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Abstract: 4,4’-Dimethylaminorex (4,4’-DMAR) is a new synthetic stimulant, and only a little informa-
tion has been made available so far regarding its pharmaco-toxicological effects. The aim of this study
was to investigate the effects of the systemic administration of both the single (±)cis (0.1–60 mg/kg)
and (±)trans (30 and 60 mg/kg) stereoisomers and their co-administration (e.g., (±)cis at 1, 10 or
60 mg/kg + (±)trans at 30 mg/kg) in mice. Moreover, we investigated the effect of 4,4′-DMAR on
the expression of markers of oxidative/nitrosative stress (8-OHdG, iNOS, NT and NOX2), apoptosis
(Smac/DIABLO and NF-κB), and heat shock proteins (HSP27, HSP70, HSP90) in the cerebral cortex.
Our study demonstrated that the (±)cis stereoisomer dose-dependently induced psychomotor agita-
tion, sweating, salivation, hyperthermia, stimulated aggression, convulsions and death. Conversely,
the (±)trans stereoisomer was ineffective whilst the stereoisomers’ co-administration resulted in
a worsening of the toxic (±)cis stereoisomer effects. This trend of responses was confirmed by
immunohistochemical analysis on the cortex. Finally, we investigated the potentially toxic effects
of stereoisomer co-administration by studying urinary excretion. The excretion study showed that
the (±)trans stereoisomer reduced the metabolism of the (±)cis form and increased its amount in the
urine, possibly reflecting its increased plasma levels and, therefore, the worsening of its toxicity.

Keywords: 4-4′-DMAR; immunohistochemistry; drug metabolism; hyperthermia; novel psychoac-
tive substances; stimulant; oxidative/nitrosative stress; apoptosis; neurotoxicity; cortex
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1. Introduction

Synthetic stimulants are one of the largest classes of novel psychoactive substances
(NPS) seized and identified each year by law enforcement and forensic laboratories [1].
Among the latter, in recent years 4,4′-dimethylaminorex (4-Methyl-5-(4-methylphenyl)-4,5-
dihydrooxazol-2-amine), commonly known as 4,4′-DMAR, has been both seized in various
European countries and associated with cases of poisoning and deaths [2–5].

4,4′-DMAR may be considered a methyl-derivative of 4-methylaminorex (4-MAR)
and aminorex [6], two synthetic stimulants known for their anorexic properties [7]. Indeed,
in 4-MAR the methyl group is in position 4 on the oxazoline ring, such as 4,4′-DMAR that
has one more methyl group in para-position on the phenyl ring (Figure 1).
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4,5-dihydrooxazol-2-amine) and Aminorex (5-phenyl-4,5-dihydro-1,3-oxazol-2-amine) copied from the Cayman Chemical
website (https://www.caymanchem.com, accessed date 17 May 2021).

Aminorex, on the other hand, has no methyl group on the oxazoline and phenyl rings.
The presence of two chiral centres on the oxazoline ring of 4-MAR and 4,4-DMAR gives
rise to four enantiomers represented by two diastereomeric (±)-cis and (±)-trans forms [3].

4,4′-DMAR and 4-MAR are widely used as recreational substances, as was aminorex [8];
due to their toxicity, all three stimulants are already under national or international legisla-
tion control.

As with other NPS, despite legislative restrictions 4,4′-DMAR can be purchased
through websites selling “research chemicals” where it is usually sold in different forms
(e.g., as white powder or as different coloured tablets and pellets) and under different
names, including: “Serotoni”, “4-methyl-U4Euth” or “4-methyl-euphoria” [5,9–12]. The
routes of administration mostly used by consumers include nasal insufflation, inhalation
and oral administration [12]. Nevertheless, according to a fatality report from Hungary,
4,4′-DMAR can also be injected [9]. Low dosages (e.g., 10–15 mg for insufflation or 10–25 mg
for oral administration) are usually ingested to enjoy levels of hyper-arousal, euphoria,
decreased appetite and motor stimulation. An intermediate dosage (e.g., 20–50 mg oral)
can be associated with restlessness, agitation and insomnia; high dosages (e.g., above
100 mg) may present with severe anorexia, mild paranoia at times with hallucinations,
hyperthermia, bruxism, facial spasms, an increase in aggression levels, seizures and in-
creased heart rate levels, at times evolving in a cardiac arrest [6,10,13]. However, these
dose-related pharmaco-toxicological reports need to be interpreted with caution, since
deriving from subjective users’ experiences and/or based on clinical descriptions of clients
presenting to accident and emergency departments often referring to synthetic stimulant
multi-drug intake episodes [10]. Indeed, in all the 27 4,4′-DMAR-related deaths reported to
the EMCCDA, at least one further recreational drug and/or stimulant NPS was detected [9].

In vitro studies demonstrated that 4,4′-DMAR may elicit a potent inhibitory activity
on dopamine (DAT), noradrenaline (NET) and serotonin transporters [8,14,15]. Moreover,
(±)cis-4,4′-DMAR also inhibited vesicular monoamine transporter 2 (VMAT2) at a po-
tency similar to 3,4-methylenedioxymethylamphetamine (MDMA), demonstrating that
4,4′-DMAR is a potent, non-selective, monoamine-releasing agent [15].

In a recent study, 4,4′-DMAR showed a DAT/SERT ratio of 0.4 [8], and the authors
suggested that 4,4′-DMAR was also the most potent releaser of 5-HT from rat brain synapto-
somes compared with d-amphetamine, aminorex and 4-MAR [3]. Furthermore, 4,4′-DMAR
binds with relatively low affinity at both the 5-HT2A (Ki~8.9 µM) and 5-HT2C (Ki~11.0 µM)
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receptors [15], suggesting mild hallucinogenic effects [8]. Overall, one could conclude
that 4,4′-DMAR may have a pharmaco-toxicological serotonergic profile similar to that
of MDMA.

Cardiac arrest, brain oedema, elevated body temperature, bleeding and seizures
were the most common adverse events/autopsy findings in fatalities associated with 4,4′-
DMAR [9]. The admission notes and autopsy reports of 4,4′-DMAR-related deaths [9]
identified a range of clinical features consistent with serotonin toxicity [16]. Conversely,
the 4,4′-DMAR-related cardiotoxicity may be related to its effects on both extracellular
norepinephrine and 5-HT [3,17].

Nevertheless, there are no published pre-clinical or scientific safety data relating to
the toxic/neurotoxic potential of 4,4′-DMAR in animals or humans. A further problem
is represented by the fact that in the seized material, the exact concentration of either
(±)cis-4,4′-DMAR or of the (±)trans-4,4′-DMAR stereoisomer, or indeed of their presence in
a racemic mixture, is not known [18]. This issue, already previously described for stimulant
compounds in racemic mixtures such as threo-methylphenidate [19], (±)-MDPV [20,21]
or empathogenic drugs such as (±)-MDMA [22], could directly influence these molecules’
pharmaco-toxicological profile, potentially representing a serious health problem for con-
sumers but also complicating data interpretation in forensic toxicology analysis.

Therefore, the aim of the present study was to investigate the effects of the acute
systemic administration of both the single (±)cis (0.1–60 mg/kg) and (±)trans (30 and
60 mg/kg) stereoisomers but also of their co-administration ((±)cis at 1, 10 or
60 mg/kg + (±)trans at 30 mg/kg) in mice. A range of physiological (e.g., sweating, saliva-
tion, hyperthermia) and neuro-behavioural (e.g., psychomotor agitation, aggressiveness,
convulsion) parameters were here assessed. Moreover, to highlight possible neurotoxic
mechanisms, and similar to what previously investigated in relation to MDMA [23] the
effects of 4,4′-DMAR on the expression of key markers of oxidative/nitrosative stress
(8-OHdG, iNOS, NT and NOX2) and apoptosis (Smac/DIABLO and NF-κB) were here
analysed. Furthermore, in taking from some current preliminary data, which showed
the emergence of a 4,4′-DMAR-related hyperthermia, the expression of heat shock pro-
teins (HSP27, HSP70, HSP90), markers related to heat-induced response [24–26], was here
assessed as well. Finally, in studying the excretion of the related urinary metabolites, the po-
tential mechanism underlying the potentiation of the toxic effects of the (±)cis stereoisomer
when co-administered with the (±)trans stereoisomer was here investigated.

2. Results
2.1. Behavioural Studies

Overall, the systemic administration of (±)cis-4,4′-DMAR (e.g., 1–60 mg/kg i.p.),
(±)trans-4,4′-DMAR (e.g., 30 and 60 mg/kg), and of both together (e.g., 1–10–60 mg/kg
(±)cis-4,4′-DMAR + 30 mg/kg (±)trans-4,4′-DMAR i.p.) was here associated with impor-
tant physiological and neuro-behavioural changes in mice.

