defined and not divisible by t. The order of pi is ki−1

by the induction hypothesis, the order of gi−1 is ki−1 by definition. Since A(0) is positive
definite, we have that pTi Api and g2

i−1 both have order exactly 2ki−1, whence αi is a well
defined taylor not divisible by t.

Hence tki−1 divides gi = gi−1 + αiApi whence ki ≥ ki−1. So let ki = ki−1 + δ ≥ ki−1

with δ ≥ 0. (The case where δ > 0 corresponds to a step i where ki has a jump.) We have
βi = g2

i /g
2
i−1 so βi is well-defined and t2δ divides βi, by definition of order. Since tki−1

divides pi it follows that tki = tδ.tki−1 divides βipi, and hence tki divides pi+1 = βipi−gi.
We show that gi−1 · gi = 0.

gTi gi−1 = (gi−1 + αiApi)
T gi−1 = g2

i−1 + αip
T
i A(βi−1pi−1 − pi) = g2

i−1 − αipTi Api = 0

by the induction hypothesis pTi Api−1 = 0 and the definition of αi.
We show that βi satisfies βip

T
i Api = gTi Api. Write P for pTi Api, then

g2
i Pβi = gTi (gi − gi−1)Pβi = gTi ApiαiPβi = gTi Apig

2
i−1βi = gTi Apig

2
i

since gi−1 · gi = 0 and αiP = g2
i−1. We never calculate g2

i Pβi as a truncated taylor in
the course of the TTCG algorithm, but let us imagine that we calculate it now, to order
r + 2ki + ki−1. We have that gi = vtki with v(0) 6= 0, so g2

i = v2t2ki . Divide both sides
of the equation g2

i Pβi = gTi Apig
2
i by t2ki and multiply by the truncated taylor 1/(v2) to

give the assertion for βi to order r − ki−1.

6For example if ki = r then naive computation of αi using taylors of order r will suffer from an underflow when

computing g2i , which has order 2r, even though α
(0)
i 6= 0.
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We show that pTi+1Api = 0.

pTi+1Api = (βipi − gi)TApi = βip
T
i Api − gTi Api = 0

We show that pi · gi = 0.

pTi gi = (βi−1pi−1 − gi−1)T gi = βi−1p
T
i−1gi = βi−1p

T
i−1(gi−1 + αiApi) = βi−1pi−1 · gi−1 = 0

by the induction hypotheses.
We show that pi+1 has order exactly ki. We already have that tki |pi+1. Suppose for a

contradiction that tki+1|pi+1. Certainly tki |gi so then t2ki+1 divides pi+1 · gi = βipi · gi −
g2
i = −g2

i , but this has order exactly 2ki by definition.
This completes the inductive proof of case i. It remains to establish the base case i = 1.

Since p1 = −g0 the order of p1 is k0. Since A(0) is positive definite, we have that pT1 Ap1

and g2
0 both have order exactly 2k0, whence α1 is a well defined taylor not divisible by

t. We have g1 · g0 = −g1 · p1 = g2
0 − α1(pT1 Ap1) = 0.

The same arguments used in the induction step now give k1 ≥ k0; β1 well-defined;
β1p

T
1 Ap1 = gT1 Ap1; pT2 Ap1 = 0; p2 has order k1; and we are done. �

Corollary 2.2 (of the Proof) For all i ≥ 1, βi satisfies βip
T
i Api = gTi Api.

Theorem 2.3 For all i, j with 1 ≤ i ≤ j we have gi−1 · gj = 0 and pTi Apj+1 = 0.

Proof. Assume that there is a counter-example, and consider one with the smallest value
of j.

If j = i then gTj gi−1 = 0 by Theorem 2.1, otherwise

gTj gi−1 = (gj−1 + αjApj)
T gi−1 = gTj−1gi−1 + αjp

T
j A(βi−1pi−1 − pi) = 0

by the assumption on j. In the base case gTj g0 when i = 1, replace β0p0 − p1 by −p1.

Similarly, if j = i then pTj+1Api = 0 by Theorem 2.1, otherwise, for i > 1

pTj+1Api = (βjpj − gj)TApi = −gTj Api

by the assumption on j, whence

αip
T
j+1Api = −gTj A(αipi) = −gTj (gi − gi−1) = −gTj gi + gTj gi−1 = 0

by the case already proven. Now by Theorem 2.1 we have that the taylor αj is not
divisible by t, and hence has a taylor inverse α−1

j . Multiplying by this, it follows that

pTi Apj+1 = 0 and so there is no counter-example. �

Corollary 2.4 If j > i then g
(ki)
i · g(kj)

j = 0

Proof. We do not calculate elements of gi to order greater than r in the TTCG algorithm
itself, but this does not prevent us using their values in a proof. So, let us imagine for a
moment that we executed the algorithm to order 2r instead of to order r. By Theorem
2.3, gi · gj = 0, so

(gi · gj)(ki+kj) = g
(0)
i · g

(ki+kj)
j + . . .+ g

(ki)
i · g(kj)

j + . . .+ g
(ki+kj)
i · g(0)

j = 0
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But g
(`)
i = 0 for ` < ki, and g

(`)
j = 0 for ` < kj , so g

(ki)
i · g(kj)

j = 0 �

Lemma 2.5 For some i∗ ≤ n we have gi∗ = 0, i.e. g
(k)
i∗

= 0 for all k : 0 ≤ k ≤ r.

