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Abstract—This study examines the performance of sparsely-connected 
associative memory models built using a number of different connection 
strategies, applied to one- and two-dimensional topologies. Efficient patterns of 
connectivity are identified which yield high performance at relatively low wiring 
costs in both topologies. It is found that two-dimensional models are more 
tolerant of variations in connection strategy than their one-dimensional 
counterparts; though networks built with both topologies become less so as their 
connection density is decreased. 
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1. Introduction 

 
Our studies of sparsely-connected one-dimensional associative memory models [1, 2], initially 

inspired by the work of Watts and Strogatz [3] on the small-world properties of sparsely-connected 
systems, demonstrated the importance of the pattern of connectivity between nodes in determining 
network performance. In a small step towards biological plausibility, we extend our studies to 
encompass two-dimensional networks. Our associative memory models now represent a 2D substrate 
of sparsely-connected neurons with a connection density of 0.1 or 0.01. 

We will compare the performance of different connection strategies in our 2D networks with 
results obtained from earlier work using a 1D arrangement. This should prove instructive, since 1D 
treatments of associative memory do not tend to establish to what extent their findings are applicable to 
more biologically-plausible topologies [4-7]. In this pursuit we acknowledge of course that this study 
falls short of a full 3D treatment, which would require more processing power than currently available 
to us. 

As with our earlier 1D work, our 2D studies will focus on exploring connection strategies which 
achieve good pattern-completion for a minimum wiring length. We are encouraged in this pursuit by 
recent studies which suggest the importance of wiring optimisation in nature, both from the point of 
view of the cortical volume taken up by axons and dendrites, the delays and attenuation imposed by 
long-distance connections, and the metabolic requirements of the connective tissue [8-10]. A 
connection strategy which minimises wiring length without impacting upon network performance 
could potentially mitigate against these unwanted collaterals. It is the goal of the present work to 
identify such strategies, and to compare their realisations in 1D and 2D networks. 

 
2. Network Dynamics and Training 

 
Each unit in our networks is a simple, bipolar, threshold device, summing its net input and firing 

deterministically. The net input, or local field, of a unit, is given by: ∑
≠

=
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current state and wij  is the weight on the connection from unit j to unit i. The dynamics of the network 
is given by the standard update:  

 

ii

ii

i

i

i SS
hS
h
h

S  of state new  theis       where
0= if
0< if1
0> if1

′
⎪
⎩

⎪
⎨

⎧
−=′  

 
Unit states may be updated synchronously or asynchronously.  Here we use asynchronous, random 
order updates. 



 
If a training pattern, ξ

μ
, is one of the fixed points of the network, then it is successfully stored 

and is said to be a fundamental memory. Given a training set ξ μ{ }, the training algorithm is designed 
to drive the local fields of each unit the correct side of a learning threshold, T, for all the training 
patterns.  This is equivalent to requiring that  ∀i,μ hi

μξ i
μ ≥T  

So the learning rule is given by: 
 
Begin with a zero weight matrix 
Repeat until all local fields are correct 
    Set the state of the network to one of the ξ

μ
 

    For each unit, i, in turn 

        Calculate hi
pξ i

p

. 
        If this is less than T then change the weights on connections into unit i according to: 
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The form of the update is such that changes are only made on the weights that are actually present in 
the connectivity matrix { } ijC (where ijC =1 if ijw is present, and 0 otherwise), and that the learning 
rate is inversely proportional to the number of connections per unit, k.  Earlier work has established that 
a learning threshold T = 10 gives good results [11]. 

 
3. Measuring Performance 

 
The ability to store patterns is not the only functional requirement of an associative memory: 

fundamental memories should also act as attractors in the state space of the dynamic system resulting 
from the recurrent connectivity of the network, so that pattern correction can take place. 

To measure this we use the Effective Capacity of the network, EC [7, 12].  The Effective 
Capacity of a network is a measure of the maximum number of patterns that can be stored in the 
network with reasonable pattern correction still taking place. We take a fairly arbitrary definition of 
reasonable as correcting the addition of 60% noise to within an overlap of 95% with the original 
fundamental memory. Varying these figures gives differing values for EC but the values with these 
settings are robust for comparison purposes. For large fully-connected networks the EC value is 
proportional to N, the total number of nodes in the network, and has a value of approximately 0.1 of the 
maximum theoretical capacity of the network. For large sparse locally-connected networks, EC is 
proportional to the number of connections per node, while with other architectures it is dependent upon 
the actual connection matrix C. 