2.1.1. Physiological and Neuro-Behavioural Responses with (±)Cis-4,4′-DMAR

(±)Cis-4,4′-DMAR (0.1–60 mg/kg i.p.; Table 1) induced levels of psychomotor agita-
tion in mice. The effect was significant in the dose range of 3–60 mg/kg; both the latency of
the appearance of the effect (one-way ANOVA; F (3.20) = 66.56, p < 0.0001) and its duration
(one-way ANOVA showed F (3.20) = 66.56, p < 0.0001) were dose-dependent.
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Table 1. Effect of (±)cis-4,4′-DMAR (0.1–60 mg/kg i.p.) on neuro-behavioural changes (psychomotor agitation, aggres-
siveness, convulsions), physiological alterations (sweating, salivation, hyperthermia) and lethality in mice. The data here
shown (see material and methods) refers to the mean ± SEM values relating to six animals for each treatment. The statistical
analysis of the effects of the (±)cis-4,4′-DMAR in different concentrations were performed using a one-way ANOVA,
followed by a Bonferroni test for multiple comparisons. A Student’s t-test was used to determine statistical significance
(p < 0.05) between the two groups. a p < 0.05, versus cis 3 mg/kg; b p < 0.05, versus cis 10 mg/kg; c p < 0.05, versus vehicle;
d p < 0.05, versus cis 30 mg/kg.

COMPOUND cis-4,4’-DMAR
Doses (mg/kg) vehicle 0.1 1 3 10 30 60

Frequency % (n◦ of mice) - - - 100% (6) 100% (6) 100% (6) 100% (6)

Duration (min) - - - 54.2± 10.30 121.0± 12.35
a

235.1± 15.25
ab

280.1± 12.35
abPsychomotor

agitation
Latency (min) - - - 61.2± 6.30 28.2± 7.20

a 3.2± 0.25 ab 2.2± 0.15 ab

Sweating Frequency % (n◦ of mice) - - - - - 100% (6) 100% (6)
Salivation Frequency % (n◦ of mice) - - - - - 100% (6) 50% (3)

Variation (∆◦C) −0.28± 0.12 −0.18± 0.14 −0.22± 0.17 −0.34± 0.22 −0.41± 0.13 1.52± 0.11 c 2.22± 0.12 c
Hyperthermia Latency (min) - - - - - 25± 0.25 7.12± 0.23 d

Spontaneus Frequency % (n◦
of mice) - - - - - - nd

Frequency % (n◦
of mice) - - - - 100% (6) 100% (6) ndAggressiveness

Stimulated
Score (n◦ of bites) - - - - 6± 0.23 10± 0.23 b nd

Frequency % (n◦ of mice) - - - - - 50% (3) 100% (6)
Episodes (n◦) - - - - - 3.5± 0.5 2.0± 0.41 d

Latency of first episode (sec) - - - - - 10.5± 1.5 8.25± 1.1Convulsion

Duration of each episode (sec) - - - - - 4.86± 1.26 16.14± 3.2 d

Frequency % (n◦ of mice) - - - - - 50% (3) 100% (6)
Time of death (min) - - - - - 59.3± 2.3 31.9± 5.6 dLethality

Surviving mice % (n◦ of mice) - - - - - 50% (3) 0% (0)

All animals showed profuse sweating and salivation at the doses of 30 and 60 mg/kg,
although at the highest dose of 60 mg/kg only 50% of the animals showed profuse sweat-
ing possibly because at this dose half of them died before clearly showing this physio-
logical effect. (±)Cis-4,4′-DMAR dose-dependently induced hyperthermia at 30 mg/kg
(+1.52 ± 0.11 ◦C) and at 60 mg/kg (+2.22 ± 0.12 ◦C), whilst lower doses (0.1–10 mg/kg)
were ineffective (one-way ANOVA F (6.35) = 52.18, p < 0.0001). (±)Cis-4,4′-DMAR was
not associated with increased levels of spontaneous aggressiveness in mice. Conversely, the
molecule induced levels of stimulated aggressiveness in a dose-dependent manner at 10 and
30 mg/kg (t =12.30, df = 10; p < 0.0001). At the highest dose (60 mg/kg), the spontaneous
and stimulated aggressiveness tests could not be performed as the animals were excessively
agitated and convulsive. Systemic administration of (±)cis-4,4′-DMAR induced seizures
in 50% and 100% of mice at the 30 and 60 mg/kg dosages, respectively; the duration
of seizures was longer in those mice treated with the highest dose (t = 3.280, df = 10;
p = 0.0083). (±)Cis-4,4′-DMAR at 30 and 60 mg/kg caused the death of 50% and 100%
of mice, respectively, and at the highest dose the time to death was significantly shorter
(t = 2.526, df = 10; p = 0.0301).

2.1.2. Physiological and Neuro-Behavioural Responses to (±)Trans-4,4′-DMAR

Systemic administration of (±)trans-4,4′-DMAR (30 and 60 mg/kg; Table 2) did not
induce any physiological and neuro-behavioural changes at either of the dose tested.
The (±)trans-4,4′-DMAR tested at the lower doses of 0.1 and 1 mg/kg was inactive on all
parameters studied.
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Table 2. Effect of (±)trans-4,4′-DMAR (30 and 60 mg/kg i.p.) on neuro-behavioural changes (psychomotor agitation,
aggressiveness, convulsion), physiological alterations (sweating, salivation, hyperthermia) and lethality in mice. Data
expressed (see material and methods) represents the mean ± SEM of six animals for each treatment. The statistical analysis
of the effects of the (±)trans-4,4′-DMAR in different concentrations were performed using a one-way ANOVA followed by a
Bonferroni test for multiple comparisons. A Student’s t-test was used to determine statistical significance (p < 0.05) between
the two groups.

COMPOUND trans-4,4’-DMAR
Doses (mg/kg) vehicle 30 60

Frequency % (n◦ of mice) - - -
Duration (min) - - -Psychomotor

agitation Latency (min) - - -
Sweating Frequency % (n◦ of mice) - - -
Salivation Frequency % (n◦ of mice) - - -

Variation (∆◦C) −0.28± 0.12 −0.37± 0.13 −0.35± 0.16
Hyperthermia Latency (min) - - -

Spontaneus Frequency % (n◦ of mice) - - -
Frequency % (n◦ of mice) - - -Aggressiveness

Stimulated Score (n◦ of bites) - - -
Frequency % (n◦ of mice) - - -

Episodes (n◦) - - -
Latency of first episode (sec) - - -Convulsion

Duration of each episode (sec) - - -
Frequency % (n◦ of mice) - - -

Lethality Time of death (min) - - -

2.1.3. Physiological and Neuro-Behavioural Responses to the Concurrent
(±)Cis-4,4′-DMAR + (±)Trans-4,4′-DMAR Administration

Co-administration of increasing doses of (±)cis-4,4′-DMAR (e.g., 1, 10 and 60 mg/kg)
with (±)trans-4,4′-DMAR (e.g., 30 mg/kg) worsened the physiological and neuro-behavioural
alterations caused by single injections of the stereoisomer (±)cis-4,4′-DMAR (e.g., 1, 10 and
60 mg/kg; Table 3).

Table 3. Effect of co-administration of (±)cis-4,4′-DMAR (1, 10 and 60 mg/kg i.p.) and (±)trans-4,4′-DMAR (30 mg/kg i.p.) on
neuro-behavioural changes (psychomotor agitation, aggressiveness, convulsion), physiological alterations (sweating, salivation,
hyperthermia) and death in mice. Data expressed (see material and methods) represents the mean ± SEM of six animals for each
treatment. The statistical analysis of the effects of the interactions between (±)cis-4,4′-DMAR and (±)trans-4,4′-DMAR were performed
using a one-way ANOVA followed by a Bonferroni test for multiple comparisons. A Student’s t-test was used to determine statistical
significance (p < 0.05) between the two groups. e p < 0.05, versus cis 10 mg/kg; f p < 0.05, versus cis 60 mg/kg.

COMPOUND cis-4,4’-DMAR trans (cis + trans)-4-4’DMAR
Doses (mg/kg) vehicle 1 10 60 30 1 + 30 10 + 30 60 + 30

Frequency % (n◦ of mice) - - 100% (6) 100% (6) - 50% (3) 100% (6) 100% (6)
Duration (min) - - 121.0± 12.35 220.1± 12.35 - 55.0± 5.0 185.5± 11.0 e ndPsychomotor

agitation Latency (min) - - 28.2± 7.20 2.2± 0.15 - 45.2± 5.20 6.2± 2.20 e 0.45± 0.10 f

Sweating Frequency % (n◦ of mice) - - - 100% (6) - - 33% (2) 100% (6)
Salivation Frequency % (n◦ of mice) - - - 50% (3) - - 33% (2) 50% (3)

Variation (∆◦C) −0.28± 0.12 −0.22± 0.17 −0.41± 0.13 2.22± 0.12 −0.37± 0.13 −0.70± 0.15 1.6± 0.11 e 2.25± 0.09
Hyperthermia Latency (min) - - - 7.12± 0.23 - - 28.0± 0.21 5.0± 0.23 f

Spontaneus Frequency % (n◦ of mice) - - - nd - - - nd
Frequency % (n◦ of mice) - - 100% (6) nd - - 100% (6) nd

Aggressiveness
Stimulated

Score (n◦ of bites) - - 6± 0.23 nd - - 10± 0.05 e nd
Frequency % (n◦ of mice) - - - 100% (6) - - - 100% (6)

Episodes (n◦ ) - - - 2.0± 0.41 - - - 1.0± 0.0 f

Latency of first episode (sec) - - - 8.25± 1.1 - - - 6.67± 2.73
Convulsion

Duration of each episode (sec) - - - 16.14± 6.2 - - - 40.0± 5.0 f

Frequency % (n◦ of mice) - - - 100% (6) - - - 100% (6)
Time of death (min) - - - 31.9± 5.6 - - - 11.0± 3.9 fLethality

