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Abstract

Changes in cardiorespiratory fitness (CRF) in response to endurance training (ET)

exhibit large variations, possibly due to a multitude of biological and methodological

factors. It is acknowledged that ∼20% of individuals may not achieve meaningful

increases in CRF in response to ET. Genetics, the most potent biological contributor,

has been shown to explain ∼50% of response variability, whilst age, sex and base-

line CRF appear to explain a smaller proportion. Methodological factors represent the

characteristics of the ET itself, including the type, volume and intensity of exercise,

as well as the method used to prescribe and control exercise intensity. Notably,

methodological factors are modifiable and, upon manipulation, alter response rates

to ET, eliciting increases in CRF regardless of an individual’s biological predisposition.

Particularly, prescribing exercise intensity relative to a physiological threshold (e.g.,

ventilatory threshold) is shown to increase CRF response rates compared to when

intensity is anchored relative to a maximum physiological value (e.g., maximum heart

rate). It is, however, uncertain whether the increased response rates are primarily

attributable to reduced response variability, greater mean changes in CRF or both.

Future research is warranted to elucidate whether more homogeneous chronic

adaptations manifest over time among individuals, as a result of exposure to more

homogeneous exercise stimuli elicited by threshold-based practices.
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1 INTRODUCTION

Cardiorespiratory fitness (CRF), measured asmaximumoxygen uptake

(V̇O2 max), represents aerobic capacity and integrates the functional

capacity of numerous bodily systems and their ability to deliver and

utilise oxygen (Hill & Lupton, 1923). Importantly, V̇O2 max is a strong

predictor of chronic diseases and all-cause mortality, and increases in
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V̇O2 max have marked reductions on mortality risk (Harber et al., 2017;

Ross et al., 2016). Endurance training (ET) is the most effective inter-

vention for increasing V̇O2 max; however, the effect of ET on V̇O2 max is

heterogeneous, whereby some individuals benefit from large changes

in V̇O2 max whilst others exhibit small, no or even adverse changes

(Bouchard et al., 1999; Williams et al., 2019). Understanding why this,

herein ‘response variability’, occurs is important for thedevelopment of
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personalised exercise medicine and the pursuit of sporting excellence

and may help inform strategies aimed at reducing the current burden

associatedwith low levels ofCRF (Myers et al., 2018).Whilst the health

benefits attained from ET extend beyond increases in CRF (Warburton

& Bredin, 2017), this review exclusively focuses on variable changes to

CRF in response to ET.

Studies have typically failed to capture the response variability at

the individual level when only reporting measures of central tendency

(e.g., mean) and dispersion (e.g., standard deviation) at the group level.

The HERITAGE study (Bouchard et al., 1999) was a seminal report

highlighting the incidence of response variability at the individual level

in a large heterogeneous cohort. Following a 20-week ET programme

V̇O2 max, increased, on average, by 384 ml/min (Bouchard et al., 1999).

Notably, some individuals experienced gains in excess of 1000 ml/min

whilst others experienced no gain at all (Bouchard et al., 1999). Sub-

sequently, it was concluded that ∼20% of individuals undertaking ET

may not achieve meaningful increases in V̇O2 max (Bouchard et al.,

1999). Response variability is now commonly acknowledged following

training studies, generating increasing interest in ‘trainability’ (R. Ross

et al., 2019), defined as an individual’s adaptive responsiveness to ET

(Hoppeler, 2018).

Unfortunately, the mechanisms underpinning response variability

are multifaceted and there exist several contributors (Voisin et al.,

2019). From a statistical perspective, how training response is defined

(e.g., the proportion of individuals that achieve a change above

(responders) and below (non-responders) a predefined response

threshold), the study design and the statistical model used can each

contribute to variability (Atkinson et al., 2019;Hecksteden et al., 2018;

R. Ross et al., 2019; Swinton et al., 2018).

This review covers the biological and methodological factors

contributing to the response variability reported following ET

(Figure 1). Specifically, we appraise how biological factors, consisting

of genetics, age, sex, and baseline V̇O2 max, and methodological

factors, consisting of the type, volume and intensity of training,

and the method used to prescribe intensity affect response rates

to ET. Notably, unlike biological factors, with the exception of

baseline V̇O2 maxmethodological factors are modifiable and, upon

manipulation, can alter response rates to ET. We contend that altering

how exercise intensity is prescribed appears to have a marked

impact on response rates. For example, prescribing exercise intensity

relative to physiological thresholds (termed herein as threshold-

based ET; Table 1), as opposed to prescribing intensity relative to

maximum physiological values (termed herein as traditionally pre-

scribed ET; Table 2), appears to have a positive impact on response

rates (Byrd et al., 2019; Dalleck et al., 2016; Weatherwax et al.,

2019; Wolpern et al., 2015). When intensity is anchored relative to

physiological thresholds, a more homogeneous exercise stimulus is

elicited among individuals (Baldwin et al., 2000; Black et al., 2017;

Lansley et al., 2011). When repeated over time, such responses may

manifest as more homogeneous changes in V̇O2 max within a group

of participants (Mann et al., 2013; Scharhag-Rosenberger et al.,

2010).

New Findings

∙ What is the topic of this review?

Biological and methodological factors associated

with the variable changes in cardiorespiratory

fitness in response to endurance training.

∙ What advances does it highlight?

Several biological and methodological factors exist

that each contribute, to a given extent, to response

variability. Notably, prescribing exercise intensity

relative to physiological thresholds reportedly

increases cardiorespiratory fitness response

rates compared to when prescribed relative to

maximum physiological values. As threshold-based

approaches elicit more homogeneous acute physio-

logical responses among individuals,when repeated

over time, these uniform responses may manifest

as more homogeneous chronic adaptations thereby

reducing response variability.

