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Abstract: Background: We developed CEPS as an open access MATLAB® GUI (graphical user
interface) for the analysis of Complexity and Entropy in Physiological Signals (CEPS), and demonstrate
its use with an example data set that shows the effects of paced breathing (PB) on variability of
heart, pulse and respiration rates. CEPS is also sufficiently adaptable to be used for other time
series physiological data such as EEG (electroencephalography), postural sway or temperature
measurements. Methods: Data were collected from a convenience sample of nine healthy adults
in a pilot for a larger study investigating the effects on vagal tone of breathing paced at various
different rates, part of a development programme for a home training stress reduction system. Results:
The current version of CEPS focuses on those complexity and entropy measures that appear most
frequently in the literature, together with some recently introduced entropy measures which may
have advantages over those that are more established. Ten methods of estimating data complexity
are currently included, and some 28 entropy measures. The GUI also includes a section for data pre-
processing and standard ancillary methods to enable parameter estimation of embedding dimension
m and time delay τ (‘tau’) where required. The software is freely available under version 3 of the GNU
Lesser General Public License (LGPLv3) for non-commercial users. CEPS can be downloaded from
Bitbucket. In our illustration on PB, most complexity and entropy measures decreased significantly
in response to breathing at 7 breaths per minute, differentiating more clearly than conventional
linear, time- and frequency-domain measures between breathing states. In contrast, Higuchi fractal
dimension increased during paced breathing. Conclusions: We have developed CEPS software as a
physiological data visualiser able to integrate state of the art techniques. The interface is designed
for clinical research and has a structure designed for integrating new tools. The aim is to strengthen
collaboration between clinicians and the biomedical community, as demonstrated here by using
CEPS to analyse various physiological responses to paced breathing.

Keywords: complexity; entropy; software; paced breathing; heart rate variability; HRV

1. Introduction

Every researcher has a dream. Ours has been to find or create an easy-to-use, versatile
and reasonably comprehensive toolbox specifically for the analysis of complexity and
entropy in physiological signals (CEPS). Since 2011, in our own research on physiological
signals and measures, including electroencephalography (EEG), heart rate variability
(HRV), temperature, postural sway and respiration, we (D.M. and T.S.) have felt hampered
as clinicians by the lack of such a non-specialist software package that would enable us to
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explore, compare and combine changes in a variety of complexity and entropy measures in
response to interventions such as electroacupuncture or biofeedback. Here, we describe
the toolbox that we have developed to suit our own requirements, and hopefully those of
other researchers as well—although we are well aware that different research groups will
have different priorities and interests. We also illustrate its use in analysing the effects of
paced breathing (PB) on variability of Electrocardiogram (ECG), photoplethysmography
(PPG) and respiration (RSP) data in a small pilot study.