Surviving mice % (n◦ of mice) - - - 0% (0) - - - 0% (0)

The first behavioural parameter affected by co-administration was the psychomotor
agitation. (±)Cis-4,4′-DMAR at 1 mg/kg, ineffective alone, when co-administered with
(±)trans-4,4′-DMAR at 30 mg/kg induced psychomotor agitation in 50% of the treated
mice with an effect duration of approximately one hour. At 10 mg/kg (±)cis-4,4′-DMAR
alone caused psychomotor agitation in 100% of the treated mice with an effect that started
after about thirty minutes and lasted for about two hours; conversely, when co-injected
with (±)trans-4,4′-DMAR the stimulatory effect was anticipated, e.g., it began about four
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minutes after the drug administration and persisted for about three hours (t = 3.900, df = 10;
p = 0.030). Moreover, co-administration of (±)cis-4,4′-DMAR at 10 mg/kg with (±)trans-4,4′-
DMAR at 30 mg/kg induced sweating and salivation in 33% of the animals, hyperthermia
(∆◦C~1.6 ◦C; t = 11.80, df = 10; p < 0.0001) and enhanced stimulated aggressiveness
measured as number of bites (t= 16.99, df = 10; p < 0.0001). Co-administration of the highest
dose of (±)cis-4,4′-DMAR (60 mg/kg) with (±)trans-4,4′-DMAR at 30 mg/kg promoted
salivation in 50% of mice, caused hyperthermia (∆◦C~2.25 ◦C), increased the duration of
seizure episodes (t = 2.996, df = 10; p = 0.0134) whilst reducing the number of episodes
(t = 2.439, df = 10; p = 0.0349), and caused more rapidly the death of mice (t = 3.063, df = 10;
p = 0.0120).

2.2. Results of Tissue Samples Collection
2.2.1. Histological Results

Histological analyses showed only a slight oedema in the cerebral cortex (Figure 2).
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Figure 2. The frontal cortex of the treated mice ((±)cis 30; (b) showed mild edema (i.e., vacuolization areas are indicated by
yellow arrows) compared to controls (a).

2.2.2. Immunohistochemical Results

Systemic administration of (±)cis-4-4′-DMAR (10–60 mg/kg) increased the expression of
markers of oxidative/nitrosative stress (8-OHdG, iNOS, and NT), apoptosis (Smac/DIABLO
and NF-κB) and heat shock proteins (HSP27 and HSP70) in the frontal cortex of mice. More-
over, the co-administration of (±)cis-4-4′-DMAR (10 and 60 mg/kg) with an ineffective dose
of (±)trans-4-4′-DMAR (30 mg/kg) enhanced the hyperexpression of iNOS, Smac/DIABLO
and HSP27 demonstrating the increased action of (±)cis and (±)trans co-administration.

Systemic administration of (±)cis-4-4′-DMAR at 30 and 60 mg/kg increased the im-
munoreactivity of 8-OHdG in the frontal cortex of mice (one-way ANOVA; F (3.30) = 3.507,
p = 0.0272; Figure 3A).

Co-administration of (±)cis-4-4′-DMAR (at 10 and 60 mg/kg), with the ineffective
dose of (±)trans-4-4′-DMAR at 30 mg/kg did not modify the expression of 8-OHdG in
the frontal cortex with respect to that induced by the single injection of (±)cis-4-4′-DMAR
(one-way ANOVA showed F (5.44) = 4.109, p = 0.0038; Figure 3A).

Systemic administration of (±)cis-4-4′-DMAR at 60 mg/kg increased the immunore-
activity of iNOS in the frontal cortex of mice (one-way ANOVA showed F (3.30) = 87.32,
p < 0.0001; Figure 3B). The effect of (±)cis-4-4′-DMAR at 60 mg/kg was enhanced when
co-injected with the ineffective dose of (±)trans-4-4′-DMAR at 30 mg/kg (one-way ANOVA
showed F (5.44) = 4.109, p = 0.0038; Figure 3B). Co-injection of (±)cis-4-4′-DMAR at
10 mg/kg with (±)trans-4-4′-DMAR at 30 mg/kg did not overexpress the immunoreactivity
of iNOS.
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Figure 3. (A) Quantification and comparison of 8-OHdG positive areas in controls versus 4-4′-DMAR-mice ((±)cis 10,
(±)cis 30, (±)cis 60, (±)trans 30, (±)trans 30 + (±)cis 10, (±)trans 30 + (±)cis 60). Representative image (light microscopy,
40×) of 8-OHdG immunostaining (brown areas) in the cortex of mice receiving 4-4′-DMAR ((±)cis 30, a’) and controls
(a).(B) Quantification and comparison of iNOS positive areas in controls versus 4-4′-DMAR-mice ((±)cis 10, (±)cis
30, (±)cis 60, (±)trans 30, (±)trans 30 + (±)cis 10, (±)trans 30 + (±)cis 60). Comparison of (±)cis 60 versus (±)trans
30 + (±)cis 60. Representative image (light microscopy, 40×) of iNOS immunostaining (brown areas) in the cortex of
mice receiving 4-4′-DMAR ((±)cis 60, b’) and controls (b). (C) Quantification and comparison of NT (nitrotyrosine)
positive areas in controls versus 4-4′-DMAR-mice ((±)cis 10, (±)cis 30, (±)cis 60, (±)trans 30, (±)trans 30 + (±)cis 10,
(±)trans 30 + (±)cis 60). Representative image (light microscopy, 40x) of NT immunostaining (brown areas) in the cortex
of mice receiving 4-4′-DMAR ((±)cis 30, c’) and controls (c). (D) Quantification and comparison of NOX2 positive areas
in controls versus 4-4′-DMAR-mice ((±)cis 10, (±)cis 30, (±)cis 60, (±)trans 30, (±)trans 30 + (±)cis 10, (±)trans 30 + (±)cis
60). Representative image (light microscopy, 40×) of NOX2 immunostaining (brown areas) in the cortex of mice receiving
4-4′-DMAR ((±)cis 30, d’) and controls (d). * p < 0.05, ** p < 0.01 and *** p < 0.001 different from control; ## p < 0.001
different from (±)cis 60.

Administration of (±)cis-4-4′-DMAR reduced at 10 mg/kg and increased at 30 mg/kg
the immunoreactivity of 3-nitrotyrosine (NT) expression in the frontal cortex of mice
(one-way ANOVA showed F (3.30) = 25.64, p < 0.0001; Figure 3C). At the highest dose of
60 mg/kg (±)cis-4-4′-DMAR did not affect NT expression. The effect of (±)cis-4-4′-DMAR
at 60 mg/kg was enhanced when co-injected with the ineffective dose of (±)trans-4-4′-
DMAR at 30 mg/kg (one-way ANOVA showed F (5.44) = 16.23, p < 0.0001; Figure 3C).
Co-injection of (±)cis-4-4′-DMAR at 10 mg/kg with (±)trans-4-4′-DMAR at 30 mg/kg did
not change the immunoreactivity of NT.

Administration of (±)cis-4-4′-DMAR reduced at 10 and 30 mg/kg the immunore-
activity of NOX-2 expression in the frontal cortex of mice (one-way ANOVA showed F
(3.30) = 6.179, p = 0.0038; Figure 3D). At the highest dose of 60 mg/kg (±)cis-4-4′-DMAR
did not affect NOX-2 expression. Co-injection of (±)cis-4-4′-DMAR at 10 and 60 mg/kg
with (±)trans-4-4′-DMAR at 30 mg/kg did not change the immunoreactivity of NOX-2
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with respect to that induced by the single injection of (±)cis-4-4′-DMAR (one-way ANOVA;
F (5.44) = 3.935, p = 0.0051; Figure 3D).

Systemic administration of (±)cis-4-4′-DMAR at 30 and 60 mg/kg increased the
immunoreactivity of Smac/DIABLO in the frontal cortex of mice (one-way ANOVA;
F (3.30) = 49.50, p < 0.0001; Figure 4A).

The effect of (±)cis-4-4′-DMAR at 60 mg/kg was enhanced when co-injected with the
ineffective dose of (±)trans-4-4′-DMAR at 30 mg/kg (one-way ANOVA; F (5.44) = 51.94,
p < 0.0001; Figure 4A). Co-injection of (±)cis-4-4′-DMAR at 10 mg/kg with (±)trans-4-4′-
DMAR at 30 mg/kg did not overexpress the immunoreactivity of Smac/DIABLO.

Administration of (±)cis-4-4′-DMAR at 10, 30 and 60 mg/kg increased the immunore-
activity of NF-kB in the frontal cortex of mice (one-way ANOVA; F (3.30) = 49.50, p < 0.0001;
Figure 4B). The effect of (±)cis-4-4′-DMAR at 10 and 60 mg/kg was not changed when co-
injected with the ineffective dose of (±)trans-4-4′-DMAR at 30 mg/kg (one-way ANOVA;
F (5.44) = 51.94, p < 0.0001; Figure 4B).

