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Haptic and robotic technologies have the potential to provide assessment during 
interaction with humans. This manuscript presents our earlier research during the I-
Match project where a haptic peg-in-hole test was used in order to compare between 
healthy volunteers’ performance and those with neurological impairment. Subjects all 
performed a series of haptic virtual peg-in-hole tasks with varying degrees of difficulty 
determined by the hole diameter. Haptic instrument, Phantom Desktop 1.5, allowed for 
recording of biomechanical data which is used to present some variant features between 
the two subject groups. This paper analyses the placement time, maximum peg transfer 
velocity, collision forces recorded during peg placement and also insertion accuracy. The 
first three parameters showed statistically significant differences between the two groups 
while the last, insertion accuracy, showed insignificant differences (p=0.152). This is 
thought to be due to the large clearance value between the smallest hole diameter and the 
peg. To identify differences between the haptic peg-in-hole and the established NHPT, 
we are currently in process of conducting a further experiment with a haptic replica of 
the NHPT test, in order to investigate effects resulting from addition of haptic force 
feedback compared to the original NHPT test, as well as allowing to explore influences 
caused by the 1mm clearance value as originally proposed by Wade.  
Furthermore, in order to investigate if this method can identify differences between 
subjects with different neurological conditions, a larger group of subjects with 
neurological conditions such as stroke, multiple sclerosis, and traumatic brain injury is 
required to explore potency of this approach for identifying differences between these 
different conditions.   
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Introduction 
The I-Match project, funded by the European Commission under the Information 

Society Technologies (IST) thematic program, was a three-year project that began in 

November 2002. It focused on quantifying users’ upper limb performance and skills 

in order to aid in selecting the most suitable interface for use with his/her assistive 

device. The project provided a series of haptic tests, including the peg-in-hole test, 



aiming at distinguishing the differences seen in between healthy volunteers and 

subjects with neurological impairment with the longer-term objective of providing 

accurate and comprehensive measures of precise hand function.  This approach also 

holds the promise of use in a tele-rehabilitation setting where the clinician may be 

remote from the patient. 

This paper presents the peg-in-hole haptic test and proceeds to detail the associated 

clinical assessment. It then analyses the results using statistical models and graphs to 

support the argument that biomechanical parameters identified during haptic 

interaction can record differences observed between different subject groups, mainly 

healthy volunteers versus subjects with neurological conditions. 

Background 
A user’s ability to operate an interface is, to a major degree, dependent upon the 

quality of hand and arm control. While the commonest method of assessing hand 

control is to use one of the clinically based scales (e.g. Jebsen et al [1], Action 

Research Arm Test [2]), a number of researchers have looked at more quantitative 

approaches.  The Southampton Hand Assessment Procedure (SHAP) is an example of 

testing hand function in its contextual environment [3]. Using a different technology, 

Spyers-Ashby and colleagues [4] have used a six-degrees of freedom electromagnetic 

sensor to quantify upper limb tremor. In the field of robotic neurorehabilitation, the 

MIT-MANUS group has used haptic approaches to promote and measure upper limb 

function. In studies using their haptic interface, kinematic data have been used to 

quantify human arm movements and recovery in stroke patients [5-7]. Similarly, 

Reinkensmeyer et al have used the “Arm Guide” to assess tone, spasticity and lack of 

coordination for patients after chronic brain injury [8]. Salazar-Torres et al used a 

biomechanical device to investigate the excitability of muscle stretch reflexes in order 



to quantify spasticity [9]. Moreover, to assess coordination and upper limb functional 

state of a group of patients with different neurological disorders (e.g. Friedreich 

Ataxia, Parkinson’s disease, Multiple Sclerosis and Muscular Dystrophy), Bardorfer 

et al have used a PHANToM haptic interface and a virtual labyrinth [10]. It is 

acknowledged that the aforementioned studies represent only a small number of the 

existing and ever-growing research aiming to quantify upper limb function. 

The haptic peg-in-hole test 
The peg-in-hole task consists of two haptically rendered holes and a cylindrical peg, 

which is to be alternately inserted in each hole. Figure 1 shows the graphical user 

interface presented for this task, correlating with dimensions of the haptically 

rendered model.  

The test is inspired by the validated and established Nine- Hole-Peg-Test (NHPT) 

used in clinical assessment. The NHPT requires inserting nine pegs in holes arranged 

in three rows and three columns. The completion time or the number of pegs inserted 

in a given time is seen as a reliable measure of subject’s skills and performance [11]. 