We began by conducting an online review of existing physiological time series data
analysis packages. Although we found that quite a number are already available, many
are now dated, until recently the majority have required knowledge and programming
skills that many clinicians and healthcare workers do not have, and most offer only lim-
ited analysis of complexity and entropies, our own primary focus. Thus, although 34,647
studies were found in PubMed with the search term ‘entropy’, less than 1.5% of these
(508) are clinical studies; while of 1,734,525 returns for ‘complexity’, less than 1.4% (22,768)
are clinical studies, and for ‘chaos’ less than 0.5% (only 65 of 13,493 returns) are clinical
studies (figures retrieved 27 July 2020). This has provided the motivation for a number
of available software tools that use a graphical user interface (GUI), more accessible to
those without a computer science background [1–10]. Some of these have a particular
focus on data acquisition [6] pre-processing [2] or filtering of data [4,11]. The majority
are dedicated to analysis of HRV [7,10,12–15], with a few designed specifically for in-
vestigation of the EEG [16–20]. Many HRV analysis tools—such as Kubios HRV [13],
HRVAS [21], HRVFrame [14], gHRV [7], HRVAnalysis [15], RHRV [22,23], RR-APET [10]
and PyBioS [24]—include a selection of complexity and entropy methods, although some
older ones offer only a single such measure [13,25,26], and others such as PyHRV are not
in GUI form [27]. We found only one EEG-specific software whose main focus is on com-
plexity or entropy measures [5], although a complexity toolkit for resting state functional
magnetic resonance imaging (fMRI) was located, also containing a handful of entropy mea-
sures [28]. In addition, there are also some older more general time series analysis toolkits
with a particular emphasis on nonlinear dynamics, such as the Chaos Data Analyzer [29],
TISEAN [30] and MATS [31], with, most recently, EZ Entropy [9]. Obviously, fashions
change and these toolboxes were all designed in keeping with the original interests and
objectives of their developers [32]. None of them completely met our own requirements for
an easy-to-use package that would enable preliminary parameter testing, simultaneous
analysis of many different multiscale measures, comparison and classification of results.
Those that came closest were EEGFrame (22 nonlinear measures, including eight entropies)
and HRVFrame (21 nonlinear measures, including six entropies), with their successor MUL-
TISAB (unfortunately not open access) [33], HRVAnalysis (around 12 nonlinear measures,
including six entropies), PyBioS (an object-oriented tool for modelling and simulation of
complex biological systems, with some 10 nonlinear measures, including seven entropies)
and EZ Entropy (six entropies, but no other nonlinear measures). The latter two were
explicitly designed to be used with non-time series data in addition to physiological signals
such as HRV. Only Kardia [26], Kubios HRV [13], RHRV [22,23], RR-APET [10] and Py-
BioS [24] provided more than a cursory introduction to the complexity/entropy measures
offered. The packages reviewed are listed in Supplementary Material SM3, showing which
measures are implemented in each, as well as citation counts from Google Scholar and
SCOPUS. The majority of the packages are open-source GUIs, although fewer offer batch
processing. A number provide useful pre-processing and data segmentation possibilities,
but only a handful include multiscale analysis or classification modules.

Beyond those packages mentioned above, our literature search found only one ad-
ditional tool which included some of the complexity and entropy measures that were of
interest to us, published in 2020 by Mendonça et al. [34], but this was for a very limited
application, was not GUI-based, and was far too technical for a non-specialist user. Yet,
over the past three decades, more and more scientific studies have concluded that tradi-
tional, linear methods of analysis are insufficient for complete analysis of the underlying
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patterns that occur in complex physiological signals [9,35,36]. This has now become widely
accepted and is rarely questioned. We also conducted a brief review of published studies to
see if this is really the case and not just a matter of opinion (Supplementary Material SM1).
Our bibliometric review was encouraging. Furthermore, while conducting our review we
found many indications that different complexity and entropy measures provide different
information and so could be considered complementary [37], suggesting that multiple
measures should be used [38], not just a single one, particularly when analysing concurrent
changes in several physiological signals [39].

We therefore felt justified in developing our own free, open-source GUI for a good
variety of complexity and entropy measures (in particular, multiscale measures), of which
there are now so many. As the name CEPS suggests, these measures are rather like the fungi
Cèpes (Boletus edulis)—deliciously fascinating, appearing mysteriously and apparently
out of nowhere. You just have to turn your back on the internet for a moment, and there’s
another one you’ve never seen before. The challenge is to come to know which are worth
exploring further, and which are indigestible. We hope that CEPS will facilitate this process
but should emphasise that researchers will still have to make their own, careful decisions,
and not use the GUI as a substitute for critical thinking. To help make this paper more
digestible, a list of the many abbreviations used is included in the table at the end of
the article.

Objectives

Our objectives of the paper and software are as follows:

1. To explore the literature on complexity and entropy measures for those suited to a
MATLAB® GUI for users who may not be familiar with them and also not expert in
computer programming methods.

2. To investigate the ‘family trees’ of different complexity and entropy measures in order
to better select existing codes for inclusion in CEPS.

3. To create a GUI that would allow univariate analysis of single and multichannel (time)
series data, specifically for—but not limited to—the data types resulting from our
own research. CEPS should thus include some simple analytical methods and basic
normality tests, as well as methods to calculate complexity and entropy measures,
multiscale measures in particular.

4. For CEPS to include some basic pre-processing steps and some ancillary methods
for estimating embedding dimension and time delay parameters. Batch processing
(import and export) should be possible, and different import and export formats
catered for.