(±)Cis-4-4′-DMAR at 30 and 60 mg/kg increased the immunoreactivity of HSP27 in
the frontal cortex of mice (one-way ANOVA showed F (3.30) = 55.12, p < 0.0001; Figure 5A),
whilst (±)cis-4-4′-DMAR at 10 mg/kg, alone, was ineffective. Co-injection of (±)cis-4-4′-
DMAR at 10 and 60 mg/kg with the ineffective dose of (±)trans-4-4′-DMAR at 30 mg/kg
overexpressed the immunoreactivity of HSP27 with respect to that induced by the single
injection of (±)cis-4-4′-DMAR (one-way ANOVA; F (5.44) = 63.85, p < 0.0001; Figure 5A).
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Figure 4. (A) Quantification and comparison of Smac/DIABLO positive areas in controls versus 4-4′-DMAR-mice ((±)cis 10,
(±)cis 30, (±)cis 60, (±)trans 30, (±)trans 30 + (±)cis 10, (±)trans 30 + (±)cis 60).). Comparison of (±)cis 60 versus (±)trans
30 + (±)cis 60. Representative image (light microscopy, 40×) of Smac/DIABLO immunostaining (brown areas) in the cortex
of mice receiving 4-4′-DMAR ((±)trans 30+(±)cis 60, a’) and controls (a). (B) Quantification and comparison of NF-κB
positive areas in controls versus 4-4′-DMAR-mice ((±)cis 10, (±)cis 30, (±)cis 60, (±)trans 30, (±)trans 30 + (±)cis 10, (±)trans
30 + (±)cis 60). Representative image (light microscopy, 40x) of NF-κB immunostaining (brown areas) in the cortex of mice
receiving 4-4′-DMAR ((±)cis 10, b’) and controls (b). *** p < 0.001 different from control; ### p < 0.001 different from (±)cis 60.

(±)Cis-4-4′-DMAR at 30 and 60 mg/kg increased the immunoreactivity of HSP70 in
the frontal cortex of mice (one-way ANOVA; F (3.30) = 73.77, p < 0.0001; Figure 5B), whilst
(±)cis-4-4′-DMAR at 10 mg/kg, alone, was ineffective. Co-injection of (±)cis-4-4′-DMAR
at 10 mg/kg with the ineffective dose of (±)trans-4-4′-DMAR at 30 mg/kg overexpressed
the immunoreactivity of HSP70 respect to that induced by the single injection of (±)cis-
4-4′-DMAR (one-way ANOVA; F (5.44) = 26.72, p < 0.0001; Figure 5B). Conversely, the
co-injection of (±)cis-4-4′-DMAR at 60 mg/kg with the ineffective dose of (±)trans-4-4′-
DMAR at 30 mg/kg increased the expression of the immunoreactivity of HSP70 similarly
to that induced by the single injection of (±)cis-4-4′-DMAR at 60 mg/kg.
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Figure 5. (A) Quantification and comparison of HSP27 positive areas in controls versus 4-4′-DMAR-mice ((±)cis 10, (±)cis 30,
(±)cis 60, (±)trans 30, (±)trans 30 + (±)cis 10, (±)trans 30 + (±)cis 60). ). Comparison of (±)cis 60 versus (±)trans 30 + (±)cis
60). Comparison of (±)cis 10 versus (±)trans 30 + (±)cis 10 [◦]. Representative image (light microscopy, 40×) of HSP27
immunostaining (brown areas) in the cortex of mice receiving 4-4′-DMAR ((±)cis 60, a’) and controls (a). (B) Quantification
and comparison of HSP70 positive areas in controls versus 4-4′-DMAR-mice ((±)cis 10, (±)cis 30, (±)cis 60, (±)trans 30,
(±)trans 30 + (±)cis 10, (±)trans 30 + (±)cis 60). Comparison of (±)cis 10 versus (±)trans 30 + (±)cis 10 [◦]. Representative
image (light microscopy, 40x) of HSP70 immunostaining (brown areas) in the cortex of mice receiving 4-4′-DMAR ((±)cis 60,
b’) and controls (b). (C) Quantification and comparison of HSP90 positive areas in controls versus 4-4′-DMAR-mice ((±)cis
10, (±)cis 30, (±)cis 60, (±)trans 30, (±)trans 30 + (±)cis 10, (±)trans 30 + (±)cis 60). Representative image (light microscopy,
40×) of HSP90 immunostaining (brown areas) in the cortex of mice receiving 4-4′-DMAR ((±)cis 30, c’) and controls (c).
* p < 0.05, ** p < 0.01 and *** p < 0.001 different from control; ◦ p < 0.05 and ◦◦◦ p< 0.001 different from (±)cis 30; ## p < 0.001
different from (±)cis 60.

(±)Cis-4-4′-DMAR reduced at 10 and 30 mg/kg the immunoreactivity of HSP90
expression in the frontal cortex of mice (one-way ANOVA; F (3.30) = 9.819, p = 0.0001;
Figure 5C). The (±)trans-4-4′-DMAR at 30 mg/kg reduced the expression of HSP90., whilst
the co-injection of (±)cis-4-4′-DMAR at 10 and 60 mg/kg with (±)trans-4-4′-DMAR at
30 mg/kg did not change the immunoreactivity of HSP90 with respect to that induced by
the single injection of (±)cis-4-4′-DMAR (one-way ANOVA; F (5.44) = 9.040, p < 0.0001;
Figure 5C).

2.3. Excretion Studies on Urine Samples

The principal markers of intake for (±)cis-4,4′-DMAR were the carboxylate (M2) and
mono-hydroxylate (M1, M3) metabolites where M2 was the most excreted metabolite
detected in mice urine samples, while the (±)trans-4,4′-DMAR did not exhibit phase I/II
metabolism, see Figure 6 for the structures of metabolites.
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Figure 6. Structures of cis-4,4’-DMAR and its principal markers: hydroxylated (M1, M3) and carboxylated (M2).

In the present study, the excretion levels of M1, M2 and M3 were compared in the
two groups of mice. The first group was administered with (±)cis isomer and the second
group was co-administered with both isomers at the same dose (10 mg/kg). The aim was
to evaluate changes in the excretion profile of these metabolites (M1–M3) between the two
groups. The excretion levels of the individual metabolites were compared as a percentage
ratio. This ratio was calculated considering the excretion of the parent compound, assuming
the percentage of (±)cis-4,4′-DMAR as 100%. The data were graphically reported as box
plots, with the calculated minimum, maximum, median and average values (Figure 7A).
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Figure 7. (A) Percentage ratio of excretion of M1, M2 and M3, the principal metabolites of cis-4,4′-
DMAR for the administration of a dose of 10 mg/kg of 4,4′-DMAR (cis) and the same dose of both
isomers (cis + trans). The box plots report maximum and minimum value, median and average (+).
(B) Excretion data of 4,4′-cis-DMAR and its principal metabolites normalised to the sum of excretion
of 4,4′-DMAR and its metabolites. Data normalised and reported, respectively, for the administration
of cis or cis + trans isomers at a dose of 10 mg/kg.

The values shown were the sum of the excretion of (±)cis-4,4′-DMAR and its metabo-
lites in the range of hours considered. The results showed that the administration of
(±)cis-4,4′-DMAR alone led to the excretion of M1 and in particular of M2 in greater quan-
tities than the parent compound. Furthermore, a significant variability of the data was
observed for all the metabolites, which could be attributed to the variable nature of the
excretion among different mice and time ranges. The results were significantly different
in the case of co-administration of both isomers. For all the metabolites there was a re-
markable reduction in excretion values compared to the parent compound, mainly for the
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metabolites M1 and M2. The principal marker M2 showed maximum percentage values
equal to half of the excretion of the parent compound whilst the average values of all three
metabolites were significantly lower than this value. This observation could be explained
by an inhibition of the metabolism of the (±)cis isomer caused by the co-administration
with the (±)trans isomer. The relatively low variability of the data could be explained by
the reduced metabolism of the parent compound, which entailed a lower excretion of the
metabolites and consequently smaller levels of inter-individual variability. This was also
highlighted by the comparison of excretion data showed in Figure 7B with data normalised
to the sum of excretion of 4,4′-DMAR and its metabolites.

2.4. Physiological and Neuro-Behavioural Responses with
(±)Cis-4,4′-DMAR + (±)Trans-4,4′-DMAR Co-Administration

Animals from which urine for excretion studies were obtained (Figure 7) were simul-
taneously observed to see if changes in the excretion metabolism of the (±)cis-4,4′-DMAR
stereoisomer were associated with changes in physiological and neuro-behavioural re-
sponses (Table 4).

Table 4. Effect of co-administration of (±)cis-4,4′-DMAR (10 mg/kg i.p.) and (±)trans-4,4′-DMAR (10 mg/kg i.p.) on neuro-
behavioural changes (psychomotor agitation, aggressiveness, convulsion), physiological alterations (sweating, salivation,
hyperthermia) and death in mice. Data expressed (see material and methods) represents the mean± SEM of four animals for
each treatment. The statistical analysis of the effects of the interactions between (±)cis-4,4′-DMAR and (±)trans-4,4′-DMAR
were performed using a one-way ANOVA followed by a Bonferroni test for multiple comparisons. A Student’s t-test was
used to determine statistical significance (p < 0.05) between the two groups. e p < 0.05, versus cis 10 mg/kg.