2 BIOLOGICAL FACTORS ASSOCIATED WITH
RESPONSE VARIABILITY

2.1 Genetics

The V̇O2 max phenotype is a polygenetic trait influenced by a

combination of environmental and genetic factors, and both its base-

line and response to ET vary considerably among individuals (Williams

et al., 2017). Both twin-sibling and familial-resemblance studies

report that ∼50% of V̇O2 max trainability is attributable to heritability

(Bouchard et al., 1999; Hoppeler, 2018). Moreover, compared to

adults, heritability of V̇O2 max is higher in youths and adolescents with

weighted estimates of 59% (ml/min) and 72% (ml/kg/min), respectively

(Schutte et al., 2016). However, research implementing candidate

gene, gene expression and genome-wide association studies (GWAS)

to determine the genetic predictors of V̇O2 max trainability has been

unable to identify a genome that accurately accounts for the large

variation observed in V̇O2 max following ET (Hoppeler, 2018).

In a GWAS of 473 participants of the HERITAGE study, none of the

324,611 single-nucleotide polymorphisms (SNPs) analysed reached

genome-wide significance (P < 5 × 10−8) (Bouchard et al., 2011),

although, for a GWAS, such a sample size potentially predisposed a

lack in statistical power (Spencer et al., 2009). It has been suggested

that V̇O2 max trainability is determined by the additive effect ofmultiple

small effects from numerous genes rather than a single genetic variant

(Sarzynski et al., 2017). Accordingly, 97 SNPs have since been found

to predict V̇O2 max trainability, of which 13 have been successfully
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F IGURE 1 Factors affecting V̇O2 max trainability in response to endurance training. Biological factors (blue) include age (a), genetics (b),
baseline V̇O2 max (c) and sex (d). Methodological factors (orange) include type (e), volume (f) and intensity (g) of training, andmethod of exercise
intensity prescription (h). Unlike biological factors, with the exception of baseline V̇O2 max, methodological factors aremodifiable, enabling
increases in cardiorespiratory fitness following their manipulation

TABLE 1 Physiological thresholds associated with T1 and T2

Threshold Physiological threshold Description

T1 Lactate threshold Blood lactate concentration begins to rise above baseline levels and represents the

upper boundary for nearly exclusive aerobic metabolism (Faude et al., 2009).

Gas exchange threshold Transition from steady-state to excess CO2 production (Beaver et al., 1986).

Ventilatory threshold First breakpoint of a systematic increase in V̇E∕V̇O2
(Wasserman &McIlroy, 1964).

T2 Critical power Asymptote of the power–duration relationship (Poole et al., 2016).

Maximum lactate steady-state Highest constant workload that leads to an equilibrium between lactate production

and elimination (Faude et al., 2009).

Respiratory compensation point Second breakpoint of a systematic increase in V̇E∕V̇O2
(Beaver et al., 1986).

V̇E∕V̇O2
, ventilatory equivalents for oxygen.

replicated (Williams et al., 2017). Additionally, six new SNPs have

recently been identified that can distinguish among individuals with

high and low V̇O2 max values (Bye et al., 2020).

However, the mechanisms underpinning the role of genetics remain

unclear. V̇O2 max is primarily determined by central factors, namely

cardiac output and the oxygen-carrying capacity of the blood, but also

by peripheral factors, namely the skeletal muscles’ capacity to extract

and utilise oxygen (Lundby et al., 2017). However, none of the gene

variants currently identified to influence V̇O2 max trainability link to

changes in these physiological factors (Joyner & Lundby, 2018).

Overall, it is commonly reported that genetics explain ∼50% of

response variability; however, the molecular basis underpinning
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TABLE 2 Exercise intensity domains defined by traditional
anchors of exercise intensity

Anchor

Moderate-

intensity

(moderate)

Vigorous-

intensity

(heavy)

Near-maximal to

maximal intensity

(severe)

V̇O2 max 46–63% 64–90% ≥91%

HRmax 64–76% 77–95% ≥96%

V̇O2R 40–59% 60–89% ≥90%

HRR 40–59% 60–89% ≥90%

HRmax, maximum heart rate; HRR, heart rate reserve; V̇O2 max, maximum

oxygen uptake; V̇O2R, oxygen uptake reserve (American College of Sports

Medicine, 2017).

V̇O2 max trainability remains to be elucidated (Sarzynski et al.,

2017). Indeed, Marsh et al. (2020) reported that the environmental

components of twins had a stronger influence on response variability

to ET than had genetics. The polygenic nature of the V̇O2 max phenotype

is also likely modified by the epigenome, responding to environmental

cues, such as regular exercise, which alters the transcriptomic network

(Hoppeler, 2018). Furthermore, no common genetic profile has been

established that can explain variations in V̇O2 max (Rankinen et al.,

2016), and the disconnect between identified gene variants and the

key physiological determinants of V̇O2 max (Joyner & Lundby, 2018)

highlights that the role of genetics on V̇O2 max trainability is not yet

fully understood. Results from the ongoing Molecular Transducers

of Physical Activity Consortium (MoTrPac) study may further our

understanding of the molecular changes that occur in response to

ET and how these may influence response variability (Joseph & John,

2020).