5. As a central feature, for CEPS to include a ‘Test and Plot’ facility for experimentation
with measure parameters prior to processing and exporting results. As a priority, to
test CEPS with reference to results obtained using other packages, although this is not
always a simple process, given the variety of parameter settings possible [7]. Where
this is not feasible, to verify results in consultation with the originators of the different
complexity and entropy measures implemented.

6. Eventually, for CEPS to include a final ‘Classification’ section where results using
different measures and methods can be compared, and a ‘plug-in’ facility to allow
other researchers to add measures not already included in the list available.

7. To include a ‘Primer’ with CEPS containing enough background information and
references to enable those unfamiliar with the concepts of complexity and entropy to
use the GUI and process their own data without too much of a ‘garbage in—garbage
out’ result.

8. To illustrate how CEPS may be applied in practice by using the GUI for analysing the
effects of paced breathing (PB) on variability of ECG, PPG and RSP data in a small
pilot study. In particular, to compare the relative performance of conventional linear
(time- and frequency-domain) indices and the nonlinear measures provided in CEPS,
as well as between the different complexity and entropy measures.
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2. Materials and Methods
2.1. Literature Review

A literature search was conducted in PubMed for relevant software packages. Search
terms were drawn from keywords found in the titles and abstracts of some of the packages
mentioned in the Introduction, which had already been located through prior knowledge,
searching references or personal recommendations. These terms were concatenated into a
preliminary search string:

(tool[Title] OR toolbox[Title] OR “graphic* user interface”[Title] OR Software[Title] OR
program*[Title]) AND (signal*[Title] OR series[Title]). This resulted in 1190 papers for the
period 2000–2020.

Adding AND (ECG OR HRV OR EEG OR temperature OR respiration) reduced this
number to 74, of which 17 were not known to the searcher (D.M.) but were judged to be of
interest from their Abstracts. Most of these turned out to be for very specific applications,
beyond the aspirations of CEPS (see Introduction for a brief summary of results).

A further search of PubMed was made, on the basis of prior knowledge and measures
used in existing software packages, in order to locate studies on complexity and entropy
measures likely to be useful in CEPS. The generally accepted names of the complexity and
entropy measures were used as search terms, as shown in Tables 1 and 2.

Table 1. Major complexity and related measures sought in PubMed.

Measure Abbreviated Name Search Term
Higuchi fractal dimension HFD Higuchi AND “fractal dimension”

Katz fractal dimension KFD Katz AND “fractal dimension”
Allan Factor AF “Allan Factor”

Correlation dimension D2 “Correlation dimension”
Hurst exponent H “Hurst exponent”

Detrended fluctuation analysis DFA “Detrended fluctuation analysis”
Largest Lyapunov exponent LLE Various 1

Recurrent quantification analysis RQA “Recurrent quantification analysis”
Poincaré plot PP “Poincaré plot” NOT “return plot”

Lempel-Ziv complexity LZC “Lempel-Ziv complexity”
1 “Largest Lyapunov Exponent” OR “maximal Lyapunov Exponent” OR “maximum Lyapunov Exponent” OR “greatest Lyapunov
Exponent”.

Table 2. Major entropy measures sought in PubMed.

Measure Abbreviated Name SEARCH TERM
Shannon entropy SE “Shannon entropy”

Rényi entropy RE “Renyi entropy”
Min-entropy M-E “Min-entropy”

Tsallis entropy TE “Tsallis entropy”

Kolmogorov-Sinai entropy KSE “Kolmogorov entropy” or
“Kolmogorov-Sinai entropy”

Permutation entropy PE “Permutation entropy”
Conditional entropy/

Corrected conditional entropy
CE/
CCE “Conditional entropy”

Approximate entropy ApEn “Approximate entropy”
Sample entropy SampEn “Sample entropy”

Coefficient of Sample entropy CosEn “Coefficient of sample entropy”
Quadratic Sample entropy QSE “Quadratic sample entropy”

Multiscale entropy MSE “Multiscale entropy”
Fuzzy entropy FE “Fuzzy entropy”

Dispersion entropy DE “Dispersion entropy”
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Table 2. Cont.