COMPOUND cis-4,4’-DMAR trans-4,4’-DMAR (cis + trans)-4-4’DMAR
Doses (mg/kg) 10 10 10+10

Frequency % (n◦ of mice) 100% (4) - 100% (4)
Duration (min) 125.0± 10.12 - 171.0± 9.25 ePsychomotor

agitation Latency (min) 26.4± 6.25 - 8.0± 4.25 e

Sweating Frequency % (n◦ of mice) - - -
Salivation Frequency % (n◦ of mice) - - -

Variation (∆◦C) −0.21± 0.15 −0.32± 0.1 1.58± 0.23 e
Hyperthermia

Latency (min) - - 32.0± 2.45
Spontaneus Frequency % (n◦ of mice) - - -

Frequency % (n◦ of mice) 100% (4) - 100% (4)Aggressiveness
Stimulated Score (n◦ of bites) 5± 0.23 - 8± 0.13 e

Frequency % (n◦ of mice) - - -
Episodes (n◦) - - -

Latency of first episode (sec) - - -Convulsion

Duration of each episode (sec) - - -
Frequency % (n◦ of mice) - - -

Lethality
Time of death (min) - - -

Co-administration of (±)cis-4,4′-DMAR at 10 mg/kg with (±)trans-4,4′-DMAR at
10 mg/kg worsened the physiological and neuro-behavioural alterations caused by single
injections of the stereoisomer (±)cis-4,4′-DMAR. In particular, (±)cis-4,4′-DMAR when co-
administered with (±)trans-4,4′-DMAR reduced the time of onset of psychomotor agitation
(t = 2.434, df = 10; p = 0.0352) and prolonged its duration (t = 3.355, df = 10; p = 0.0073);
furthermore, it promoted hyperthermia and enhanced stimulated aggressiveness measured
as number of bites (t = 11.36, df = 10; p < 0.0001) in mice.

3. Discussion

The present study demonstrated for the first time the toxicity of the (±)cis-4,4′-DMAR
in mice and the risk when taken together with the (±)trans-4,4′-DMAR form in racemic
mixtures. (±)Cis-4,4′-DMAR dose-dependently induced psychomotor agitation, sweating,
salivation, hyperthermia, stimulated aggression, convulsions and death in mice. Con-
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versely, the (±)trans-4,4′-DMAR was inactive. However, their co-administration resulted in
a worsening of the toxic effects caused by (±)cis-4,4′-DMAR, inducing rapid and severe hy-
perthermia, convulsions and death of the animals. Immunohistochemical analysis showed
that this acute intoxication caused high expression of markers of oxidative/nitrosative
stress (8-OHdG, iNOS, NT and NOX2), apoptosis (Smac/DIABLO and NF-κB) and heat
shock proteins (HSP27, HSP70, HSP90) in the frontal cortex, suggesting potential neuro-
toxic damage. The urinary excretion studies suggested that the worsening of physiological
and neuro-behavioural parameters could be related to the inhibition of the metabolism of
the (±)cis-4,4′-DMAR form by the (±)trans-4,4′-DMAR. Overall, the strength of the present
study related here to its clinical–toxicological relevance of the use of doses of 4-4’-DMAR in
mice, which are equivalent to those used in humans (HED; human equivalent dose); these
were associated with mild, intermediate and strong responses (Table 5). Although the cur-
rent study was solely based on the preclinical mouse model, this may allow a translational
evaluation of the pharmaco-toxicological effects that could be observed in humans.

Physiological and neuro-behavioural alterations observed in mice were broadly in
agreement with the clinical scenario typically observed in consumers ingesting 4-4’-DMAR,
with symptoms and signs including: psychomotor agitation, sweating, salivation, hyper-
thermia, aggression, convulsions and possible death [4,10,13]. This scenario is likely related
to the increased release of catecholamines and facilitated serotonergic transmission [6]. In
particular, the latter seems to be responsible for the more dangerous toxic effects found in
4-4’-DMAR intoxications, such as cardiac arrest, brain oedema, hyperthermia, bleeding and
seizures [4]. Therefore, this study allows us to hypothesise that from a clinical point of view
an acute 4-4’-DMAR intoxication can be treated, such as that caused by other stimulants
already known. Furthermore, the metabolic profile of 4-4’-DMAR excretion can cover an
important aspect in clinical–toxicological and forensic investigations. While changes in
immunohistochemical markers (for example HSPs) are indicative of metabolic changes in
the brain that may be of help in forensic investigations to clarify, for example, the presence
of hyperthermia in the brain and its possible pathophysiological relapse.

Table 5. Correlation between mouse doses (mg/kg) and human equivalent doses (HED, mg/kg). The table also reported
the correlation between doses and effects in human.

Mouse Dose (mg/kg)
HED Human Dose

Human Dosage Effects
(mg/kg) (mg)

0.1 0.0081 0.486

Low
high state of vigilance, euphoria, decreased
appetite, increased frequency of heartbeat

and motor activity
1 0.081 4.86

3 0.243 14.58

10 0.81 48.6 Intermediate restlessness, agitation and insomnia

30 2.43 145.8

high
60 4.86 291.6

involve severe anorexia, mild paranoia
(sometimes hallucinations), hyperthermia,

bruxism, facial spasms, an increase in
aggression and desire for violence, seizures,
an increased heart rate that will be involved

in a cardiac arrest

3.1. Psychomotor Agitation

Similarly to 4-MAR, psychomotor agitation was the first behavioural effect observed
after administration of (±)cis-4,4′-DMAR; not only an increase in spontaneous locomotion
activity [27], but also an “unusual hyperactivity” pattern (e.g., rapid and sudden horizontal
displacements in all directions, sustained turning behaviour, involuntary falls from the high
plate during the evaluation of the tests, stereotyped movement and rearing activity) were
observed [28]. These enhanced behavioural responses were consistent with an increase in
extracellular levels of monoamines [28–30], especially in the dorsal and ventral striatum [31–33].
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Turning behaviour and stereotypies induced by 4-4′-DMAR were typically reported
after the administration of other synthetic stimulants, such as amphetamine, 4-MAR,
MDPV, mephedrone, methedrone, α-PVP, α-PBP, 4′-MePPP, MDMA and MPA [28,34–41].

Although a previous study showed that the motor stimulation and stereotypies caused
by 4-MAR are serotonin-independent and prevented only by the blockade of dopaminergic
D1 and D2 receptors [28], the motor effects induced by 4-4′-DMAR could also depend on
the serotonergic signal, given its pharmacodynamic profile more similar to that of MDMA
with respect to 4-MAR and aminorex [3,14].

3.2. Aggression

(±)Cis-4,4′-DMAR caused psychomotor agitation associated with stimulated aggres-
siveness in mice as typically reported for other psychostimulants such as cocaine, MDPV,
methiopropamine, methamphetamine, amphetamine [42–44], which well identifies the
adverse behavioural effects typically observed in users of synthetic stimulants and in par-
ticular of cathinone that gives rise to the so-called excited delirium syndrome (EDS) [45,46].

The EDS was first described as the sudden, unexpected death of people restrained
by law enforcement officers [47] (in particular, positional holds are the restraints most
frequently associated with sudden death in susceptible people with excited delirium) [48].
Frequently, the subjects tend to display signs of agitation, aggressiveness and hyperactivity
prior to the exitus [49].

3.3. Hyperthermia, Sweating, Salivation

One of the main physiological alterations caused by (±)cis-4,4′-DMAR was here hyper-
thermia. Psychostimulants may induce both hyperthermic and hypothermic responses in
rodents depending on environmental temperature, psycho-physiological activation (stress-
induced hyperthermia), drug pharmacodynamics, social interactions and gender [50–52].
In our experimental conditions (room temperature 22–23 ◦C), (±)cis-4,4′-DMAR induced
hyperthermia, consistent with observations made with remaining synthetic stimulants
such as MDMA, methamphetamine, cocaine, methylone, MDPV, α-PVP, PMMA and
MDAI [30,50,53–60].

Hyperthermia, which is one of the symptoms of the serotonin syndrome [61], may be
sustained by an increased serotonergic signal. In fact, a direct link between the seroton-
ergic transmission and thermoregulation has been well established. (±)Cis-4,4′-DMAR,
promoting serotonergic transmission and possibly activating 5HT2A/C receptors [15], could
induce hyperthermia by increasing metabolism whilst inducing hyperactivity coupled
with hyperthermia [53,54] and by causing peripheral vasoconstriction [62,63]; this sce-
nario has been typically reported as well for MDMA, cocaine, methylone, MDPV and
25B-NBOMe [51,56,57,64]. However, the 4,4′-DMAR-induced norepinephrine release may
also account for its hyperthermic effect. Furthermore, increased norepinephrine plasma
levels may lead to a loss of heat dissipation through α1AR-mediated vasoconstriction,
while stimulation of α1 and β3 adrenergic receptors may regulate a mitochondrial protein
in skeletal muscle, uncoupling protein-3 (UCP-3) inducing thermogenesis [65,66]. Overall,
hyperthermia is considered a potential acute severe adverse effect and one of the pri-
mary causes of death [67,68]. According to the literature, this condition can be associated
with a range of life-threatening complications, namely cerebral oedema, rhabdomyolysis,
hyponatraemia, disseminated intravascular coagulation (DIC) and coma [69].

