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Abstract—Principal Component Analysis (PCA) has been widely 
used for efficient representation of face images data in a low 
dimensional subspace. In this study, we use PCA to analyse 
different properties of faces, such as gender, ethnicity, age and 
identity. Using Linear Discriminant Analysis (LDA), we show that 
PCA efficiently encodes information related to different 
properties, different components of PCA encode different 
information, and there may be components which encode 
information related to multiple properties. 

I. INTRODUCTION 

The human face is considered to be special in terms of its 
biological and social roles, and is rich in information. Faces 
have multiple properties based on which they can be 
categorized at different levels of specificity, such as gender, 
ethnicity, age, expression, identity, degree of attractiveness, 
typicality and distinctiveness, and so on. Due to the 
fundamental importance of face recognition and categorisation 
in every-day life, this is one of the most researched topics in the 
fields of Psychology and Computer Science. While the research 
in Psychology is largely related to face perception, Computer 
Science research is related more to face detection and 
recognition in a Biometric scenario. There are also 
psychologically motivated studies that use Computer Science 
methodologies. 

Face images are very high dimensional and usually contain 
redundancies. According to the “curse of dimensionality” [1], 
an impractically large number of examples would be needed for 
analysis of such data. To overcome this problem, feature 
extraction is usually applied on face images before any further 
task. Feature extraction efficiently transforms the data into a 
lower dimensional subspace by reducing the redundancy in the 
data. Feature extraction also makes sense from a 
neurophysiological point of view as there is evidence that 
redundancy reduction is an important part of sensory processing 
in human brain [2]. 

There have been various feature extraction methods used in 
the literature of face recognition: Principal Component Analysis 
(PCA) [3], Independent Component Analysis [4], Elastic Bunch 
Graph Matching [5], and recently Non-negative Matrix 
Factorization [6]. PCA is the one most widely used in face 
recognition [7-17]. In all of these studies, PCA has been shown 
to encode efficiently the face properties of interest. Many of 
these studies [12-17] also suggest that PCA encodes face 

information in a psychologically plausible manner. However, all 
these studies use small datasets with less variation, and except 
for [16], analyse data with respect to one or two properties of 
faces. In this paper we use much larger number of faces and test 
if PCA encodes properties such as gender, ethnicity, age, and 
identity efficiently. Using Fisher’s Linear Discriminant 
Analysis (LDA), we also analyse how these different properties 
vary on the different components of PCA.  

The main findings, with respect to the above aims, of this 
paper are 

1. PCA encodes face image properties such as gender, 
ethnicity, age, and identity efficiently. 

2. Different components of PCA encode different 
properties of faces. Very few components are 
required to encode properties such as gender, 
ethnicity and age and these components are 
predominantly amongst the first few components 
which capture large part of the variance of the data. 
Large number of components are required to encode 
identity and these components are widely 
distributed. 

3. There may be components which encode multiple 
properties. 

The remainder of the paper is organised as follows: A 
brief overview of the literature of face recognition using 
PCA is given in the next section. Sections III and IV 
presents a brief description of PCA and LDA methods. 
Section V presents the experimental results. We 
conclude in Section VI. 

II. PRINCIPAL COMPONENT ANALYSIS AND FACE 

RECOGNITION 

Sirovich and Kirby [18] showed that PCA can be applied for 
efficient representation of high dimensional face images data in 
a lower dimensional subspace. Turk and Pentland [3] extended 
this to apply for face recognition. Since then PCA has become a 
basis, and also a benchmark, for numerous face recognition 
algorithms [19]. Studies in Psychophysics [10-16] have also 
shown keen interest in PCA. For example, PCA is shown to 
account for distinctiveness effects of face perception (where 
distinct faces can be recognized easily compared to typical 
faces) [14] and [15], “other-race effect” (where faces of 
different race from ones own race are difficult to recognise) 
[20], [21], Dimensional-based model of facial expression 



(where different expressions are thought to be in a continuum 
rather than in distinct and independent categories.). Recent 
research, [16] and [17], also posits an optimistic view that PCA 
can be used to account for some aspects of the perceptual 
functions of face recognition proposed by [22]. 