Measure Abbreviated Name SEARCH TERM
Slope entropy SlopeEn “Slope entropy”

Bubble entropy BE “Bubble entropy”
Distribution entropy DistEn “Distribution entropy”

Phase entropy PhEn “Phase entropy”
Spectral entropy SpEn “Spectral entropy”

Differential entropy DiffEn “Differential entropy”
Diffusion entropy DnEn “Diffusion entropy”

Symbolic Dynamics 1 SymDyn “Symbolic Dynamics”
1 This method is not strictly speaking an Entropy measure but is included here for completeness.

Many of the studies located used multiple measures, some not mentioned in their titles
or abstracts, enabling further searches for measures not previously encountered. When
it became clear that further searching was unlikely to turn up any newer measures, the
numbers of studies on each measure were counted, and those measures used infrequently
were not considered further. Results are included below in Section 3.1.

A review was also undertaken from published studies of the data requirements for all
these measures (discrete and/or continuous, short and/or long samples), the measures’
robustness to noise, whether they may be (or have been) used with bandpass (or other)
filtered data, if they are affected by sampling rate or down-sampling, and whether data
needs to be stationary or linear if the measures are to be used appropriately. The results of
this review are summarised in Section 3.1.2 below. Information on parameter settings was
also gathered, and, for some but not all measures, their expected values where possible.
These are presented in the reference document Primer on Complexity and Entropy that is
accessible via the HELP section in the CEPS GUI.

After preparing a shortlist of measures to be considered for inclusion in CEPS, further
PubMed searches were undertaken, using as search terms the names of the researchers
who had contributed most papers on each complexity and entropy measure. Results were
then collated, and researchers ranked both by the number of their published studies and
by how many different measures they had investigated. MATLAB codes used by the
highest-ranking researchers or others from their university departments were then sought,
for use in CEPS. In recent years, some researchers have generously published the code
used in their work, or at least a pseudocode that can then be translated and used by others.
When neither was available, code was requested from its originators. The codes used
in CEPS and their sources are listed in a Table in Section 3.1.2, with further information
provided in an Appendix to the CEPS Manual.

In addition, a brief literature review was undertaken using PubMed to locate studies
on PB and its effects on entropy or other nonlinear measures in ECG or RSP data.

2.2. Creating CEPS

CEPS was developed in MATLAB, initially with GUIDE (‘Graphical User Interface
Development Environment’), which was further enhanced by migrating the GUIDE ap-
plication to App Designer. On the basis of our previous experience in analysing HRV
and EEG data, an initial list of descriptive and simple linear measures was created first
(17 items), together with some standard normality tests and time- and frequency-domain
measures (15 items). Stationarity tests and a nonlinearity measure [40] were then imple-
mented (six items). The main list of complexity and entropy measures was built using
our literature reviews, with 10 and 28 items, respectively, together with three methods
of symbolic dynamics. Standard ancillary methods for estimating embedding dimension
and time delay were included (three items). The interface was designed in stages, and
new measures were tested against results from other published software tools or, where
this was not possible, by seeking verification from the methods’ originators. Methods of
verification used are shown in a Table in Section 3.1.2. Testing and debugging are still in
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process, incorporating user feedback from a usability survey, following the example of
gHRV [7] and RR-APET [10]. The survey form is accessible via the GUI.

2.3. Paced Breathing Data

Electrocardiogram (ECG), photoplethysmography (PPG) and respiration (RSP) data
were collected from a sample of nine healthy adults in a pilot for a larger study investigating
the effects on vagal tone of breathing paced at various different rates, part of a development
programme for a home training stress reduction system managed by MindSpire and funded
by Innovate UK (reference 63382). Participants were informed about the study and signed
a consent form with the explicit agreement that their anonymised data would be stored in
perpetuity on a publicly available repository for other researchers to use. Ethics approval
procedure was followed, according to the principles of the Helsinki declaration.

In this pilot, two 300-s trials were recorded for each person. The first was a baseline, in
which people were instructed to sit comfortably and breathe normally. In the second trial,
a few minutes later, they were instructed to breathe in and out, guided by a laptop pacer
display, with a coloured bar growing and shrinking onscreen at seven cycles per minute.