Proof. This follows from Corollary 2.4 by the orthogonality of the sequence g
(ki)
i . There

are at most n linearly independent directions in the space. �

Theorem 2.6 The TTCG algorithm terminates after at most n steps, regardless of the

value of r. Let xi∗ be the terminal value for x. Then x
(0)
i∗

is the solution of A(0)x(0) = b(0)

and x
(1)
i∗

is the correct directional derivative ẋ of x for the given directional derivatives

Ȧ = A(1), ḃ = b(1), and so on for the higher derivatives.

Proof. At each stage gi is the residual Axi− b. Since for i = i∗ we have gi∗ = 0, it follows
that Axi∗ = b to order r, so

A(0)x
(0)
i∗

= b(0) A(1)x
(0)
i∗

+A(0)x
(1)
i∗

= b(1)

and so on, as required. �

3. Knowing When to Stop

The arithmetic used in AD is not usually exact, and so we must decide at which point
to treat elements of gi as zero: this amounts to deciding whether or not gi is divisible by
tki−1+1, based on the sizes of the relevant elements. For example, when calculating the
taylor βi = g2

i /g
2
i−1 we must decide whether to take

β
(0)
i =

(g2
i )

(0)

(g2
i−1)(0)

, or β
(0)
i =

(g2
i )

(2)

(g2
i−1)(2)

where in the second case we use l’Hospital’s rule (twice) to divide through by t2 on the

ground that g
(0)
i is appropriately “small”.

This is essentially similar to the problem we face with conventional CG in deciding when
to terminate, and we may use similar heuristics to decide. For example we may decide

to increment ki whenever g
(ki−1)
i becomes small relative to g

(k0)
0 . At each of these jumps

in the value of ki, the exact arithmetic version of the TTCG algorithm implicitly freezes
the values for elements of x of order below ki, which has the same effect as performing

an internal CG restart at order ki using the current value of g
(ki)
i . It would be convenient

in the case of inexact arithmetic to have a way of doing this explicitly as a result of a
run-time test. Similarly we may decide to restart the complete TTCG algorithm from

the beginning, with x0 as the current value of xi, whenever g
(ki)
i loses orthogonality with

g
(k0)
0 . However the programmer needs a way to communicate these intentions effectively

to the AD tool, and we also need a way of deciding when to terminate the algorithm on
the ground that gi is “close enough” to 0. A simple way of representing this is by defining
a suitable norm on the taylor vector gi (see the postscript following.)

The interesting feature of differentiating directly through the CG algorithm, beside
conceptual and programming simplicity, is that both the solution and all its directional
derivatives are obtained together in at most n iterations, where n is the dimension of x.
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The approach of applying AD straight through removable singularities is likely to be
exploitable along similar lines for other algorithms, once suitable mechanisms exist to
allow AD tools to manage and adapt the order and norm of taylor variables.

A Postscript on Taylor Norms

Whenever we apply forward-mode AD to an iterative algorithm, we must be careful in
the stopping condition to use a norm that is appropriate for taylor vectors. (Moré and
Wild [5] present examples of what goes wrong if this is not done.) In particular ‖g‖
must be non-zero and well-conditioned in the case when g(0) is very close to 0 but g(1) is
still relatively large. This case may occur as a result of round-off error even when g(0) is
analytically zero. One option (see p. 309 of [3]) is to define

|α|γ =

r∑
`=0

γ`|α(`)|, ‖g‖γ =

r∑
`=0

γ`‖g(`)‖, ‖A‖γ =

r∑
`=0

γ`‖A(`)‖ etc

where we generally take the underlying vector norm ‖.‖ to be the 1− or 2−norm. Unlike
t, which is a formal symbol, γ is a positive real number such as 1.0 or 0.5; an alternative
possibility is a Sobolev-style p-norm with 1 ≤ p ≤ ∞:

‖g‖pk,p = ‖g(0)‖pp + ‖g(1)‖pp + . . .+ ‖g(k)‖pp

As mentioned earlier, for the Euclidean norm we need to be careful when g(0) is close to
0, and we risk numerically unstable behaviour if we first use AD to calculate ε =

√
g · g

as a Taylor series, and then evaluate |ε|. The first step gives

ε = ‖g(0)‖+ (ĝ(0) · g(1))t+O(t2) where ĝ(0) =
g(0)

‖g(0)‖

and the term in t, which results from the cross-terms in the inner product g · g, may
take any value between 0 and ‖g(1)‖: the moral is that we really do need to calculate the
norm of the taylor vector directly, as an atomic step.
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