 
The Effective Capacity of a particular network is determined as follows: 
Initialise the number of patterns, P, to 0 
Repeat 
         Increment P 
        Create a training set of P random patterns 
        Train the network 
      For each pattern in the training set 
  Degrade the pattern randomly by adding 60% of noise 
        With this noisy pattern as start state, allow the network to converge 
        Calculate the overlap of the final network state with the original pattern 
      EndFor 
      Calculate the mean pattern overlap over all final states  
Until the mean pattern overlap is less than 95% 
The Effective Capacity is P-1 

 
4. Network Architecture 

 
The networks discussed here are based on one- and two-dimensional lattices of N nodes with 

periodic boundary conditions. Thus the 1D networks take the physical form of a ring, and the 2D 
implementations that of a torus. The networks are sparse, in which the input of each node is connected 
to a relatively small, but fixed number, k, of other nodes. The main 2D networks examined consist of  
4900 nodes arranged in a 70 x 70 array, with 49 afferent (incoming) connections per node, giving a 
connection density of 0.01; and of 484 nodes arranged in a 22 x 22 array, with 48 afferent connections 



per node, giving a connection density of 0.1. The 1D networks consist of 5000 nodes and of 500 nodes, 
both with 50 connections per node, again giving connection densities of 0.01 and 0.1, respectively. All 
references to spacing refer to the distance between nodes around the ring in the case of the 1D network, 
and across the surface of the torus in the 2D case. 

 
 

  
Figure 1a. 1D sparsely-connected network with 14 nodes, and 4 afferent connections per node, 
illustrating the connections to a single node: Left, locally-connected, right, after rewiring. 

 

 
Figure 1b. 2D sparsely-connected network with 64 nodes, and 8 afferent connections per node, 
illustrating the connections to a single node: Left, locally-connected, right, after rewiring. 

 
We have already established for a 1D network that purely local connectivity results in networks 

with low wiring length, but with poor pattern-completion performance, while randomly-connected 
networks perform well, but have high wiring costs [1]. In a search for a compromise between these two 
extremes we will examine three different connection strategies here, applying them to both 1D and 2D 
networks: 
 
Progressively rewired  This is based on the strategy introduced by Watts and Strogatz [3] for 
generating small-world networks, and applied to a one-dimensional associative memory by Bohland 
and Minai [6], and subsequently by Davey et al [13]. A locally-connected network is set up, and a 
fraction of the afferent connections to each node is rewired to other randomly-selected nodes. See 
figure 1a. It is found that rewiring a one-dimensional network in this way improves communication 
throughout the network, and that as the degree of rewiring is increased, pattern completion 
progressively improves, up to the point where about half the connections have been rewired. Beyond 
this point, further rewiring seems to have little effect [6].  
 
Gaussian  Here the network is set up in such a way that the probability of a connection between any 
two nodes separated by a distance d  is proportional to 
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where d is defined as the distance between nodes, and lies in the range 2/1 Nd <≤ . Network 
performance is tested for a wide range of values of σ. 
 
Exponential  In this case the network is set up in such a way that the probability of a connection 
between any two nodes separated by a distance, d, (where 2/1 Nd <≤ ) is proportional to  

 ))1(exp( −− dλ  
Networks are tested over a wide range of λ .  
 



 
5. Results and Discussion 

 
5.1 Progressive rewiring 

This connection strategy was introduced by Watts and Strogatz as a way to move in a controlled 
manner from a locally-connected network to a random one, and as discussed earlier, it involves the 
progressive rewiring of a locally-connected network to randomly-chosen connection sites. See figure 1. 
The results of applying this procedure in 1D and 2D networks of similar size are shown in figure 2. The 
networks are initially built with local-only connections, and their Effective Capacity is measured as the 
network is rewired in steps of 10%, until all connections have been rewired, at which point the network 
is randomly connected. As may be seen, both networks behave similarly, improving in pattern-
completion performance as the rewiring is increased, up to around 40 or 50% rewiring, after which 
little further improvement is apparent. This echoes the results reported by Bholand and Minai [6], for a 
1D network. 

There is, however, an important difference between the performance of the 1D and 2D networks 
here, since although both achieve the same effective Capacity of 23 when fully rewired,  their 
performances are very different when connected locally (ie when the rewiring is zero). In this 
configuration the 1D network has an Effective Capacity of 6 patterns, while the 2D network 
successfully recalls 12. 
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Figure 2. Effective Capacity vs degree of rewiring for a 1D network with 5000 units and 50 incoming 
connections per node, and a 2D network with 4900 units and 49 incoming connections per node. The 
1D local network has an EC of just 6, while in the 2D network it is a much healthier 12. Once rewiring 
has reached around 40 or 50% there is little further improvement in performance. 
 