Single-lead ECG signals were obtained from one electrode applied on the volar surface
of each forearm, with the ground electrode on the volar surface of the left forearm, PPG
signals from the middle finger of the left hand, and respiration from a SleepSense abdominal
respiration belt with a piezoelectric crystal effort sensor. Data were collected using a NeXus-
10 amplifier with BioTrace+ software v 2015B (Mind Media, Herten, The Netherlands),
exported at 256 Hz. The ECG signal was sampled at the same frequency, PPG at 128 Hz
and RSP at 32 Hz. Data were exported from BioTrace+. The ECG and PPG signals were
then processed separately using industry-standard HRV software, Kubios HRV Premium
software (v3.1; Kuopio, Finland), with an automatic RR correction algorithm to deal with
artefacts and a ‘smoothness priors’ method of trend removal [41]. For spectrum estimation,
a piecewise cubic spline interpolation was used and the default resampling rate of 4 Hz.
The graphed output from the Kubios HRV software for each of the resulting recordings
was then examined carefully for any remaining unusual findings or artefacts.

In addition to using Kubios HRV Premium for heart and pulse rate analysis, as part
of our suite of tools for physiological data analysis, one of the present authors (D.P.)
had earlier developed a versatile MATLAB-based GUI for peak detection in raw ECG,
Photoplethysmograph (PPG) and Respiration time series data. This was used here for peak
detection in the RSP signal, again followed by examination of each data file and manual
correction if appropriate. The resulting R-to-R beat interval (RRi) data from the ECG, PPG
pulse-to-pulse intervals (PPi) and RSP inter-breath intervals (BBi) were then used as input
for CEPS. All measures in CEPS that were suitable for short datasets were selected for
further analysis, using default parameters. The usual time- and frequency-domain HRV
measures, as well as three derived from Poincaré plot analysis (SD1, SD2 and their ratio)
were also computed for the three data streams using Kubios HRV Premium. Standard
frequency ranges were set: ‘Very low frequency’ (VLF), 0–0.04 Hz, ‘Low frequency’ (LF),
0.04–0.15 Hz, and ‘High frequency’ (HF), 0.15–0.4 Hz.

Analysis was conducted in MATLAB R2019a, Excel Version 2011, SPSS Version 26 and
RStudio Version 1.3.1093. Bootstrapped paired t-tests were used to check for significant
differences in measures between the ‘baseline’ (unpaced) and paced breathing conditions.
Case-resampling bootstrap was used, with 1000 samples, resulting in percentile-based
p-values.

Complexity and entropy measures are essential for quantifying nonlinear physiolog-
ical processes, and in particular the changes in their dynamics that occur over time. To
properly encompass the multifarious complexity of physiological signals also necessitates,
we believe, considering a large number of those variables that are appropriate for analysis
(see Table 3). In this analysis, we have used the Benjamini–Hochberg procedure to decrease
the false discovery rate and so reduce the Type I errors (false positive results) that inevitably
occur when conducting the resulting multiple comparisons.
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A false discovery rate (FDR) of 0.12 was selected, to provide usable p-values for around
50 (just over a quarter) of our 198 measures (50, 45 and 48 measures, for ECG, PPG and RSP,
respectively), with uncorrected p-values of 0.033 or less. When an FDR of 0.05 was selected,
none of the 198 measures appeared to give positive results, which was patently not the
case, whereas for FDR = 0.10 (often used in screening studies), between 21 (for RSP) and
38 (for ECG) of the measures did (35 for PPG). For FDR = 0.2, on the other hand, around
100 measures resulted in p-values less than a Benjamini–Hochberg critical value of 0.05
for each data stream (109, 94 and 108, for ECG, PPG and RSP, respectively). The choice of
FDR = 0.12 seemed a suitable compromise.

Cohen’s d was used as a measure of Effect size [42]. Effect size (Cohen’s d) and rank or
corrected p-values are closely related. Here, we have chosen to report effect size, followed
in square brackets by the range of p-values that remain significant after applying the
Benjamini–Hochberg procedure.