2.2 Age

It is well documented that V̇O2 max decreases with ageing (Fleg

et al., 2005), primarily driven by a reduction in maximum heart

rate (HRmax) and maximum cardiac output (Carrick-Ranson et al.,

2013). Mechanisms underpinning ET-induced increases in V̇O2 max may

also differ with ageing. McGuire et al. (2001) found that following

ET separated by 30 years, despite similar increases in V̇O2 max, the

primary drivers of increased V̇O2 max changed from maximal cardiac

output and arteriovenous oxygen difference to exclusive increases in

arteriovenous oxygen difference in the 30-year follow-up. However,

age did not impact the magnitude of change in V̇O2 max following

ET. Robinson et al. (2017) reported that both young (18–30 years)

and older (65–80 years) adults can substantially increase V̇O2 max

following ET (∼20%), in line with previous findings (Huang et al., 2016;

McGuire et al., 2001). Moreover, Kohrt et al. (1991) reported no

significant differences in the percentage increase in V̇O2 max among

older individuals aged between 60 and 71 years, nor was there a

relationship between change in V̇O2 max and age (r=−0.13). Therewas,

however, considerable heterogeneity in the gains in V̇O2 max among

individuals (0–58%), but differences in age could not explain this

variability (Kohrt et al., 1991).

With regards to the effect on response variability, Sisson et al.

(2009) reported that age was a strong predictor of non-response rates

among a female cohort (n = 310; 45–75 years) following 6 months of

ET, whereby increments in age of 6.4 years increased the odds of non-

response by 35–45%. Hautala et al. (2003) reported that age explained

16%of the responsevariability following8weeksof ET in amale cohort

(n = 39; 23–52 years). Alternatively, in the HERITAGE cohort, which

included a larger age range (n = 742; 17–65 years), age was reported

to explain only 3% of the response variability following 20 weeks’ ET

(Sarzynski et al., 2017). Furthermore, Skinner et al. (2001) reported

that low, medium, and high responders were present across all age

groups within the HERITAGE study.

Overall, whilst an effect of age on response variability has been

reported, the age range utilised in such studies was relatively small.

Results from the HERITAGE study, which incorporated the largest

sample size and age range, suggest that up to 65 years the effect of age

on response variability is somewhat minor. Future studies examining

large age ranges extending beyond the age of 65 years would further

elucidate the influence of age on training response.

2.3 Sex

The increase in V̇O2 max following ET is generally greater in men

than in women of a comparable training status (mean difference:

1.95 ml/kg/min; Diaz-Canestro & Montero, 2019). Interestingly,

increases in V̇O2 max may be attributed to different adaptive pathways

between sexes (Ansdell et al., 2020), perhaps explaining why gains

in V̇O2 max following ET tend to be somewhat superior in men (Diaz-

Canestro & Montero, 2019). For example, compared to men, key

central adaptations such as increased stroke volume and cardiac

filling have been blunted in women following ET (Howden et al.,

2015). Instead, women have demonstrated greater training-induced

peripheral adaptations such as greater oxygen extraction and

mitochondrial respiration (Cardinale et al., 2018; Montero et al.,

2018; Spina et al., 1993). Accordingly, women demonstrate a greater

exercise capacity during exercises not limited by oxygen delivery,

such as single limb exercise, where peripheral factors have a large

impact on performance compared towhole-body exercise, which relies

heavily on central components (Ansdell et al., 2019). Such peripheral

adaptations, potentiated by advantageous metabolic properties of

female skeletal muscle, may help compensate for attenuated central

adaptations observed in women (Ansdell et al., 2020).

Another explanation for inferior increases in V̇O2 max in women

is that ET may be informed by training studies dominated by male

participants (Ansdell et al., 2020). Compared to men, physiological

thresholds such as lactate threshold (LT) and gas exchange threshold

occur at higher percentages of V̇O2 max in women, and therefore when

exercising at the same intensity relative to a maximum physiological

value (e.g., V̇O2 max), women often experience inferior metabolic stress

(Ansdell et al., 2020; Iannetta et al., 2021; Vainshelboim et al., 2020).

Accordingly, Froberg and Pedersen (1984) found women were able to

exercise at 80% V̇O2 max for ∼17 min longer than men and produced
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lower blood lactate levels (5.4 vs. 8.1 mmol/l). Critically, sufficient

metabolic stress is required to potentiate a cascade of signalling

pathways that manifest as subsequent physiological adaptations

(Granata et al., 2018). In turn, when adhering to an ET programme

assumed to elicit similar metabolic stress between sexes, particularly

when anchoring intensity relative to a maximum physiological value,

the relative training intensity may in fact be lower in women (Ansdell

et al., 2020; Iannetta et al., 2021). Therefore,womenmayexperiencean

inferior stimulation of adaptive pathways hindering changes that may

influence V̇O2 max such as mitochondrial biogenesis and angiogenesis

(Ansdell et al., 2020; Bishop et al., 2019; Granata et al., 2018). Thus,

how intensity within ET is prescribed may predispose the blunted

responses typically observed inwomen.A threshold-basedapproach to

prescribe exercise intensity may minimise sex differences in response

to ET (discussed in section 3.4).

Surprisingly, despite differences in the magnitude of V̇O2 max

changes in response to ET, the effect of sex on response variability

is reported to be relatively minor (Kohrt et al., 1991; Sarzynski et al.,

2017;Williams et al., 2019). For example, sex explainedonly∼3%of the

variability in V̇O2 max changes in the HERITAGE study (Sarzynski et al.,

2017). Furthermore, when assessing V̇O2 max trainability subsequent

to high-intensity interval training (HIIT) and moderate intensity

continuous training (MICT), sex played no role in response variation

(Williams et al., 2019). Indeed, the American College of Sports

Medicine (ACSM) has concluded that sex and age have little influence

on V̇O2 max response variability (Garber et al., 2011).