At present, knowledge of the effects of drug-induced hyperthermia on neurotoxicity
is very limited. As reported by Bowyer at al., amphetamine- and methamphetamine-
induced hyperthermia potentially enhances neurotoxicity through both the disruption
of protein function, ion channels and enhanced ROS production and through its effects
on the vasculature [70]. The induced hyperthermia may lead to transitory breakdowns
in the blood–brain barrier, which result in neurodegeneration and neuroinflammation in
laboratory animals and brain pathology [70,71]. In a study by Zhou et al., it was reported
that the toxicity of 4-chloromethcathinone (4-CMC) and 4-methylmethcathinone (4-MMC)
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increased with changes in temperature, from 37 to 40.5 ◦C. According to the authors,
the mechanism of mitochondrial toxicity of 4-CMC and 4-MMC, which is increased by
hyperthermia, contributes to the neural toxicity of these compounds [72].

(±)Cis-4,4′-DMAR-induced hyperthermia was here associated by profuse sweating
and salivation in mice, which are typical symptoms of the serotonin syndrome [61] be-
ing observed as well with other psychoactive substances in rodents such as MDAI [60],
PMMA [59] and p-methoxy phenylethylamine [73].

3.4. Convulsions and Lethality

Seizures are among the most dangerous adverse effects caused by psychostimulants
in humans [74,75]. Systemic administration of (±)cis-4,4′-DMAR caused convulsions in
mice as evidenced by other stimulants such as cocaine [75–80], MDMA [81,82], metham-
phetamine and 4-methylaminorex [82].

In particular, systemic injection of (±)cis-4,4′-DMAR dose-dependently induced con-
vulsions and death in adult male mice at 30 mg/kg, with the lethality of about 50%, and
at 60 mg/kg, with the lethality of about 100%, showing that (±)cis-4,4′-DMAR similar to
cocaine in inducing seizures and lethality [76,78] in mice. The pro-convulsive properties of
(±)cis-4,4′-DMAR could be due to its greater affinity and blocking activity of monoamine
and SERT transporters [3,8,14,15,29,83].

Surprisingly, in the present study, the (±)trans-4,4′-DMAR from a neuro-behavioural
and physiological point of view was not active per se but was able to enhance the effects
of (±)cis-4,4′-DMAR and increased its toxicity. At present, no in vivo pharmacological
studies have been performed with the (±)trans-4,4′-DMAR stereoisomer whilst only one
in vitro pharmacodynamic study has been published showing that (±)trans-4,4′-DMAR is a
substrate-type releaser at the DAT, NET transporters and a SERT uptake blocker in rat brain
tissue with a lower potency than the (±)cis-4,4′-DMAR stereoisomer [14]. However, in a
recent pharmacokinetic study it was found that whilst the (±)cis-4,4′-DMAR compound is
metabolised and excreted in the mouse urine, the (±)trans-4,4′-DMAR stereoisomer is not
metabolised [84] suggesting a stereoselective metabolism and disposition of 4,4′-DMAR.
This is common in stereoisomers of a drug that generally metabolised with different
metabolic profile [85] both in pharmaceutical [86] and in abusing drugs [87,88].

Furthermore, the (±)trans-4,4′-DMAR may have a different binding to plasma or tissue
proteins and transporters that is common in chiral drugs [89]. Its lack of pharmacological
activity could, therefore, be due to the low availability of the compound at the central
level. Further studies will need to be undertaken to investigate this aspect. However,
the present study demonstrated that the (±)trans-4,4′-DMAR, although inactive from a
neuro-behavioural and physiological point of view, caused a lower urinary excretion of
metabolites (M1 and M2) of the (±)cis-4,4′-DMAR compound, causing an increase in
the (±)cis-4,4′-DMAR itself (Figure 7B). This results of inhibition after co-administration
of a mixture of both stereoisomers was in accordance with those obtained in similar
studies [88,90,91]. This may suggest that the (±)trans-4,4′-DMAR could inhibit the (±)cis-
4,4′-DMAR metabolism, and thus increasing its bioavailability levels. This hypothesis
is consistent with the worsening of the physiological and neuro-behavioural alterations
observed in the same animals from which the urinary excretion studies were made (Table 4).
The worsening of the pharmaco-toxicological effects resulting from the co-administration
of (±)cis-4,4′-DMAR and (±)trans-4,4′-DMAR was dramatic (Table 3) and demonstrated
the great danger of taking these stereoisomers in mixture, as unfortunately could well
occur with preparations purchased from rogue web sites. The availability of mixture of
two chiral compounds to obtain an enhancement of the psychoactive effects has already
been described and observed for other NPS, in particular with synthetic cannabinoids [92].

3.5. Immunoistochemical Studies

This was the first study to investigate the 4,4′-DMAR-induced brain damage. The re-
sults of in vivo studies suggested the occurrence of phenomena related to CNS alterations
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(e.g., hyperthermia; seizures). By analogy to other stimulant drugs (e.g., MDMA [23] and
cocaine [93]) we hypothesised that the oxidative and/or nitrosative stress occurred in the
brain following the intake of 4,4′-DMAR.

Hence, we investigated the expression of 8-OHdG, a marker of ROS-induced oxidative
damage to DNA [94]. We observed that 8-OHdG was overexpressed in mice treated with
4-4′-DMAR, and especially so at higher dosages ((±)cis 30, (±)cis 60 and (±)trans 30 + (±)cis
60). These findings may well suggest that the administration of 4-4′-DMAR caused here
levels of ROS-mediated DNA damage. We, therefore, evaluated the expression of NOX2,
one of the main ROS-producing enzymes, which instead was not increased in treated mice
compared to the controls. One could that conclude that in the mechanism of 4-4′-DMAR-
induced ROS-mediated DNA damage other pathways are involved, which will need to be
investigated in future studies. Among these, there could be the production of superoxide
by iNOS, a phenomenon that can occur in conditions of oxidative stress [95]. This enzyme,
which in the neurons is responsible for the production of a share of NO, under stress
conditions can produce NO at a high rate, leading to the production of peroxynitrite, a
very toxic oxidant and nitrating agent. We observed that iNOS expression in treated mice
is greater than in controls, in particular at the dose of (±)cis 60 and (±)trans 30 + (±)cis 60,
there is a large increase in iNOS expression (p < 0.001).

It was, therefore, possible to expect damage derived from reactive nitrogen species
(RNS). So, we investigated the expression of NT, known to be a direct marker of nitrosative
stress, being the product of tyrosine nitration mediated by RNS such as peroxynitrite
anion and nitrogen dioxide, formed in the presence of NO [96]. We observed a statistically
significant increase in NT at the (±)cis 30 and (±)trans 30 + (±)cis 60 doses, but not at the
(±)cis 60 dose. At the dose of (±)cis 10, NT is even reduced compared to controls. From
the analysis of these data, it is possible to hypothesise the occurrence of nitrosative stress
following the administration of 4-4′-DMAR, however, it is not possible to draw conclusions
on the effect this has on cellular DNA.

The results reported in the study were related to the analysis of the frontal cortex,
however, from a preliminary analysis we did not detect changes in specific areas, but
instead changes were widespread in the CNS regions examined (e.g., cortex, striatum,
hippocampus, cerebellum).

Having observed the occurrence of hyperthermia in mice treated with 4-4′-DMAR, we
investigated some heat shock proteins (HSP27 [24], HSP70 [25], HSP90 [26]), which have
been shown to be correlated with thermal damage response. HSP27 was overexpressed
in mice treated at dosages of (±)cis 30, (±)cis 60 and (±)trans 30 + (±)cis 60. Interest-
ingly, there was a significant increase in HSP27 expression in mice treated with (±)trans
30 + (±)cis 10 and (±)trans 30 + (±)cis 60 compared to (±)cis 10 and (±)cis 60. This trend,
which was consistent with the respective increments in temperature recorded in vivo, may
suggest a greater potential of the (±)cis-(±)trans mixture in inducing hyperthermia and the
consequent adaptive cellular response. HSP70 showed a similar trend, with the exception
that the administration of (±)trans 30 + (±)cis 60 was not associated with HSP70 expression
compared to (±)cis 60. One possible explanation is that HSP27 showed an early increase
upon thermal stimulus compared to HSP70, and the mice treated with the (±)cis 60 assays
all died rapidly, not allowing full expression of HSP70 [25]. Regarding HSP90, we observed
a reduced expression in mice treated with 4-4′-DMAR. This trend is difficult to explain, as
an increase in expression could reasonably have been expected, similarly to other HSPs.
HSP90 is physiologically abundant within the cell and is important in the formation and
function of several protein complexes that maintain cell homeostasis. In addition, it plays
an important role in the thermal stress response [97]. Its hypo-expression could, therefore,
reduce the cell’s ability to resist to 4-4′-DMAR-induced thermal and oxidative stress.