Table 3. CEPS and Kubios HRV measures considered appropriate for 300-s ECG, PPG and RSP data. Numbers of multiple
lags (k) used in this analysis are shown, as well as the number of measures in each category.

CEPS (149 Measures)

Category Measures Counts
Descriptive measures e.g., Mean, SD, CV, RoCV 12

Linear measures e.g., Slope, Intercept, RoSlope, Skewness 7
Time domain e.g., RMSSD, Hjorth A, M and C 5

Stationarity and c. Auto-covariance (1-20), ACV 21

Complexity measures HFD (5-14), H, RQA, EPP (1-10), CCM
(1-10), LZC, mLZC, (1-9) 52

Shannon-based SE, E-MC, AE, EoE, EoDm, KLDm, Tone 7
Ordinal entropies mPE (1-10), ImPE (1-10), mPM-E (1-10) 30

Other entropies RCmDE (1-10), DistEn, SlopeEn, BE,
PhEn 14

Kubios HRV (49 Measures)

Category Measures Counts
Time/Geometric domain e.g., Mean HR, TINN, pNN50 11

Frequency domain e.g., Welch and autoregressive peak Hz
and band powers 34

Complexity Poincaré SD1, SD2, SD1/SD2 3
Other Stress index 1

For abbreviations, see table at the end of the Article.

3. Results
3.1. Literature Review
3.1.1. Complexity and Entropy Measures of Potential Interest Located in PubMed

These measures are shown in Tables 4 and 5, together with references for software
packages known to include them and various other bibliometric details.
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Table 4. (A) Major complexity and related measures found in PubMed, with references for software packages known to
include them; (B) Numbers of studies on measures found in PubMed on 6 August 2020 and in SCOPUS on 21 January 2021;
(C) When each measure was first indexed in PubMed (reference in brackets); (D) Numbers of citations of that paper in
Google Scholar (GS) and SCOPUS (S); (E) Peak year for number of occurrences (hits) in PubMed.

(A) Measure [Packages] (B) N PubMed
(SCOPUS) Hits

(C) Date of First
PubMed Paper

(D) First Paper
Citations—GS (S)

(E) Peak Year in
PubMed

HFD [7,15,20,33,34,43] 118 (458) 1994 [44] 28 (17) 2019
KFD [15] 27 (135) 1994 [45] 43 (0) 2019
AF [22,33] 18 (98) 1996 [46] 152 (113) 2004–5

D2 [5,20,22,23,29–31,33,43,47] 732 (3869) 1986 [48] 113 (70) 2019
H [5,15,20,33,43] 427 (3464) 1992 [49] 0 (2) 2008

DFA [10,15,20–24,26,27,33,34,43,47,50–52] 907 (3288) 1995 [53] 3850 (2619) 2017
LLE [5,8,15,22,23,29,30,33,43] 545 (2470) 1986 [54] 1081 (550) 2019

RQA [10,13,20,22,23,30,33,43,50] 386 (1201) 1997 [55] 154 (79) 2019
PP [7,10,13,15,20,21,23,27,30,33,43,47,50,56–61] 339 (870) 1992 [62] 472 (292) 2018

LZC [14,15,20,31,33,34] 201 (547) 1993 [63] 20 (16) 2015

Table 5. (A) Major entropy measures found in PubMed, with references for software packages known to include them; (B)
Numbers of studies on measures found in PubMed on 6 August 2020 and in SCOPUS on 21 January 2021; (C) When each
measure was first indexed in PubMed (reference in brackets); (D) Numbers of citations of that paper in Google Scholar (GS)
and SCOPUS (S); (E) Peak year for number of occurrences (hits) in PubMed.