Overall, increases in V̇O2 max following ET tend to be somewhat

superior in men. For men increases in V̇O2 max may be primarily

attributed to central adaptations compared to enhanced peripheral

adaptations observed in women; however, more research is required

to elucidate sex-specific adaptations (Barnes & Fu, 2018). Surprisingly,

whilst sex may influence the magnitude of change in V̇O2 max following

ET, it is reported that sex explains only a small proportion of V̇O2 max

response variability.

2.4 Baseline cardiorespiratory fitness

Those initially presenting in the lowest quintile of V̇O2 max appear to

have a potentiated capacity to experience the greatest health reward

in response to increases in V̇O2 max (Harber et al., 2017). It appears

that baseline V̇O2 max affects subsequent response to training whereby

a higher baseline V̇O2 max hinders the potential for further adaptation

(Astorino & Schubert, 2014; Saltin et al., 1969; Sisson et al., 2009).

Sisson et al. (2009) concluded that baseline V̇O2 max was among the

strongest predictors of V̇O2 max non-response following ET. Specifically,

increments in baseline V̇O2 max of 0.24 l/min increased the odds of

non-response by 2-fold. A number of studies have further reported

a negative association between baseline V̇O2 max and increases in

V̇O2 max (Astorino & Schubert, 2014; Hautala et al., 2006; Maturana

et al., 2021). It is plausible that a ceiling may exist in those with

an already developed phenotype whereby the ability to elicit a

metabolic strain potent enough to invoke adaptive signalling becomes

diminished.

Whilst baseline V̇O2 max can impact the magnitude of change in

V̇O2 max, it appears to have little effect on response variability. For

example, in the HERITAGE study, only 2% of the response variability

was concluded to be attributable to baseline V̇O2 max (Sarzynski et al.,

2017). In an analysis of 633 subjects from the same cohort, no

association (r = 0.08) was found between the baseline and change in

V̇O2 max (ml/kg/min), although there was a negative association with

relative changes in V̇O2 max (%) (r = −0.38; Skinner et al., 2001).

Moreover, low, medium, and high responders were present across

all levels of baseline V̇O2 max (Skinner et al., 2001). The lack of

association could be explained by the relatively untrained nature of the

participants. For example, in the HERITAGE study, the mean baseline

V̇O2 max was ∼31 ml/kg/min (Skinner et al., 2001). A large proportion

may have possessed modestly developed V̇O2 max phenotypes at most,

and thus scope for further increases in V̇O2 max maynot havebeenhind-

ered in this cohort.

Overall, evidence suggests that baseline V̇O2 max may influence

V̇O2 max trainability. It is plausible that the likelihood of non-response

may increase among individuals who already possess a highly

developed V̇O2 max phenotype, in which room for further improvement

becomes limited. However, considering the equivocal evidence

resulting from the HERITAGE study, this conclusion warrants further

investigation.

3 METHODOLOGICAL FACTORS ASSOCIATED
WITH RESPONSE VARIABILITY

3.1 Type of training

The type of training appears to affect the variability in V̇O2 max

following ET as it has been shown that changing the type of training

can alter subsequent response outcomes and ‘rescue’ individuals pre-

viously identified as non-responders (Hautala et al., 2006;Marsh et al.,

2020). In the STRUETH study, non-response was salvaged when non-

responders converted from ET to resistance training (RT), and vice

versa (Marsh et al., 2020). The newly elicited responses were primarily

training type-specific,whereby individualswhodidnot exhibit a change

in V̇O2 max following ET attained increases in strength following RT,

and vice versa (Marsh et al., 2020). Surprisingly, ∼50% of participants

showed non-training type-specific responses, and reported increases

in strength following ET (51%), and increases in V̇O2 max following RT

(57%) (Marsh et al., 2020). Hautala et al. (2006) also observed that

subjecting individuals who failed to increase V̇O2 max following ET to

RT could counteract previous non-response and elicit increases in

V̇O2 max. Whilst positive responses to training are primarily training

type-specific, changing the type of exercise (e.g., from ET to RT) may

be an effective strategy for some individuals to provoke subsequent

adaptation in other parameters of interest and, to a lesser extent, in

V̇O2 max.
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3.2 Volume of training

It has been argued that the non-response phenomenon to ET is a

modifiable outcome (Pickering & Kiely, 2019). Non-responders may

simply experience an insufficient training dose (product of training

intensity and volume, where volume is the product of the training

frequency and exercise duration), as required to induce physiological

adaptations that manifest as increased V̇O2 max (Montero & Lundby,

2017). Accordingly, Williams et al. (2019) investigated the response

rates following high- and low-volume HIIT and MICT, reporting that

high-volume HIIT, which involved the greatest training dose, produced

the fewest V̇O2 max non-responders (35%), followed by MICT (42%)

and low-volume HIIT (52%). Indeed, increasing training volume has

consistently shown to increase response rates. Astorino and Schubert

(2014) found an increase in response rates following 12 weeks’ high-

volume HIIT compared to 2 weeks’ low-volume sprint interval training

(SIT), whereby non-response rates were 5% and 35%, respectively. In

addition to a greater training volume, the 12-week programme may

have also allowed a greater time course for adaptations to manifest,

thus resulting in increased response rates. Sisson et al. (2009) reported

the likelihood of non-response was 74% lower when weekly training

volume, at 50% V̇O2 max, targeted 12 versus 4 kcal/kg/wk. Ross et al.