III.  PRINCIPAL COMPONENT ANALYSIS 

The aim of the PCA is a linear transformation of a D 
dimensional data X into an uncorrelated d dimensional data Y, 
where d ≤ D.  

Hypothetically, the first step of the PCA is to find a linear 
function Y1 accounting for the maximum possible variance in 
the data such that  
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Where w is a weight vector. 
The next step is to find a linear function Y2 which is 

orthogonal to the first one and accounts for the next most 
possible variance in the data. The Dth linear function would be 
YD which accounts for the Dth maximum variance in the data and 
is orthogonal to the first D – 1 linear functions. However, it is 
hoped that only the first d linear functions would account for 
most of the variance in the data. In matrix notation Equation 1 
can be written as 

XWY T=                 (2) 
Mathematically, PCA can be achieved by estimating the 

Eigenvectors and Eigenvalues of the covariance matrix 
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where, X  is the mean of the dataset X and N is the number 
of datapoints in the dataset. The Eigenvectors are the weight 
matrix W. The Eigenvalues, λ, characterize the variance 
accounted by the corresponding eigenvectors and signifies their 
importance in defining the data. The variance of an Eigenvector 
Wi can be calculated as 
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We refer to the variables Y and W of Equation 2 as Principal 
Components (PCs) and Eigenvectors or Eigenfaces respectively. 

For further details of PCA, see [23]. 

IV.  LINEAR DISCRIMINANT ANALYSIS 

The usual choice for selecting the components to define the 
data without significant information loss is to order the 
components according to their importance in accounting the 
variance of the data and consider the first few components 
which account for some percentage, usually above 80 %, of the 
cumulative variance. However, if the properties of interest of 
the data are encoded by the last few components, even if they 
are not significant in defining the data, this method is 
disadvantageous.  

Data usually have multiple properties. For example, the data 
shown in Fig. 1 have different properties and can be classified 
by colour – red, blue, by shape – circle, square, or both colour 

and shape. PCA on the data would indicate maximum variance 
in the direction of W1. This first PC encodes only shape 
information and it fails if the property of interest is colour, 
whereas the second component in the direction of W2, though 
accounts lesser variance, would be successful in this regard. 
This shows that the selection of the components should be based 
on its importance for a given task, rather than its importance in 
accounting the total variance. This example would be apt for 
face data which have multiple properties, such as identity, 
gender, ethnicity, age, expression and so on.  

 
Figure 1. An illustration of PCA on a dataset with multiple properties. The first 
component in the direction of W1, though accounts for the maximum variance, 
fails to encode information regarding the colour of the data, whereas the 
second component in the direction W2, would be successful. 

The problem discussed above can be resolved using Fisher’s 
LDA. It takes into account both the between-class scatter as 
well as within-class scatter of the data. 

The between-class scatter, SB, is given by 
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where C is the number of classes, and Mi and M are the means 
of class i and the whole data. 

The within-class scatter, SW, is given by  
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The class separation ability (information encoding power) of 
a representation can be estimated using various choices. One of 
the examples is given by 

}{ JTrJW =               (7) 

where Tr{ M} denotes the trace of the matrix M and  
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Since we are only interested in the information encoding 
abilities of individual components, rather than whole 
representation obtained by PCA, we estimate the encoding 
power of the individual components by the following 
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where Diag{M} denotes the diagonal matrix of M. We refer to 
P as the Encoding Power. 

The above framework is used in Fisher’s LDA where the 
original data are transformed in LDA space to achieve better 
class separability. The transformation matrix is determined by 
the Eigenvectors of Equation 8, by considering the largest 
corresponding Eigenvalues. This approach was used for face 
recognition in [24]. Due to problems related to the high 
dimensionality of face images and the usual availability of few 
face examples, [25] and [26] have applied PCA for 
dimensionality reduction before applying LDA. 