In seeking an explanation for this considerable improvement when moving from the 1D network 
to the 2D representation, we would point to two aspects of the network which change as the 
dimensionality is changed. Firstly, the degree of clustering, the extent to which nodes connected to any 
given node are also connected to each other, decreases from 0.73 to 0.53 as we move from 1D to 2D in 
the above locally-connected networks; and we have previously found that very tightly clustered  
networks perform badly as associators [14]. Secondly, there is an improvement in communication 
across the network as we increase dimensionality. In the 1D network it takes a maximum of 99 steps to 
pass data between the furthest-separated nodes, whereas in its 2D counterpart this has dramatically 
dropped to just 9 steps: or translated into terms of characteristic path length [3], the 1D network has a 
mean minimum path length of 48, while in the 2D network this drops to 6.5. We would also speculate 
that in a 3D implementation, a locally-connected network might perform even better. 

The significant improvement in local performance experienced when moving from 1D to 2D 
networks has considerable implications when searching for optimal patterns of connectivity. The 
reason for this is that, since in the 2D topology there is a much smaller difference between the best and 
the worst performing architectures, the rewards for using optimum patterns of connectivity will be 
correspondingly less - and we would speculate that this is likely to be even more significant in 3D 
networks. 
 
 



5.2 Optimal architectures in networks of connection density 0.01 
In order to compare the performance of other connection strategies with that of progressively-

rewired networks, we measured the Effective Capacity of networks whose patterns of connectivity 
were based on Gaussian and exponential probability distributions of varying σ and λ. The Effective 
Capacity of all three network types (Gaussian, exponential and progressively-rewired) were then 
plotted against the mean wiring length of the corresponding networks, providing us with an efficient 
way to evaluate pattern-completion performance and corresponding  wiring costs.  Figure 3a shows the 
results for a 1D network of 5000 nodes with 50 connections per node, while figure 3b depicts a 2D 
network of 4900 nodes with 49 connections per node. 
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Figure 3a. Effective Capacity vs wiring length for Gaussian, exponential and progressively-rewired 
architectures on a 1D network with 5000 nodes and 50 connections per node. Note that the leftmost 
point on the rewired plot corresponds to a local-only network (zero rewiring), and the rightmost to a 
random network (100% rewiring). Results are averages over 50 runs. 
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Figure 3b. Effective Capacity vs wiring length for Gaussian, exponential and progressively-rewired 
architectures on a 2 D network with 4900 nodes, and 49 connections per node. Again the leftmost point 
on the rewired plot corresponds to a local-only network, and the rightmost to a random network. 
Results are averages over 50 runs. 
 

We can see from this that in both the 1D and the 2D networks, all three architectures achieve a 
maximum pattern-completion performance of around 23 patterns. And in both topologies the Gaussian 
and exponential architectures achieve this at a considerably lower mean wiring length than the 
progressively-rewired networks. But, largely because of the better performance of the local network in 
2D topology, the differences are not so large in the 2D network. Thus, comparing network 
configurations which achieve an Effective Capacity of 20 (a high value at a relatively low mean wiring 
length), using a Gaussian architecture in the 1D network would use only one quarter of the wiring of 
the equivalent progressively-rewired network. In the case of the 2D network, the corresponding saving 
in wiring drops to a half. Clearly, however, this is still far from a trivial saving, and the fact that 



connectivity between neurons in the cortex is believed to follow a Gaussian architecture [15] (ie the 
probability of any two neurons being connected decreases with distance according to a Gaussian 
distribution) bears witness to the continuing benefits of this architecture in real 3D systems. 
 
5.3 Optimal architectures in networks of connection density 0.1 

In our 1D studies using networks of connection density 0.1 we reported that the differences 
between the rewired network and the Gaussian and exponential distributions were noticeably less than 
at the lower connection density of 0.01 [1], but that differences were still in evidence. Once we move to 
a 2D topology, however, we see that whilst there continues to be a noticeable difference in 
performance between the rewired network and the Gaussian and exponential distributions at the lower, 
0.01, connection density, this effectively disappears at a connection density of 0.1. See figure 4, which 
illustrates the performance of a 1D network of 500 nodes, with 50 connections per node; and a 2D 
network with 484 nodes, and 48 connections per node. 
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Figure 4a. Effective Capacity vs wiring length for Gaussian, exponential and progressively-rewired 
architectures on a 1D network with 500 nodes, and 50 connections per node. Results are averages over 
50 runs. 
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Figure 4b. Effective Capacity vs wiring length for Gaussian, exponential and progressively-rewired 
architectures on a 2D network with 484 nodes and 48 connections per node. Results are averages over 
50 runs. 
 