(A) Measure [Packages] (B) N PubMed
(SCOPUS) Hits

(C) Date of First
PubMed Paper

(D) First Paper
Citations—GS (S)

(E) Peak Year in
PubMed

SE [8,15,34,64] 903 (6999) 1988 [65] 14 (11) 2019
RE [20,33,60] 138 (2704) 2000 [66] 64 (44) 2017/19

M-E 15 (500) 2012 [67] 172 (114) 2015–17
TE [34] 93 (1525) 2001 [68] 106 (89) 2015

KSE 129 (1121 a) 1985 [69] 201 (119) 2000
PE [9,24] 234 (1347) 2002 [70] 2927 (1977) 2018

CE/CCE [9,15,20,33] 166 d (1635) 1998 [71] 286 (209) 2019
ApEn [9,13,15,20,22–24,28,31,33,43,62] 1199 b (2605) 1991 [72] 5394 (3801) 2013

SampEn [9,13,15,20,21,23,33,34,43] 1033 (2691) 2000 [73] 5712 (4126) 2018
CoSEn 8 (15) 2011 [74] 243 (183) 2018

QSE 4 (11) 2014 [75] 13 (11) n/a (all tied)
fSampEn 9 (13) 2015 [76] 10 (6) 2018/20

MSE [13,24,28] 402 (959) 2002 [77] 2526 c (1843) 2018
FE [9,24] 121 (2003) 1998 [78] 118 (58) 2018
DE [24] 9 d 2016 [79] 14 (11) 2017–20
SlopeEn 0 (3) 2019 [80] 1 (3) n/a

BE 2 d 2017 [81] 42 (34) n/a (both tied)
DistEn [9,24] 31 d 2015 [82] 129 (110) 2019

PhEn [24] 1 d 2019 [83] 5 (3) 2019
SpEn [20,33,43] 302 (1022) 1991 [84] 26 (18) 2019

DiffEn 72 (942) 1970 [85] 44 (21) 2018
DnEn 31 (117) 2002 [86] 50 (27) 2016

SymDyn [15,20,24,33,34,87] 329 (2383) 1995 [88] 79 (55) 2015

Notes: a Kolmogorov entropy (KE) = 696; KE and Kolmogorov-Sinai entropy = 1121; b On repeating this search 21.01.21 for the same period
(i.e., to 6 August 2000), PubMed count had increased to 1234; c Two papers were published by Costa et al. in 2002—one in Computers in
Cardiology, a relatively small circulation journal with no doi, one in Physical Review Letters, a more widely read journal with doi; d These
are specifically citations of the Conditional entropy of Porta’s group, the Dispersion entropy created by Rostaghi and Azami, the Bubble
entropy of Manis et al., the Distribution entropy of Li, the Phase entropy of Rohila and Sharma, and the SymDyn methods of Voss and
Porta; other measures with those names are also mentioned in PubMed. e Note that since the original searches on 06.08.20, the journal
Entropy has now been indexed in PubMed.

For further review results, see Section 3.1.2 below, and the Primer on Complexity and
Entropy that is accessible via the HELP section in the CEPS GUI.

3.1.2. Researchers, Institutions, and Measures

The most prolific researchers on complexity or entropy—those with more than 25 pa-
pers on these topics indexed in PubMed—are listed in Table 6, showing the numbers of
their papers indexed, the number of different complexity or entropy measures mentioned
in the abstracts to those papers and listed in Tables 4 and 5 above, the date their first
relevant paper appeared in PubMed and the University or other institutions with which
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they were affiliated then and—if different—with which they were affiliated when their
most recent papers were published. Note that the numbers of measures and papers shown
will have increased now that the journal Entropy is indexed in PubMed. More detailed
information can be found in the Supplementary Material (Supplementary Material SM2).

Table 6. Those researchers who have published more than 25 papers on complexity or entropy topics, listed by the number
of different measures on which they have written and their Institutional affiliation when they first published (unchanged to
date, unless noted otherwise in parentheses).