As seen in Figure 1, the haptic peg-in-hole test provides only two holes and uses only 

one peg during any one session. It is intentionally designed to be different from the 

conventional test as it provides a chance to assess many other aspects of the 

performance, for example: it is hypothesized that repetitive movements to the same 

positions allow for investigating both repeatability and extent of learning to perform 

better; with a two-hole-peg-test where subjects either perform a left-to-right or a right-

to-left half-cycle, it is possible to compare performance variations towards and away 

from the dominant hand, while due to the freedom given in choosing the pegs in the 

conventional NHPT, this is not possible; furthermore the two hole setting also 



provides a simple base for comparing the performance using the conventional Fitt’s 

model for motor control [12].   

Haptic presentation of the virtual world is created using the PHANToM desktop 1.5 

haptic interface from SensAble Technologies, USA (www.sensable.com). Being 

developed as a virtual world, the peg-in-hole test also allows for altering experimental 

parameters such as: peg diameter, peg height, peg weight, hole diameter, separation 

distance between holes and clearance (peg vs. hole). The peg collision with the holes 

and the other solid surfaces such as walls shown by Figure 1 is detected by detecting 

collision between these objects and slices of the peg, which are sectioned as shown by 

dots in Figure 2.  Using a novel mathematical collision detection algorithm, multiple 

contacts between the peg, the table and holes are detected and haptic feedback is 

produced upon collisions.  

Experimental settings and procedures 
The PHANToM offers 3 active and 3 passive degrees of freedom. The orientation of 

the virtual peg mimicked that of the PHANToM stylus in real-time. The virtual table 

was placed on a horizontal plane as presented in Figure 1. Shadow cues were used to 

provide better depth perception. 

The virtual table created for this experiment presented the holes with 150 mm 

separation distance between them. The hole diameter (HD) varied between 80mm, 

60mm or 40mm resulting in three distinct experimental settings. The peg diameter 

was 30mm leaving a 10mm clearance between the peg and the smallest hole. 

Participants ranged from healthy volunteers (HV) to subjects recovering from 

multiple sclerosis (MS), stroke (S) or traumatic brain injury (TBI). Subjects with 

neurological impairment were patients at the Hunters Moor hospital, Newcastle upon 

Tyne.  Fifty three subjects participated in the trial. Subjects had no prior knowledge of 



test objectives and peg-in-hole was presented as a potential robotic exercise, which 

could influence recovery. All subjects gave informed consent to participate and could 

leave the experiment at any point. From these, 41 subjects completed the experiment 

and their demographic details are presented in table 1.  These resulted in four subject 

groups: HV, MS, S and TBI. Due to the difficulty of matching subject numbers 

between the three groups with neurological impairments (MS (n=14), S (n=2) and 

TBI (n=2)), and given that main objective of this study was to investigate differences 

between healthy subjects and those with neurological conditions, the three groups are 

merged as neurological group in this study. 

Subject sat comfortably in front of the PHANToM desktop device as shown in Figure 

3. They were instructed to insert the peg into the left hole, remove it and insert it into 

the right hole (starting from mid-position). This was to be performed 20 times (10 

cycles) before moving to the next experimental setting. They were instructed to move 

as quickly as possible while trying to minimise the collision with the table and the 

walls of the holes during peg placement and removal. The visual and auditory cues 

were also explained. The peg insertion and removal was accompanied by a downward 

or upward guiding arrow presented on the screen (shown in Figure 1). A loud audio 

beep was also played once at each successful peg insertion.  

Results and Analysis 
Data were logged at an average sampling frequency of 1000Hz. Force, Position, 

Orientation, Velocity and Contact/Collision reaction Forces were recorded as 

vectors in Cartesian coordinate frame (x, y and z attributes). During the data logging, 

data were coded with tags allowing easy selection of relevant data related to each 

half-cycle. In order to investigate differences between repetitions, five full cycles 



were selected (cycles 4 to 9) for each of the 3 settings. Figure 4 shows a 3D 

presentation of one typical session during the experiment produced using MATLAB. 

The following parameters were chosen for analysis here: the time taken to complete 

each full cycle, time of left-to-right (L2R) cycles, time of right-to-left (R2L) cycles, 

collision forces during each half cycle, insertion error and maximum velocity during 

peg transfer.  