(2015) reported that when exercising at 50% V̇O2 max, increasing

training volume from 180 to 360 kcal per session and from 300

to 600 kcal per session for women and men, respectively, reduced

the number of non-responders by 50%. Montero and Lundby (2017)

observed similar findingswhereby in response to 60, 120, 180, 240 and

300 min/wk of ET at ∼60% maximum work rate, the incidence of non-

response was 69%, 40%, 29%, 0% and 0%, respectively. Furthermore,

the authors reported that non-response was abolished following

completion of a further 6weeks’ ETwith an additional two sessions per

week. A common finding in the studies that investigated response rates

to ET following the manipulation of training volume is that for a given

intensity, greater volumes induced greater mean changes in V̇O2 max

compared to the lower volume protocols (Montero & Lundby, 2017;

Ross et al., 2015; Sisson et al., 2009). Increased response rates may

therefore be driven more so by greater mean changes in V̇O2 max than

a narrowing in response variability (Atkinson et al., 2019; Bonafiglia

et al., 2021).

Whilst a seemingly efficacious strategy to increase V̇O2 max

responses, increasing training volume may be unfeasible for a large

proportion of the population endeavouring to obtain the health

benefits of exercise. Lack of time is the main barrier to exercise

(Godin et al., 1994), and thus simply increasing the training volume

to achieve beneficial adaptations may not be a feasible strategy

for many individuals. The strenuous nature of increasing training

volume may also prove detrimental to training adherence (Joyner,

2017). For example, Hickson et al. (1977) demonstrated linear

increases in V̇O2 max following 10 weeks of strenuous ET, yet, despite

marked gains in V̇O2 max, the strenuous nature of the ET deterred

participants from continuing with the protocol beyond the study.

Moreover, ensuring adherence to the current exercise guidelines

has proven a challenge in itself (Du et al., 2019). Therefore, whilst

increasing training volume is efficacious in reducing the incidence of

non-response, simply increasing training volume to achieve greater

responses may be challenging in certain populations and not a realistic

solution.

3.3 Intensity of training

Intensity of training is another key variable influencing adaptations

in V̇O2 max (MacInnis & Gibala, 2017). Whilst increases in V̇O2 max can

be achieved via MICT, the gains observed following HIIT tend to be

somewhat superior, with a substantially diminished time commitment

(Milanović et al., 2015). Farah et al. (2014) reported a superior increase

in V̇O2 max following 6 months’ ET matched by training volume at an

intensity corresponding to the ventilatory threshold (VT) compared to

training 20% <VT (10.4 vs. 6.1 ml/kg/min). Surprisingly, Gaskill et al.

(2001) and Guio de Prada et al. (2019) reported similar changes in

V̇O2 max following ET <VT and >VT, yet training at intensities >VT

resulted in greater increases in the VT. Ross et al. (2015) reported that

following ET completed at 50% and 75% V̇O2 max, incidence of non-

responsewas 17.6%and0%, respectively, despite the twoprogrammes

being matched by training volume. Manipulation of the training dose

thus has a strong influence on response rates and can be used as a tool

to increase the likelihood of observingmeaningful responses. Indeed, it

hasbeen suggested that providing the trainingdose is sufficient toelicit

a potent exercise stimulus, the absence of positive changes in V̇O2 max

should be minimal, if not non-existent (Montero & Lundby, 2017). As

such, the exercise stimulus must evoke potent challenge to the bodily

systems and metabolic signalling pathways that provoke adaptation in

aerobic capacity (Bishop et al., 2019).

Metcalfe and Vollaard (2021) reported that after SIT, which may

elicit consistently high metabolic perturbations associated with the

severe-intensity domain (Black et al., 2017), the non-response rate

was 18%, similar to the ∼20% rate typically reported following ET

(Bouchard et al., 1999). Moreover, Bonafiglia et al. (2016) and Gurd

et al. (2015) also reported marked response variability following

SIT. Importantly, oxidative stress is an essential signal for metabolic

pathways and adaptations in V̇O2 max (Margaritelis et al., 2018).

Margaritelis et al. (2018) reported that when individuals experienced

low exercise-induced oxidative stress, subsequent increases in V̇O2 max

were inferior compared to individuals who experienced high oxidative

stress (12% vs. 19%, respectively). For low-intensity ET, it may thus

be important to ensure that intensity is high enough to create such

a stress, below which simply increasing training volume may not

be effective in stimulating adaptation. Overall, a sufficient exercise

stimulus is required to activate signalling pathways thatwhen repeated

over time manifest into chronic adaptations. If training intensity is

low, training volume must be increased to elicit an adaptive stimulus,

provided that the intensity is potent enough.
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3.4 Prescription of exercise intensity

A multitude of methods can be used to prescribe intensity for ET,

the most common practices anchor intensity relative to maximum

physiological values (Table 2), which will be termed traditionally pre-

scribed ET. Traditional methods are commonly used to control exercise

intensity defined by the current exercise guidelines (150 min/week

of moderate-intensity (3–6 metabolic equivalents) or 75 min/week

of vigorous-intensity (≥ 6 metabolic equivalents) exercise) (American

College of Sports Medicine, 2017; Bull et al., 2020). It is assumed that

traditionally prescribed ETwill elicit homogeneous acute physiological

responses among individuals, yet this is not the case (Iannetta et al.,

2020, 2021; Katch et al., 1978; Lansley et al., 2011; Meyer et al., 1999;

Scharhag-Rosenberger et al., 2010).

Acute physiological responses to exercise are dictated by two

physiological thresholds which delineate three domains of exercise

intensity (moderate, heavy and severe; Jamnick et al., 2020), each of

which elicit distinctive homeostatic perturbations (Black et al., 2017;

Carter et al., 2002). Within the literature, the varied nomenclature for

these twophysiological thresholds canbe confusing (Poole et al., 2020).