However, the 2D network on which we are basing this conclusion differs from our low 
connection density 2D network in not one, but two respects. Its connection density is indeed ten times 
greater, at 0.1, but the total size of the network is also smaller by a similar factor. Thus it is not yet 



clear to what extent the merging of performance of the different architectures seen in the 484 node 2D 
network is the result of the higher connection density used here (0.1 against 0.01), or whether it is due 
to the smaller size of the network. In an attempt to distinguish between these two factors, we have 
repeated the experiment for the 2D network at a size of 4900 units, with 490 connections per node, thus 
retaining the higher connection density of 0.1, but increasing the network size to that used in the lower 
connection density experiments. The results appear in figure 5. 
 

0

50

100

150

200

250

0 5 10 15 20 25 30
Mean w iring length

Ef
fe

ct
iv

e 
C

ap
ac

ity
, p

at
te

rn
s

Gaussian
Exponential
Progressively-rewired

 
Figure 5. Effective Capacity vs wiring length for Gaussian, exponential and progressively-rewired 
architectures on a 2D network with 4900 nodes and 490 connections per node. Results are averages 
over 50 runs. 
 

Clearly, there is again very little to choose in terms of performance between the three 
architectures, and we must conclude that in 2D associative memory models with connection densities 
of 0.1 and above, whether the pattern of connectivity is based on a Gaussian or exponential probability 
distribution, or whether a progressively-rewired local network is used, the choice will have very little 
influence on the pattern-completion performance of the network, or the amount of wiring used. 

However, the particular parameters which  we adopt (the value of σ for a Gaussian distribution, 
or of λ for an exponential, or the degree of rewiring used) will still have considerable influence on 
performance. These parameters will determine the operation point of our network along the curve in 
figure 5. At the left-hand end of the curve, a completely local network will give us an Effective 
Capacity of around 150 patterns, at a mean wiring length of around 8. At the right-hand end we obtain 
an Effective Capacity of approaching 200 patterns at a mean wiring length of between 20 and 30. 

By contrast, in networks with a connection  density of 0.01, the Gaussian and exponential 
architectures are clearly better performers than the progressively-rewired network, and because of the 
relatively steep rise in the Effective Capacity against mean wiring length curves for these architectures, 
it is easier to select an operation point along the curve which has both a high Effective Capacity and a 
low mean wiring length. 

5. Conclusion 
 

Using high capacity associative memory models we have examined the pattern-completion 
performance and corresponding wiring costs of networks based on a number of different connection 
strategies, built with a 1D topology. All experiments were repeated for similar networks built with a 2D 
topology, and comparisons drawn between the two sets of results. 

In our first set of experiments we compared the performance of 1D and 2D networks of similar 
size, as they were progressively rewired from a state of local-only connectivity to a state of fully 
random connectivity. It was found that although both topologies yielded the same results in the case of 
random connectivity (as must be the case), there were important differences when connectivity was 
purely local. In this case the 2D network was able to recall twice the number of patterns achieved by 
the 1D network. It was suggested that this may be the consequence both of the decrease in clustering, 
and of the much improved communication between distant nodes in the 2D network. It was also 
suggested that for similar reasons, a 3D network might show even more pronounced effects. 

We then compared plots of Effective Capacity against mean wiring length for Gaussian, 
exponential and progressively-rewired networks. Our initial tests used a connection density of 0.01. In 
both the 1D and 2D topologies the Gaussian and exponential networks consistently outperformed the 



progressively-rewired networks, though in moving from a 1D to a 2D topology, the benefits of using 
Gaussian or exponential connectivity were less pronounced. 

In networks of connection density 0.1 it was found that the small advantages of using Gaussian 
or exponential patterns of connectivity over the progressively-rewired network in the 1D topology all 
but disappeared in the 2D networks. 

Thus, while 2D associative memory models appear to be more tolerant of variations in 
connection strategy than their 1D counterparts, networks of both types become less so as their 
connection density is decreased. In future work we will investigate whether these findings are also 
valid for networks in which the point of axonal arborisation is displaced a finite distance from the 
presynaptic node. 
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