Analysis method 
PASW 18.0 was used to analyse the results statistically. Figure 5 shows the study 

subject groups, experimental settings and the process followed during the data 

analysis. As there were 5 selected half cycles for each L2R and R2L peg placement, a 

repeated measures ANOVA was first used to identify differences between recorded 

parameters for these repetitions. All four parameters showed insignificant differences 

for these repetitions (p-value > 0.05).  

Due to this invariance, a Univariate model was then used to analyse the data from the 

1st repetition for L2R and R2L half cycles.  

Analysis of movement time 
Due to insignificant differences between repetitions, only the first occurrences of L2R 

and R2L peg placement were analysed. Sample data for one subject is provided in 

Table 2. The Univariate model used movement time as its parameter while using 

subject group (1= Neurological Group, 2=Healthy Group), hole diameter (4, 6 and 8 

cm), and trajectory direction (1=R2L, 2=L2R) as its fixed factors. The results showed 

highly significant differences between the subject groups (p-value <0.0005) while 

failing to identify significant differences based on hole diameter or trajectory 

direction. Figure 6 presents a graph comparing between the two subject groups, 

different hole diameters and trajectory directions.    



Analysis of collision forces 
Collision forces were recorded during interaction with the haptic holes, the table and 

the walls. During interaction, such collisions were detected and interaction forces 

calculated by the PHANToM device and recorded using the peg-in-hole program. For 

each half-cycle, these forces were summed to produce a Collision Force Vector, used 

to calculate a resultant collision force magnitude for this analysis.  

Similar to the movement time, collision force magnitudes were analysed using the 

Univariate Model. The same parameters were used for this analysis and the results 

showed a strong effect for subject group (p-value=0.016) and interaction between 

subject group and hole diameter (p-value=0.017). These differences are visually 

presented by Figure 7.  

Analysis of maximum transfer velocity 
During the interaction, transfer velocity is logged as a vector in the Cartesian 

coordinate frame. The maximum velocity magnitude (MaxVM), was then found by a 

search algorithm during each L2R or R2L half-cycle. This MaxVM was analysed 

using the Univariate model with the same parameters as mentioned earlier. The results 

showed significant differences between the two groups (p-value < 0.0005) but failed 

to highlight differences between L2R and R2L half-cycles, or between different hole-

diameters (Figure 8). 

Analysis of the insertion error 
An insertion error was defined as the distance between the centre of the peg and the 

centre of the hole during each insertion into the right or left hole. As a 2D parameter, 

this was calculated on the horizontal plan passing the table surface.  Figure 9 presents 

the spread of this error for a single subject where it is clear that this point is not 

always close to the centre of the hole. This parameter was also analysed to compare 

between the two groups, different hole diameters and trajectory directions. The results 



(Figure 10) show insignificant differences between the two groups (p-value=0.152) 

while highlighting significant differences between insertions for different hole 

diameters (p-value < 0.0005).  

Bivariate-correlation between factors 
A final step taken was to analyse the bivariate correlations between the four factors 

mentioned previously. This procedure was used to compute Pearson’s correlation 

coefficient and its statistical significance. The results obtained from the correlation 

analysis showed that there were significant correlations between movement time and 

collision forces (Pearson’s correlation coefficient: 0.663, significance: p-value 

<0.0005); and movement time and maximum transfer velocity (Pearson’s correlation 

coefficient: -0.212, significance: p-value=0.001). However, there was no significant 

correlation between movement time and insertion error (Pearson’s correlation 

coefficient: 0.041, significance: p-value=0.522), while insertion error was correlated 

with both placement collision force (Pearson’s correlation coefficient: 0.195, 

significance: p-value=0.002) and maximum transfer velocity (Pearson’s correlation 

coefficient: 0.212, significance: p-value=0.001). Collision forces and maximum 

transfer velocity were also correlated (Pearson’s correlation coefficient: 0.352, 

significance: p-value<0.0005) 

Discussions 
A major purpose of this initial study has been to identify measurement parameters, 

which are likely to be of clinical relevance when measuring rehabilitation progress.  

Comparison of performance time between different subject groups showed significant 

differences between the unimpaired and patient groups. This trend was further 

confirmed by results from collision force and maximum velocity. However, insertion 

error failed to support significant differences between the two subject groups.  This 



finding is probably not surprising since the test provides no visual of auditory 

feedback of insertion accuracy.  Since the clearances are relatively large, it is fairly 

easy for the subject to avoid collision with the side of the hole with a small level of 

precision. This is further supported by the evidence from Pearson’s correlation that 

movement time was significantly correlated with maximum velocity magnitude and 

collision force but not with the insertion error.  