Whilst acknowledging that eachof the various physiological thresholds

are not synonymous and should not be used interchangeably (Caen

et al., 2018), for this review, thresholds are categorised into two

tipping points: T1 and T2 (Table 1). Crucially, among individuals, T1

and T2 vary in their position relative to V̇O2 max (Iannetta et al., 2020).

It has been shown that T1 can vary between 40 and 60% V̇O2 max

among individuals with similar V̇O2 max values (Lansley et al., 2011);

T2, estimated by critical power (CP), ranged between 53–80% peak

work rate in young healthy males (Van Der Vaart et al., 2014); and in

elitemarathon athletes, T1 and T2 occurred at extremely high fractions

of V̇O2 max (∼85% and ∼95%, respectively; Jones et al., 2020). In the

HERITAGE study, the position of T1 occurred at various percentages

of V̇O2 max among individuals, and consequently the standardisation

of exercise intensity (55–75% V̇O2 max) resulted in exercise under-

taken <T1 and >T1 among individuals (Gaskill et al., 2001). Thus,

unsurprisingly, when exercising at an intensity fixed to a maximum

physiological value, individuals may be exercising above, or below,

T1 and T2 (Dwyer & Bybee, 1983; Iannetta et al., 2020; Katch

et al., 1978; Meyer et al., 1999; Weltman et al., 1989, 1990). As

diverse physiological response profiles are elicited at such intensities,

traditionally prescribed ET does not appropriately control the exercise

intensity and stimuli experienced among individuals despite pre-

scribing ‘standardised’ exercise (Iannetta et al., 2020, 2021; Jamnick

et al., 2020).

3.4.1 Traditional approaches to exercise intensity
prescription

Traditionally prescribed ET programmes appear to elicit a

heterogeneous response to an acute exercise stimulus among

individuals. For example, despite all corresponding to the heavy-

intensity domain according to the ACSM guidelines (Table 2), exercise

performed at 60–80% V̇O2 max results in considerable differences

in V̇O2
, HR and blood lactate concentrations among individuals

(Katch et al., 1978; Lansley et al., 2011; Meyer et al., 1999; Scharhag-

Rosenberger et al., 2010).Moreover, tolerable exercise duration varies

considerably between such intensities, for example, some participants

appear to be able to sustain exercise at 75% V̇O2 max for 60 min, while

others are unable to do so (range: 10–50 min) (Scharhag-Rosenberger

et al., 2010).

Chronically, substantial heterogeneity in the adaptations to

traditionally prescribed ET has also been observed. In the DREW

study (Church et al., 2007 ), >30% of participants experienced no

increase in V̇O2 max following ET prescribed at 50% V̇O2 max (Pandey

et al., 2015a). In the HART-D study (Church et al., 2010), it was

reported that 57% of individuals experienced an increase in V̇O2 max,

and only 37% an increase of ≥5% (Pandey et al., 2015b). Similarly, in

the STRRIDE studies (Kraus et al., 2001; Slentz et al., 2011), the change

in V̇O2 max ranged substantially, between −37–77% (L. Ross, et al.,

2019). Hautala et al. (2006) reported a range of changes in V̇O2 max

from −5–22% following ET prescribed at 70–80% HRmax. Williams

et al. (2019) concluded that despite positive aggregate changes in

V̇O2 max following traditionally prescribed HIIT, SIT and MICT, each

protocol produced considerable heterogeneity in changes in V̇O2 max

among individuals. Whilst response rates are influenced by various

factors, the commonality of varied responses following traditionally

prescribed ET appears to be relevant.

The use of heart rate reserve (HRR) and oxygen uptake reserve

(V̇O2R), not to be used interchangeably (Marini et al., 2021), have been

proposed to create more homogeneous ET programmes. However,

these methods still produce dissimilar responses to exercise. Weltman

et al. (1990) reported that at 85% HRR, only 65% of individuals

were exercising above T1 and thus exercising in the intended heavy

intensity domain. Following HIIT (90% HRR) and MICT (60–70%

HRR), Rowan et al. (2017) reported a mean increase in V̇O2 max of

∼5 ml/kg/min in both groups; however, ∼60% of individuals increased

V̇O2 max by<5ml/kg/min. Scharhag-Rosenberger et al. (2012) reported

that following 1 year of ET at 60% HRR, the mean increase in

V̇O2 max was ∼14%, but changes ranged from −3–37%, and 22% of

the participants were deemed non-responders. Moreover, a series of

studies implementing ET progressing from 40–65% HRR evoked non-

response rates ranging from ∼30–60% (Byrd et al., 2019; Dalleck

et al., 2016; Weatherwax et al., 2019; Wolpern et al., 2015). It is

acknowledged that chronic adaptations from ET are composed of

‘micro-adaptations’ experienced over time (Flück, 2006), and thus

it is plausible, but not yet demonstrated, that heterogeneous acute

responses to exercise, when repeated over time, may manifest as

heterogeneous chronic responses (Mann et al., 2013; Scharhag-

Rosenberger et al., 2010).

Overall, traditionally prescribed ET does not elicit a uniform

exercise intensity among individuals despite aiming to prescribe

standardised ET. This may contribute to the varied chronic responses

commonly observed following traditionally prescribed ET. Despite

these shortcomings, traditional methods remain the dominant means

of intensity prescription within both the scientific literature and the
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field, most likely due to their practicality and availability to be used by

the general population (e.g., HRmonitors and smartwatches).