V. EXPERIMENTS 

A. Dataset 

We use a subset of FERET [27] face image database for this 
research. The FERET database has a large number of face 
images and is rich in variety, with different categories of 
gender, ethnicity, age, and identity being well represented. The 
face images also vary in pose, background lighting, presence or 
absence of eye glasses, slight changes in expression. Due to 
these properties, FERET has become a standard database to 
compare the performance of different face recognition 
algorithms [27-30]. In this study of analysis of different face 
properties we select the dataset, a subset of FERET, such that it 
contains 2670 grey scale frontal face images. An overview of 
the representation of different categories of gender, ethnicity, 
age and identity properties in the dataset is given in Table I. 

TABLE I.  REPPRESENTATION OF DIFFERENT PROPERTIES IN THE 
DATASET  

Property No.  
Categories 

Categories No. Faces 

Male 1603 Gender 2 
Female 1067 

Caucasian 1758 
African 320 Ethnicity 3 

East Asian 363 
20 – 29 665 
30 – 39 1264 
40 – 49 429 
50 – 59 206 

Age 5 

60+ 106 

Identity 358 Individuals with 
 3 or more Examples 

1161 

 
Each image is preprocessed to a 65 × 75 resolution, cropped 

such that little or no hair is visible. Faces are aligned with each 
other based on their eye locations and histogram equalization is 
applied to reduce the lighting effects that may result from 
different lighting conditions. A few examples of the dataset are 
shown in Fig 2. 

 
Figure 2. Examples of the dataset 

B. PCA of Face Images 

The rows and columns of each image are concatenated into a 
single string vector. The dataset, containing 2670 images of 65 
× 75 resolution, gave rise to 2670 vectors of length 4875. PCA 
on this data would give 2670 Eigenvectors of length 4875. 
Usually, only a few Eigenvectors account for most of the 
variance in the data. Only 350 Eigenvectors accounted for  90% 
of the variance. Each face can thus be efficiently represented, 
without significant loss of information, using just 350 
components instead of 4875 dimensions. As these Eigenvectors 
act as a basis upon which each face’s variation is captured, they 
appear face like when visualized. Hence, they are also termed as 
Eigenfaces. Fig. 3 shows some of the Eigenfaces of the dataset. 

  
Figure 3. Eigenfaces 1 to 4: from left to right 

1) Gender 
Due the statistical nature of PCA, the first few components 

encode information common to most faces and the last 
components encode information common to least faces. This 
lead O’Toole et al [14] to claim that information related to the 
gender property is shared by most of the faces and hence it is 
encoded in the first few components. And information related to 
identity is shared by only a few faces and hence is encoded in 
the last components. In Fig. 4 the top row, left to right, shows a 
female face and its reconstructed images using the first 50 
components and components from 51 to 350. Similarly, the 
bottom row images are of a male. The gender of both faces can 
be more easily judged from the reconstructed images which use 
the first 50 components, while the last components seems to 
encode finer information of the face and hence may be more 
useful for identity. This idea of different sets of components 
encoding gender and identity information also supports the 
Bruce and Young’s functional model of face recognition [22], 
which proposes that gender and identity are handled by different 
perceptual components of the human cognitive system. 

 

 
Figure 4. Top row from left to right: A female face and its reconstructions 
using the first 50 components and components from 51to 350. Bottom row 
from left to right: A male face and its reconstructions using the first 50 
components amd components from 51 to 350. 



Do all initial components carry high gender information? To 
find this, we estimate the gender encoding power of different 
components using (9). Fig. 5 shows a plot of the gender 
encoding power of the first 50 components (the rest of the 
components are not found to be significant and hence are not 
shown). It can be seen that the third component carries highest 
gender encoding power, followed by the fourth component. 
O’Toole et al [14] reports that the second component, which 
largely encodes presence or absence of hair, on their dataset to 
be the most important for gender classification. In our previous 
study [31], on a dataset which includes hair information, we 
found that the most important component for gender is the 
second component, which captures the hair information. 
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Figure 5. Gender encoding power of the first 50 components. 