Thermic damage to cells can induce one of two opposing responses: apoptosis, that
removes damaged cells to prevent inflammation and the heat shock response, to maintain
cell survival. The modulation activity of apoptosis mechanisms exerted by HSPs is well
known [98]. In particular, HSP70 acts on several targets, including JNK, preventing the
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release of cytochrome c from the mitochondria. JNK [99] is in turn involved in the release
of Smac/DIABLO. HSP27 [100] also appeared to have an inhibitory role on the release
of Smac/DIABLO. Indeed, Smac/DIABLO binds with the inhibitor of apoptosis proteins
(IAPs), thus freeing caspases to activate apoptosis [101]. Our evaluation of Smac/DIABLO
expression showed a significant increase at the doses of (±)cis 30, (±)cis 60 and (±)trans
30 + (±)cis 60. Furthermore, the immunoreactivity of Smac/DIABLO is greater in subjects
treated with (±)trans 30 + (±)cis 60 compared to (±)cis 60. One could then conclude that
high doses of 4-4′-DMAR have a pro-apoptotic effect. These data are consistent both with
the trend of radical stress markers (in particular with 8-OHdG and iNOS), and with the ex-
pression of HSP27 and HSP70. It is not possible, with the current data, to determine whether
4-4′-DMAR induces oxidative/nitrosative stress per se or whether this was secondary to
hyperthermia. These two phenomena are closely related considering, for example, that in
conditions of hyperthermia, iNOS contributes to NO-dependent apoptosis [102].

ROS have been reported to both activate and repress NF-κB signalling. For instance,
ROS often stimulates the NF-κB pathway in the cytoplasm but inhibits NF-κB activity in
the nucleus [103]. In most cases the expression of NF-κB target genes typically promotes
cellular survival, including those that antagonise the effects of ROS [104]. In light of this,
our observation of NF-κB overexpression in 4-4′-DMAR-treated mice is not surprising.
Regarding histological analyses, the finding of mild cerebral edema is consistent with what
has been observed in fatalities associated with 4,4′-DMAR [9].

4. Materials and Methods
4.1. Animals

Eighty-four-male ICR (CD-1®) mice weighing 30–35 g (Centralised Preclinical Research
Laboratory, University of Ferrara, Ferrara, Italy) were group housed (5 mice per cage;
floor area per animal was 80 cm2; minimum enclosure height was 12 cm), exposed to a
12:12-h light–dark cycle (light period from 6:30 a.m. to 6:30 p.m.) at a temperature of
20–22 ◦C and humidity of 45–55% and were provided ad libitum access to food (Diet 4RF25
GLP; Mucedola, Settimo Milanese, Milan, Italy) and water. The experimental protocols
performed in the present study were in accordance with the U.K. Animals (Scientific
Procedures) Act of 1986 and associated guidelines and the new European Communities
Council Directive of September 2010 (2010/63/EU). Experimental protocols were approved
by the Italian Ministry of Health (license n. 335/2016-PR) and by the Animal Welfare
Body of the University of Ferrara. According to the ARRIVE guidelines, all possible efforts
were made to minimise the number of animals used, to minimise the animals’ pain and
discomfort and to reduce the number of experimental subjects. For the overall study 84 mice
were used. In the analysis of behavioural/histopathological responses for each treatment
(vehicle, 6 different (±)cis-4,4′-DMAR doses (0.1, 1, 3, 10, 30 and 60 mg/kg), 2 different
(±)trans-4,4′-DMAR doses (30 and 60 mg/kg), 3 different interaction of (±)cis-4,4′-DMAR
(1, 10 and 60 mg/kg) with (±)trans-4,4′-DMAR (30 mg/kg)) 6 mice were used (total mice
used: 72); in the behavioural/urine excretion studies for each treatment ((±)cis-4,4′-DMAR
10 mg/kg, (±)trans-4,4′-DMAR 10 mg/kg and (±)cis-4,4′-DMAR + (±)trans-4,4′-DMAR))
4 mice were used (total mice used: 12).

4.2. Drug Preparation and Dose selection

Cis and trans 4,4′-DMAR were obtained from synthesis of 4-methylpropiophenone
before they were monitored by existing legislation. In particular, the two isomers, (±)cis-
4,4′-DMAR and (±)trans-4,4′-DMAR was synthesised as previously described by Brandt
and co-workers [3]. Drugs were initially dissolved in absolute ethanol (final concentration
was 2%) and Tween 80 (2%) and brought to the final volume with saline (0.9% NaCl). The
solution made with ethanol, Tween 80 and saline was also used as the vehicle. These drugs
were administered by intraperitoneal injection (i.p.) at a volume of 4 µL/g. The wide
range of doses of (±)cis-4,4′-DMAR (0.1–60 mg/kg; i.p.) and (±)trans-4,4′-DMAR (30 and
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60 mg/kg i.p.) were chosen based on interspecies dose scaling [105] in order to test in mice
doses that corresponded to low, intermediate and high doses in humans (Table 5) [6,10,13].

The co-administration dosages (e.g., 1 mg/kg cis-4,4′-DMAR + 30 mg/kg trans-4,4′-
DMAR, 10 mg/kg cis-4,4′-DMAR + 30 mg/kg trans-4,4′-DMAR and 60 mg/kg cis-4,4′-
DMAR + 30 mg/kg trans-4,4′-DMAR; i.p.) were chosen based on results obtained in the
dose-response curve of single enantiomers cis and trans.

4.3. Behavioural Studies: Physiological and Neuro-Behavioural Responses

The effects of (±)cis-4,4′-DMAR, (±)trans-4,4′-DMAR and their co-administration
were investigated by a protocol widely used in studies of “safety pharmacology” for
the preclinical characterization of new molecules in rodents [106–109]. This protocol
includes a series of observational behavioural tests carried out in a consecutive manner
that monitor the animal responses up to 5 h after compound injections. In the present
study, we reported the observation of physiological (sweating, salivation, core temperature)
and neuro-behavioural (detection of psychomotor agitation, spontaneous and stimulated
aggressiveness, convulsions) changes occurring in mice after injection of (±)cis-4,4′-DMAR,
(±)trans-4,4′-DMAR and their co-administration. Before pharmacological treatment the
mouse was placed on a square plate (30 cm× 30 cm) raised from the ground (20 cm) and left
free to move on the plate for 10 min (habituation period). The animal was then injected with
the vehicle, substances alone ((±)cis-4,4′-DMAR or (±)trans-4,4′-DMAR) or in cis + trans
co-administration and placed on the plate. From this moment, the recording time of the
physiological and neuro-behavioural responses started, and these were detected in 5-min
sessions.

After the first 5 min, the animal was removed from the plate; the body core temperature
was then measured, and the aggression tests were performed. The 5-min observation period
was repeated at 15–30–60–90–120–180–240–300. Psychomotor agitation in the mouse was
not simply related to an increase in spontaneous locomotion itself, but by an “unusual
hyperactivity” which was characterised by rapid and sudden horizontal displacements in
all directions, sustained turning behaviour, involuntary falls from the high plate during the
evaluation of the tests, stereotyped movements and rearing activity. Mouse sweating and
salivation were reported only if present or not. The core temperature was determined using
a probe (1 mm diameter) that was gently inserted after lubrication with liquid Vaseline
into the rectum of the mouse (to about 2 cm) and left in position until the temperature
stabilised (about 10 s) [106]. The probe was connected to a digital thermometer. Spontaneous
aggressive response was measured based on the number of times a mouse bit a grey cloth put
in front of its snout. During the test, each mouse was free to move within the cage. In the
case of stimulated aggressiveness, each mouse was manually restrained and held in a supine
position following which an object was brought near the mouth. For both spontaneous
and stimulated aggressive behaviour tests, a grey cloth was placed in front of the nose of
each mouse 10 consecutive times (score 0/10 not aggressive, score 10/10 very aggressive).
Convulsions were defined as a loss of righting reflexes for at least 5 s, combined with the
presence of body tremors and clonic or tonic limb movements [110,111]. Deaths caused
by 4-4’-DMAR injection occurring during the observation period (5 h) were also reported
as frequency (%) and time of death (min). Experiments were conducted inside the LARP
(Centralised Preclinical Research Laboratory, University of Ferrara, Ferrara, Italy) in a
thermo-stated (temperature 20–22 ◦C, humidity about 45–55%) and light controlled (about
150 lux) room, in which there was a background noise of about 40 ± 4 dB. The experiments,
conducted in blind by trained observers working together in pairs [92], were videotaped
and eventually analysed off-line by a different trained operator. The experiments were
performed between 8:30 a.m. and 2:00 p.m.

4.4. Collection of Tissue Samples

Following the acute death or the sacrifice of the animals (after 5-h observation period
by dislocation of the spine), brains were taken. These were fixed in 4% buffered formalin
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and then sampled and incorporated into the paraffin (Leica ASP300 processor, Histoline
TEC2900 incorporator; Leica Microsystems Srl, Buccinasco, Milano, Italy). Subsequently,
the cut (performed with the Leica HistoCore autocut microtome; Leica Microsystems Srl,
Buccinasco, Milano, Italy) was designed to create sections with a thickness of 5 µm for
each sample.

4.4.1. Histological Procedure

For histological investigations, the sections were stained with haematoxylin/eosin
and then observed under optical microscope (Nikon Eclipse E90i; Nikon, Roma, Italy).

4.4.2. Immunohistochemical Procedure

On 5-µm-thick paraffined lung sections, we evaluated the expression of a panel of
markers: heat shock proteins (HSP27, HSP70, HSP90), SMAC/DIABLO, NF-kB, iNOS,
NOX-2, NT, 8-OHDG. Dilution of antibodies and pre-treatments necessary for antigen
retrieval are shown in Table 6.