3.4.2 Threshold-based exercise intensity
prescription

An alternative method of exercise intensity prescription implements

the use of physiological thresholds as anchors in an attempt to account

for metabolic differences among individuals (Mann et al., 2013;

Scharhag-Rosenberger et al., 2010). Specifically, threshold-based ET

has been reported to elicitmore homogeneous physiological responses

to an exercise bout among individuals (Baldwin et al., 2000; Black

et al., 2017; Lansley et al., 2011). Therefore, when repeated over

time, threshold-based ET is proposed to result in more homogeneous

chronic adaptations and reduced response variability (Mann et al.,

2013; Scharhag-Rosenberger et al., 2010). An increase in response

rates following threshold-based ET has indeed been reported in some

studies (Byrd et al., 2019;Dalleck et al., 2016;Weatherwax et al., 2019;

Wolpern et al., 2015). Nonetheless, Karavirta et al. (2011) reported a

considerable rangeof changes in V̇O2 max followingETprescribedabove

and below T1 combinedwith RT (−8 to 42%). The authors of this study,

however, did not report the specific intensities of the training sessions

preventing a full explanation for this variability.

TheLTcanbeusedas ananchor toprescribe the intensity of exercise

(Edge et al., 2006) and appears to produce a more homogeneous

exercise stimulus among individuals than that elicited by traditional

methods (Baldwin et al., 2000). Baldwin et al. (2000) demonstrated

that performing a similar exercise dose at 70% V̇O2 max compared

to 95% LT elicited observable differences in the acute physiological

responses among trained and untrained individuals. When performed

at 95% LT, the perturbations were more homogeneous both within

and between trained and untrained groups (Baldwin et al., 2000). Such

results support the superiority of threshold-based ET in its ability

to control exercise intensity. A recent study demonstrated higher

response rates following HIIT at 90% HRmax (95%) compared to MICT

at 90% LT (53%), despite the range of V̇O2 max changes being similar

between groups (Maturana et al., 2021). Notably, in the HIIT group

the intensity of 90%HRmax was sufficient to ensure that all individuals

were exercising above T2. In this instance, information of physiological

thresholds helped inform the prescription of traditionally prescribed

HIIT, without which it would have been uncertain whether the pre-

scribed intensity provoked exercise pertaining to the intended severe-

intensity domain among all individuals.

Prescribing intensity using the delta (∆) concept has been proposed

based on its ability to reduce the variability in the acute physiological

perturbations experienced by individuals compared to traditionally

prescribed ET (Lansley et al., 2011). The∆method prescribes intensity

as a percentage of the difference between a sub-maximum (T1) and

maximum physiological value (Casaburi et al., 1987). Yan et al. (2017)

prescribed intensity equating to the power at LT plus 40–70% of

the difference between LT and peak aerobic power (i.e. 40–70% ∆).

However, preliminary findings do demonstrate variable changes in

V̇O2 max following 4 weeks of HIIT (−455 to 1521 ml/min). Casaburi

et al. (1987) did however report 100% response rates following ET

prescribed at 50–75% ∆ with a mean increase in V̇O2 max of ∼15%

(7–30%). It has been suggested that 50% ∆ approximates CP (i.e.,

T2; de Souza et al., 2016), and therefore exercising at intensities

above this threshold should elicit consistently high metabolic stress

among individuals, increasing the likelihood of stimulating subsequent

adaptation and increased response rates. Lansley et al. (2011)

observed significantly lower individual variability in a variety of acute

physiological responses following exercise prescribed at 40%, 60%

and 80% ∆ compared to 50%, 70% and 90% V̇O2 max. Additionally,

at 70% V̇O2 max, four individuals attained V̇O2 max and were unable to

sustain the exercise for 20 min (Lansley et al., 2011), consistent with a

work intensity within the severe-intensity domain (Black et al., 2017),

demonstrating an inability of traditional approaches to accurately

control the exercise stimulus among individuals (Iannetta et al., 2020).

It is generally accepted that T2 represents the upper boundary

at which metabolic stability may be achieved, thus demarcating the

heavy- and severe-intensity domain. It has recently been proposed

that CP is the gold-standard representation of this threshold (Jones

et al., 2019; Poole et al., 2020). However, unlike its common application

to determine endurance performance (Craig et al., 2018; Jones et al.,

2020), the efficacy of using CP to prescribe training has not been

readily demonstrated within the literature despite its recognition as

a potentially efficacious anchor for intensity prescription. This may

relate to the arduous nature of determining CP, although alternative

methods have now been developed to overcome this issue (Muniz-

Pumares et al., 2019).

Working at an intensity <CP enables the consistent attainment of

metabolic stability and stabilised V̇O2
kinetics, allowing for prolonged

exercise to be completed (Craig et al., 2018; Jones et al., 2008,

2019). Working >CP prevents the attainment of metabolic stability,

which ultimately results in task failure at a hyperbolic rate (Craig

et al., 2018; Jones et al., 2008, 2019). In particular, exercising >CP

is associated with discrete acute responses and predictable exercise

tolerances (Black et al., 2017). Accordingly, CP is a strong candidate

as a key anchor of intensity (Poole et al., 2020). Training programmes

specifically informed by the running derivative of CP, critical speed,

have proven effective in the prescription ofHIIT, eliciting an increase in

both critical speed and V̇O2 max (Clark et al., 2013; Pettitt, 2016; Pettitt

et al., 2015; Thomaset al., 2020).However, response variability is yet to

be investigated following CP-informed ET. As exercising relative to CP

is associated with predictable physiological perturbations (Black et al.,

2017), future research might aim to investigate whether the CP-based

ET elicits more homogeneous chronic adaptations in V̇O2 max than that

of traditional approaches as a result of exposure tomore homogeneous

acute exercise responses among individuals.