It is often difficult to discern what information each 
Eigenface encodes, as is the case with the Eigenfaces shown in 
Fig. 3. In order to determine the information encoded by the 
third and fourth components, which are found to be important 

for gender (from Fig. 5), we generate a series of reconstructed 
images. We first estimate the average of the components of all 
faces and then produce a reconstructed image from these 
average components. The resultant image is an average face. 
We then alter the component of interest, third or fourth, while 
keeping the other components of the average components 
unchanged, to see what changes it makes to the average face. 
We add or subtract, progressively, more quantities of 
Eigenfaces 3 or 4 to capture its effects. In Fig 6 (a) on the 
extreme left is a reconstructed face with 6 S.D of the third 
component removed from it and the extreme right face is a 
reconstructed face with 6 S.D of the third component added to 
it. The extreme left face of Fig. 6(a) (-6 S.D) appears more 
feminine, while the extreme right face (+6 S.D) appears more 
masculine. The feminine face complexion looks lighter than the 
masculine face (this may be due to the cosmetics used by 
females) and the masculine face is much darker around the 
mouth region. The masculine face has a longer nose and its 
forehead is lighter compared to the feminine face (this is due to 
the reason that most females in the dataset having hair falling on 
their forehead). More specifically, the third component encodes 
information related to the complexion, length of the nose, 
presence or absence of hair on the forehead. Similarly, Fig. 6(b) 
shows a series of images for the fourth component. This 
component encodes information related to the eyebrow 
thickness. Eyebrow information is important for gender 
recognition, as many females tend to have thinner eyebrows. 
The fourth component also encodes information related to 
presence or absence of smiling expression. One reason that this 
might differentiate males and females of the dataset is due to the 
artefact that many females, compared to males, of the dataset 
have a smiling pose, when their picture is taken. This artefact, 
however, is not unique to our dataset. Social Psychology 
research widely reports that women, across cultures, smile more 
often than men[32, 33].  

 

 
(a) 

 
(b) 

Figure 6. Reconstructed images from the altered components (a) third and (b) fourth components. The components are progressively added by quantities of -6 S.D 
(extreme left) to +6 S.D (extreme right) in steps of 2 S.D. 



Fig. 7 shows a few face examples and a series of their 
reconstructed images using 20 gender important components 
(components with highest gender encoding power), all but the 
20 gender important components. In Fig. 7 (b) the gender of the 
reconstructed faces, using 20 gender important components, is 
apparent while its identity is not. And in the case of Fig. 7(c), 
which uses all but the 20 gender important components, the 
gender identification is difficult, while its identity is still 
possible. It can also be noticed from Fig. 7(c) that properties 
which do not carry gender information are de-emphasized. For 
example eye glasses are de-emphasized. This also shows that 
invariances to properties can be built by selectively removing or 
adding components that encode those properties.  

 
(a) 

 
(b) 

 
(c) 

Figure 7. (a) Face examples with the first two being female and the next two 
being male faces. (b) Reconstructed faces of (a) using the top 20 gender 
important components. (c) Reconstructed faces of (a) using all components, 
except the top 20 gender important components. 

2) Ethnicity 
As with the analysis of gender, we perform ethnicity analysis. 

Fig. 9 shows a plot of the ethnicity encoding power of the first 

50 components (the rest of the components, similar with the 
case of gender, are not found to be significant and hence are not 
shown). The sixth component is found to be having the highest 
ethnicity encoding power.  
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Figure 8. Ethnicity encoding power of the first 50 components. 