Table 6. Antibodies used for immunohistochemical analyses with the relative dilutions and antigenic
retrieval methods.

Marker Dilution Retrieval

HSP27 Santa Cruz Biotechnology, Inc. 1:50 HIER (0.25 mM EDTA buffer )

HSP70 Santa Cruz Biotechnology, Inc. 1:50 HIER (0.25 mM EDTA buffer )

HSP90 Santa Cruz Biotechnology, Inc. 1:50 HIER (0.25 mM EDTA buffer )

SMAC Santa Cruz Biotechnology, Inc. 1:100 HIER (0.01 M citrate buffer)

NF-kB Santa Cruz Biotechnology, Inc. 1:50 HIER (0.25 mM EDTA buffer )

iNOS Santa Cruz Biotechnology, Inc. 1:100 HIER (0.01 M citrate buffer)

NOX-2 Proteintech 1:100 HIER (0.01 M citrate buffer)

NT Santa Cruz Biotechnology, Inc. 1:600 HIER (0.01 M citrate buffer)

8OHDG Santa Cruz Biotechnology, Inc. 1:500 HIER (0.01 M citrate buffer)

We used a detection system composed of a biotinylated secondary antibody and HRP-
conjugated streptavidin (4plus HRP Universal Detection, Biocare Medical). 3′-,3Diaminobenzidine
(DAB) and H2O2 (Betazoid DAB Chromogen Kit, Biocare Medical, Concord, CA, USA) were
used as chromogen/substrate. The subsequent counterstaining with haematoxylin–eosin
allowed the visualization of cell morphology and nuclei. Once this procedure was com-
pleted, the slides were mounted and observed under optical microscope. In the pictures
(sections of the frontal cortex; Figures 3–5) to evaluate the variation in the expression of
markers (Smac, NOX2, iNOS, 8-OHdG, NT, HSP27, HSP70, HSP90) following treatments,
the change in intensity of brown colour (staining of the immunohistochemical technique)
in the control and treated tissue was measured. Quantification of Smac, NOX2, iNOS,
8-OHdG, NT, HSP27, HSP70 and HSP90 positive-stained areas was performed by the
ImageJ software (imagej.nih.gov/ij/ Accessed date 12 May 2020). One image for each
animal of the different experimental groups was processed. Positivity was expressed as an
extension of the stained analysed area.

4.5. Excretion Studies on Urine Samples
4.5.1. Chemicals and Reagents

Cis/trans 4,4′-DMAR (4-methyl-5-(4-methylphenyl)-4,5-dihydrooxazol-2-amine were
synthetised and provided by the University of Ferrara Department of Organic Chemistry.
Amphetamine-D11 employed as internal standard was purchased by Sigma–Aldrich (Mi-
lan, Italy). All chemicals (i.e., formic acid, acetic acid, ammonium formate, ammonium
acetate, sodium phosphate, sodium hydrogen phosphate, potassium carbonate, potassium

imagej.nih.gov/ij/
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hydrogen carbonate, ethylacetate) were of analytical or HPLC grade and provided by Carlo
Erba (Milan, Italy) and Sigma–Aldrich (Milan, Italy). The ultrapure water used was of
Milli-Q grade (Millipore Italia, Vimodrone, Milan, Italy). The enzyme β-glucuronidase
from E. Coli as well as the mixture β-glucuronidase/arylsulfatase (from Helix pomatia) was
purchased from Roche (Monza, Italy).

4.5.2. Dose and Sample Collection

To study the possible metabolic interaction between cis and trans isomers, we chose to
evaluate urinary excretion and metabolic profile of 4,4′-DMAR, as this allowed us to study
and correlate physiological and neuro-behavioural responses in the same individual. For
the in vivo studies, three different groups of mice were selected. To the first group, a dose
of 10 mg/kg of cis-4,4′-DMAR was administered. To the second group, a dose of 10 mg/kg
of both cis and trans-4,4′-DMAR was administered. The third group was selected for the
collection of urine blank samples. Urine samples were collected in the range of 0–6 h after
4,4′-DMAR or vehicle were intraperitoneally injected.

4.5.3. Excretion Studies

Urine samples were treated and analysed through a protocol already used by our
group for the analysis of the excretion of stimulant drugs in mice [84,112]. Briefly, our proto-
col allowed the conversion of conjugated metabolites (i.e., sulfo- and glucorono-conjugates)
to phase I metabolites after two hydrolysis steps. The first employed β-glucuronidase for
the hydrolysis of glucorono-conjugates (working pH of the enzyme mixture 7.4). The sec-
ond used a mixture of β-glucuronidase/arylsulfatase for the hydrolysis of sulfo-conjugates
(working pH of the enzyme mixture 5). Hydrolysed samples were extracted adding to the
samples carbonate buffer (final pH 11) and 7 mL of ethyl acetate. The organic layer was
next evaporated to dryness under nitrogen stream at a temperature of 30 ◦C. The residue
was reconstituted with 50 µL of mobile phase and analysed with a targeted LC-MS/MS
technique. In details, samples were analysed using an Agilent 1200 series HPLC instrument
equipped with a SUPELCO Discovery C18 column (15 cm × 2.1 mm × 5 µm) coupled
with an API4000 QqQ mass spectrometer (Sciex, 500 Old Connecticut Path, Framingham,
MA, USA). The chromatographic and mass spectrometer parameters were described in the
above cited articles.

4.6. Data and Statistical Analysis

Sweating and salivation were expressed as frequency (e.g., % of animals that developed
symptoms); psychomotor agitation was expressed as frequency (% of animals) and duration
(total time in mins). Core temperature values were expressed as the difference between
control temperature (before injection) and temperature following drug administration
(∆◦C). Aggressiveness was expressed as frequency (% of animals which become aggressive)
and score (number of bites). Convulsions were expressed as frequency (% of animals
that developed seizure), episodes (e.g., number of seizure events), latency of first episode
(sec.) and duration of each episode (sec.). Lethality was expressed as frequency (% of
animals that died during the observation period (5 h) or during the following 24 h). The
statistical analysis of the effects of the individual substances in different concentrations
were performed using a one-way ANOVA followed by a Bonferroni test for multiple
comparisons. A Student’s t-test was used to determine statistical significance (p < 0.05)
between two groups. Regarding immunohistochemical analysis, positivity was expressed as
the extension of stained analysed area. Results were expressed as means ± mean standard
error (SEM). Data were analysed by one-way analysis of variance (ANOVA), followed by
Tukey’s post-hoc test. For all tests, a p value of <0.05 was considered statistically significant.
All statistical analyses were performed using GraphPad Prism 8 software for Windows
(La Jolla, CA, USA).
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5. Conclusions

Indeed, consistent with current findings one would conclude that some of the stimu-
lant NPS such as the 4,4′-DMAR molecules here thoroughly investigated could putatively
exhibit very severe clinical toxicity levels. The clinical–toxicological relevance of the study
is due to the use of doses of 4-4′-DMAR in mice that are equivalent to the dose of 4-4’-
DMAR in humans, evoking mild, intermediate and strong behavioural and physiological
responses (Table 5). The current drug scenario is changing very rapidly; the earliest of the
possible appearance of a new substance might be evidenced on the deep, followed by a
migration to the open, web. Eventually, the NPS would move into ‘head shops’ and/or
the ‘street’ market, then reported by formal early warning systems, and new legislation
would be implemented to counter the index NPS/substance [113]. Hence, an approach
aiming at describing what is being discussed online by the web-based NPS enthusiasts
‘e-psychonauts’ [114] has been considered as potentially useful to identify in advance the
NPS availability, market and diffusion [115]. To improve accuracy and provide a thorough
evaluation of NPS pharmacology, further research should focus on an integrative model
in which web-based analyses will be combined with more advanced research approaches.
From this perspective, our currently ongoing related quantitative structure activity rela-
tionship (QSAR), docking and in silico studies will hopefully provide important findings
in terms of which NPS, within a given class (e.g., stimulants; novel synthetic opioids;
novel benzodiazepines) will present with higher levels of receptor affinities, and hence
clinical potency. These data, taken from selected molecules, could then be used to plan
further in vitro and in vivo/preclinical studies. Clinicians should be regularly informed
about the range of NPS, their intake modalities, their psychoactive sought after-effects, the
idiosyncratic psychotropics’ combinations, and finally their medical, psychobiological and
psychopathological risks.
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Abbreviations

4:4′-DMAR 4,4′-Dimethylaminorex; 4-Methyl-5-(4-methylphenyl)-4,5-dihydrooxazol-2-amine
4-MAR 4-Methylaminorex; 4-Methyl-5-phenyl-4,5-dihydrooxazol-2-amine
Aminorex 5-phenyl-4,5-dihydro-1,3-oxazol-2-amine
Smac Second mitochondria-derived activator of caspases
DIABLO Direct IAP-binding protein with low PI
NF-kB Nuclear factor-kappa B
8-OHdG 8-Hydroxy-2′-deoxyguanosine
iNOS Inducible nitric oxide synthase
NOX-2 NADPH oxidases-2
NT 3-nitrotyrosine
HSP27 Heat shock protein 27
HSP70 Heat shock protein 70
HSP90 Heat shock protein 90
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