In addition to marked increases in V̇O2 max, prescribing volume-

matched ET relative to VT (T1) and the respiratory compensation

point (T2) resulted in 100% response rates compared to 40–70%

response rates when ET was prescribed relative to HRR (Byrd et al.,

2019; Dalleck et al., 2016; Weatherwax et al., 2019; Wolpern et al.,

2015). Thresholds derived from gas exchange data are likely to
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F IGURE 2 Theoretical pathway for varied response following traditional versus threshold-based intensity prescription within an endurance
training programme. Some examples are provided of traditional and threshold-based anchors of intensity. Compared to traditional approaches
(where intensity is relative to amaximum physiological value), threshold-based approaches (where intensity is relative to a physiological
threshold) elicit more homogeneous responses to an acute exercise bout.When repeated over time, more homogeneous chronic adaptations may
manifest resulting in reduced response variability and increased response rates. CP, critical power; H+, hydrogen ion concentration; HRR, heart
rate reserve; LT, lactate threshold; Pi, inorganic phosphate concentration; T1, tipping point 1; T2, tipping point 2; V̇O2

, oxygen uptake; V̇O2 max,
maximum oxygen uptake

reflect changes in metabolic rate and substrate utilization in response

to different exercise intensities (Keir et al., 2015). Therefore, the

increased response rates may have been driven by repeated exposure

tomorehomogeneous exercise stimuli, as evidencedhereinwhenusing

physiological thresholds to prescribe intensity. However, as this was

not determined, it is unclear whether increased response rates were,

in fact, the result of reductions in response variability, greater mean

changes in V̇O2 max or both.

Overall, most studies have demonstrated greater response rates

following threshold-based ET compared to traditionally prescribed

ET (Byrd et al., 2019; Dalleck et al., 2016; Weatherwax et al.,

2019; Wolpern et al., 2015). As threshold-based ET elicits more

homogeneous acute physiological stress among individuals, increased

response rates following such ET may be driven by the manifestation

of more homogeneous chronic adaptations (Figure 2). In contrast

to attributing increased response rates to greater mean changes in

V̇O2 max, as typically observed following the manipulation of training

dose within traditionally prescribed ET, future research might aim

to determine whether increased response rates following threshold-

based ET are, in fact, driven by a reduction in response variability

exclusively, or in addition to the elicitation of greater mean changes in

V̇O2 max.
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4 SUMMARY

In summary, considerable individual variability in V̇O2 max response

rates occurs following ET. This is concerning as∼20%of the population

may not increase CRF in response to ET, even when adhering to the

exercise guidelines. As increases in CRF are associated with improved

health and reduced risk of disease and all-cause mortality, under-

standing the factors which may influence response variability and

how to minimise the incidence of non-response is important. This

review has explored the biological contributors of CRF response

variability following a period of ET, and the methodological sources

of variation that, upon manipulation, can influence subsequent CRF

training responses.

Biological factors including genetics, age, sex and baseline V̇O2 max

appear to contribute to varied individual responses, with the most

potent being genetics, explaining ∼50% of response variability.

However, the molecular basis underpinning V̇O2 max trainability

remains unclear. The influence of age, sex and baseline V̇O2 max

appears to be smaller, accounting for <10% of response variability

when combined. Men appear to be somewhat more responsive than

women and increases in V̇O2 max are attributed primarily to central

adaptations. In contrast, increases in V̇O2 max in women appear to

be attributed to a greater extent to peripheral adaptations. Lastly,

whilst the effect of baseline V̇O2 max on response variability remains

inconclusive, individuals possessing an already well-developed

V̇O2 max phenotype are at a higher risk of non-response due to a

physiological ‘ceiling’, whereby scope for further adaptation becomes

diminished.

The manipulation of methodological factors appears to have

a potent influence on V̇O2 max response variability. Changing the

type of exercise can salvage previous non-response to training

in some individuals; however, these improvements are primarily

training-type specific. Increasing training dose, and thus the physio-

logical stress elicited by the exercise within an ET programme, has

consistently been shown to increase V̇O2 max response rates. However,

whilst efficacious, such a strategy may be unfeasible for the wider

population.

The method of intensity prescription implemented within ET

can influence subsequent V̇O2 max response rates and, notably,

could explain a significant proportion of response variability to

ET. Whilst increases in V̇O2 max can be achieved via traditionally

prescribed ET, the unpredictable and heterogeneous physiological

stress experienced among individuals assumed to be exercising at

the same standardised intensity likely promotes variable chronic

adaptations. The mechanisms explaining the observed reduction, or

even abolishment, of non-response to ET following threshold-based

ET likely stems from the ability of such methods to better control the

acute physiological stress elicited by such exercise. It is plausible that,

when repeated over time, the accumulation of more homogeneous

micro-adaptations among individuals may manifest as more homo-

geneous chronic adaptations and thus increased response rates as a

result of reduced response variability.

5 FUTURE DIRECTIONS

Future research may endeavour to investigate whether threshold-

based ET reduces the incidence of non-response via the elicitation

of more homogeneous responses to exercise among individuals, and

whether such increases in response rates are attributable to reduced

individual response variability exclusively or in addition to greater

mean changes in V̇O2 max. Such findingsmay help inform future training

interventions which aim to obtain increases in V̇O2 max in as many

individuals as possible, increasing the number of individuals attaining

meaningful health benefits from exercise.
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