To determine the information captured by the ethnicity 
important components, we produce a series of images, similar 
with that of the gender case. A series of the reconstructed 
images from altering the sixth and the fifteenth components are 
shown in Fig 9(a) and 9(b) respectively. The extreme left face 
of Fig. 9(a) (-6 S.D) appears more Caucasian like, while the 
extreme right face (+6 S.D) appears more African like. The 
African like face has a darker complexion, flatter and shorter 
nose compared to the Caucasian like face. Similarly, Fig. 9(b) 
shows a series of images for the fifteenth component. The 
extreme left face of Fig. 9(b) (-6 S.D) appears more African 
like, while the extreme right face (+6 S.D) appears more East 
Asian like. The African like face has a shorter nose and smiling 
expression compared to the East Asian like face. One reason 
that the smiling expression might differentiate African faces 
from other ethnicities is due to the fact that many African faces 
in the dataset had a smiling expression. This artefact is similar 
to that found for the female faces. However, to the best of our 
knowledge, there are no psychological studies, similar to that of 
gender [32, 33], which report that Africans smile more often 
than people from the other ethnicities. 

 

 
(a) 

 
(b) 

Figure 9. Reconstructed images from the altered components (a) sixth and (b) fifteenth components. The components are progressively added by quantities of -6 
S.D (extreme left) to +6 S.D (extreme right) in steps of 2 S.D. 



Fig. 10 shows face examples of Caucasian, African, and East 
Asian ethnicities, and a series of their reconstructed images 
using the 20 ethnicity important components, and average of 
each ethnicity’s reconstructed faces, which uses 20 top ethnicity 
important components. The reconstructed faces, using 20 
ethnicity important components, are shown in Fig 10(b). The 
ethnicities of these reconstructed faces are apparent suggesting 
good ethnicity encoding ability of these 20 components. To 
determine how faces of different ethnicities vary on these 20 
ethnicity components we estimate the average of each 
ethnicity’s reconstructed faces, using 20 ethnicity important 
components. To make the features, which differentiate between 
the ethnicities, more prominent, we stretch each of these 
average faces from the average face of the whole dataset. These 
are shown in Fig. 10(c). From Fig. 10(c), we can make the 
following conclusions: generally, both the Caucasian and East 
Asian faces have lighter complexion compared to the African 
faces. East Asian face has much lighter skin around the mouth 
region. This may be due to the fact that, relatively, very few 
East Asian males in the dataset have beard or moustache. The 
East Asian face also differs in the distance between eyelids and 
eyebrows, suggested by lighter pixels in this region. African 
faces, relatively, have shorter noses and thinner eyebrows. 

 
(a) 

 
(b) 

 
(c) 

Figure 10. (a) Face examples from left to right: Caucasian, African, East Aian. 
(b) Reconstructed faces of (a) using the top 20 ethnicity important components  
(c) Average of the reconstructed Caucasian, African, and East Asian faces 
using the top 20 ethnicity important components. 

3) Age 
Accurate age estimation from face images is, perhaps, the 

most difficult of the face recognition tasks. Though, we find 
very difficult to estimate the age of a face accurately, we are 
good at judging whether the face is young or old. For this 
reason, for age analysis, we only consider faces which fall in the 
following age groups of the dataset: 20-39 and 50-60+. We term 
them as young and old faces respectively. As with the analysis 
of gender and ethnicity properties, we perform an analysis of 
age information. Fig. 11 shows a plot of the age encoding power 
of the first 50 components (the rest of the components, similar 
with the case of gender and ethnicity, are not found to be 
significant and hence are not shown). The tenth component is 
found to be having the highest age encoding power. 
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Figure 11. Age encoding power of the first 50 components. 

We produce a series of images in Fig. 12, similar with that of 
the gender and ethnicity cases, to discern the information 
captured by the 10th component. The extreme left face of Fig. 12 
(-6 S.D) has lighter complexion compared to the extreme right 
face (+6 S.D). The age information captured by this component 
is not as obvious as that of the important components of gender 
and ethnicity. However, there are some subtle differences, 
which can be observed upon careful inspection. The region 
above the eyes, in the extreme left face, indicates sagging skin 
and the eyebrows of this face are also thinner compared to the 
extreme right face. This suggests that the face at the extreme left 
is related to the old group and the face at the other end of the 
series is related to the young group. 

 
Figure 12. Reconstructed images from the altered tenth component. The component is progressively added by quantities of -6 S.D (extreme left) to +6 S.D 
(extreme right) in steps of 2 S.D. 