As might be expected, insertion error showed strong effects for the hole diameter, but 

this was not significantly different between the two groups. Moreover, collision force 

failed to show strong evidence for differences related to hole diameter again 

suggesting that the relatively large clearance allowed easy insertion.  

Upon studying figures 6 and 7, it is clear that L2R portion of the movement time and 

collision force both present large variations for a 60mm diameter hole and the 

neurological subject group. However, neither of the Univariate models have identified 

subject group interaction with trajectory direction as a significant interaction.    

This study has presented proof of concept ideas where a clinically established and 

validated test such as NHPT can be replicated using the haptic simulation. Although 

movement time here was calculated in a different manner from the traditional test, it 

was still capable of distinguishing differences between different subjects and subject 

groups. Similarly, collision force and maximum velocity magnitude showed potential 

for identifying differences between the two subject groups.  

There are clearly some challenges for future development.  While the original NHPT 

used a 1mm clearance between the peg and the hole diameter, the 10mm clearance 

used here is thought to have not posed significant challenge illustrated by insignificant 

differences between the collision forces for different hole diameters.    

 



Conclusions 
This paper has presented a novel haptic test for analysing performance through 

interaction. By replicating and modifying one of the established clinical measures into 

a haptic assessment, it has shown that it is possible to identify differences between the 

unimpaired group and subjects with neurological conditions. This was evident from 

movement time, collision force and maximum velocity magnitude during peg transfer. 

The failure to demonstrate differences in insertion error is attributed to the use of 

large clearances and the absence of feedback for insertion accuracy. 

While the study has shown the ability to distinguish between normal subjects and 

those with impairment, the small numbers of subjects with different neurological 

conditions made it impossible to investigate differences between different 

pathologies.  

Further development and testing are required before proposing this test as a suitable 

replacement for the traditional Nine-Hole-Peg-Test (NHPT).  The major requirements 

are further development of the system to allow smaller clearances and improved user 

feedback followed by larger scale clinical studies allowing validation and calibration 

of this new tool against the traditional NHPT and other relevant clinical measures.  

Further work in this area is currently being carried out to achieve smaller peg 

clearances and so a closer replication of the NHPT. In conclusion, the authors believe 

that rapid developments in haptic technology hold the promise of higher technology 

and low cost systems capable of detailed measurement of precise hand function and 

motor control. 
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Table 1. Subject Demographic Table 
 Total Male Female Left Hand Right Hand Age 
Healthy 23 6 17 2 21 38±15 
Neurological 18 8 10 4 14 51±12 
Total 41 14 27 6 35 44±15 
 
Table 2. Sample data from one subject, one R2L and L2R half cycles 

Subject	
   Session	
   HD	
  
Subject	
  
Group	
   L2R/R2L	
   Repetition	
   Time	
   Force	
  

Max	
  
Velocity	
  

Insertion	
  
Error	
  

2	
   5	
   8	
   1	
   2	
   1	
   2.7	
   14.55	
   267.34	
   2.19	
  
2	
   7	
   6	
   1	
   2	
   1	
   3.43	
   83.68	
   297.26	
   1.18	
  
2	
   8	
   4	
   1	
   2	
   1	
   4.17	
   66.35	
   285.77	
   1.13	
  
2	
   5	
   8	
   1	
   1	
   1	
   2.93	
   16.84	
   366.65	
   1.66	
  
2	
   7	
   6	
   1	
   1	
   1	
   5.12	
   88.94	
   257.16	
   0.47	
  
2	
   8	
   4	
   1	
   1	
   1	
   4.45	
   49.69	
   281.97	
   1.32	
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Figure 1. Visual (on screen) representation of the peg-in-hole task. 

 
 
Figure 2. Slicing and sectioning the peg for haptic collision detection 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 3. Experimental setup 

 
 
Figure 4. 3D representation of performance by one of the subjects, analysed using 
MATLAB 

 
 
 
 



Figure 5. Study setup versus gathered and analysed parameters 

 
 
Figure 6. Comparing placement time for R2L and L2R half cycles and subject groups 

 
 
 
 



Figure 7. Comparing collision forces for R2L and L2R half cycles and subject groups 

 
 
Figure 8. Comparing maximum velocity for R2L and L2R half cycles and subject 
groups 

 
 



Figure 9. Insertion point at left and right holes ( z = 0, table level ) 

 
 
Figure 10. Comparing insertion error for R2L and L2R half cycles and subject groups 

 
 