4) Identity 
Identity is different from gender, ethnicity, and age in the 

sense that the information related to the latter properties is 
shared by large number of faces in the population, while 
identity information is distinct and common to a single person 
or at most to a few similar looking individuals. In Fig. 13, we 
plot the identity encoding power of the first 100 components. In 
contrast to the other properties cases, many components are 
found to have, relatively, higher identity encoding power. These 
components are widely distributed and are not restricted to the 
first 50 components. Another contrasting feature that can be 
noticed from Fig. 13 is that the magnitude of these high identity 
encoding components is not as high as in the case of the 
important components of the other properties, and hence not 
highly significant on their own. It can be thus concluded that 
large number of components are needed to encode identity 
information. 
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Figure 13. Identity encoding power, P, of the first 100 components. 

5) Can a single component encode multiple properties? 
There may be features which elicit information related to 

more than one property. For example, a grey beard informs that 
the person is a male and also, most probably, old. In this section 
we try to find if there are any components which encode 
significant information related to more than one property. 

The components with high encoding power for gender, 
ethnicity, and age are restricted to the first 50 components. Due 
to this, it can be noted from figures 5, 8, and 11, that a few 
number of components are found to be important for more than 
one property. One such example is the 3rd component which is 
found to be the most important for gender (Fig. 5) and the 
second most important for age (Fig. 11). This is also illustrated 
in Fig. 14. Fig. 14(a) shows normal distribution plots of the 
third component for male and female classes of young and old 
age groups. The distribution shows considerable class 
separability between males and females and also between young 
males and old males. However, the young and old females are 
nearly overlapped. To demonstrate the importance of the third 
component for gender and age, we show a similar normal 
distribution plot of the fourth component in Fig. 14(b). The 
fourth component is found to be the second most important for 
gender, but not significant for age. From the plot it can be seen 
that the fourth component shows near complete overlap of 

young males and females with their old counterparts, though it 
shows considerable separability between males and females. 
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(b) 

Figure 14. Normal distribution plots of the (a) third (b) and fourth components 
for male and female classes of young and old age groups. 

6) Classification results 
To test if the information related to all the properties is 

efficiently represented by the PCA data, we perform 
classification based on different properties. For each property, 
except identity, 80% of the faces are used for training and 20% 
are used for testing. In the case of identity, we use leave-one-out 
strategy for classification. First, LDA is performed on the PCA 
data. On the resultant data, for classification, we use a simple 
Euclidean measure between the test data and the means of the 
various classes estimated from the training data. 

The classification results are shown in Table II (N.B: Identity 
– a, Identity – b, Identity – c are related to when only 
individuals in the dataset with face examples >=3, >=4, and >=5 
are considered). Classification performances on all properties 
are reasonably high and much above chance levels suggesting 
that information is efficiently encoded by PCA. 

TABLE II.  CLASSIFICATION  PERFORMANCE  ON DIFFERENT PROPERTIES 

Property Classification % 

Gender 86.43 

Ethnicity 81.67 

Age 91.5 

Identity – a 68.7 

Identity – b 90 

Identity – c 100 



VI.  CONCLUSION 

In this paper, we presented an analysis of different properties 
of faces, such as gender, ethnicity, age, and identity, using PCA 
on face images data. Using LDA, we estimated the encoding 
powers, with respect to different properties, of the components 
obtained by PCA. Using reconstructed images, we also 
presented what information is captured by each important 
component of a property.  

To summarize the main findings of the paper: 
1. PCA encodes face image properties such as gender, 

ethnicity, age, and identity efficiently – the 
classification performances on all properties are 
reasonably high and much above chance levels. 

2. Different components of PCA encode different 
properties of faces. Very few components are 
required to encode properties such as gender, 
ethnicity and age and these components are 
predominantly amongst the first few components 
which capture large part of the variance of the data. 
Large number of components are required to encode 
identity and these components are widely 
distributed. 

3. There may be components which encode multiple 
properties – for example the third component is 
found to be important for gender as well as age. 
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