Author N Measures N Papers Earliest Institution
Maria Signorini 17 31 1994 Politecnico Milano

U Rajendra Acharya 16 53 2004 Ngee Ann Polytechnic
Roberto Hornero 14 102 1999 U Valladolid

Xiaoli Li 14 82 1 2005 Beijing Normal U
Alberto Fernández 14 44 2006 U Complutense, Madrid
David Cuesta-Frau 14 28 2 2007 U Politècnica, València

Alberto Porta 13 74 1994 U Brescia (now U Milano)

Andreas Voss 13 38 1991 Institut für Herz-Kreislauf-Forschung, Berlin
(now U Applied Sciences, Jena)

Jamie Sleigh 13 37 1995 Waikato U (now Waikato Hospital)
Daniel Abásolo 12 57 2005 U Valladolid (now U Surrey)
Javier Escudero 12 52 2006 U Valladolid (now U Edinburgh)

Jesús Poza 8 35 2005 U Valladolid
Marimuthu Palaniswami 7 36 2001 U Melbourne

Ki Chon 7 34 2001 City U, NY (now U Connecticut)

Jiann-Shing Shieh 7 34 2009 Yuan Ze U
(now National Taiwan U Hospital)

Nick Stergiou 6 85 2003 U Nebraska

Men-Tzung Lo 6 33 2010 National Taiwan U Hospital
(now National Central U, Chungli)

Jack J Jiang 6 29 2001 U Wisconsin
Heikki Huikuri 5 49 1996 U Oulu
Timo Mäkikallio 5 30 1996 U Oulu

Chandan Karmakar 4 34 2007 U Melbourne (now Deakin U)
Steven Pincus 3 74 1991 Yale U (now Chapman U)
Metin Akay 3 35 1996 Rutgers U (now U Houston)

Chung-Kang Peng 2 49 1992 Boston U (now Harvard U)
Chengyu Liu 2 27 2011 Shandong U (now Southeast U)

Johannes Veldhuis 1 170 1994 U Virginia (now Mayo Clinic)
Ferdinand Roelfsema 1 60 1996 Leiden U

Ary Goldberger 1 46 1991 Beth Israel Hospital, Boston (now Harvard U)
Ali Iranmanesh 1 40 1996 Salem Veterans Affairs Medical Center
Marijke Frölich 1 28 1997 Leiden U

Yan Li 1 27 1 2009? U Southern Queensland
1 These numbers may not be accurate, as the family name Li is not uncommon, given names are not always included in publications, and
many different given names start with the same letter. 2 This includes early publications under the name David Cuesta. U: University
(or equivalent).

The earliest publication dates for each researcher fall into four groups: 1991–1995
(8), 1996–2000 (7), 2001–2005 (8) and 2006–2011 (8). The four most established ‘specialist’
researchers (with papers on three measures or less located via PubMed) appear to be Ary
Goldberger and Steven Pincus (1991), Li Peng (1992), and Johannes Veldhuis (1994), the
four most established ‘generalists’ (with papers on 13 or more measures in PubMed) being
Andreas Voss (1991), Alberto Porta and Maria Signorini (1994), and Jamie Sleigh (1995).

Most institutions occur only once in this Table, apart from Harvard (2) [Goldberger,
Peng], Leiden (2) [Frölich, Roelfsema], Melbourne (2) [Karmakar, Palaniswami], National
Taiwan (2) [Lo, Shieh], Oulu (2) [Huikuri, Mäkikallio] and Valladolid (4) [Abásolo, Escudero,
Hornero, Poza]. More than half of the researchers listed (17 of 31) remained at the same
institutions over the period.

Further information on the interconnections between some of these institutions and
between the different complexity and entropy measures investigated at them can be found
below, in Figures 1 and 2 and Table 7.
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Notes

1. For 1-dimensional data, H = 2–FD [89].
2. In certain situations, DFA α is directly related to fractal dimension D, with

D = 2–α/2 [90].
3. For 1-dimensional data, H ≈ DFA α [91].
4. D2 is related theoretically to the Lyapunov exponents [92].
5. The LLE can be estimated from RQA [93].
6. See [94]
7. Pedro Bernaola-Galván, the main originator of the volatility method of assessing

nonlinearity, has co-authored work on nonlinearity with Alberto Porta [95].
8. Paolo Castiglioni, whose code for mFmDFA is used in CEPS, has co-authored at

least six papers with Alberto Porta.
9. Paolo Grigolini, the originator of Diffusion entropy, co-authored some papers on

diffusion with Constantino Tsallis when both were at the University of North
Texas [96].

10/11. SE, CE and DiffEn were all introduced by Shannon in his famous 1948 paper [97].
12. Corrected CE (cCE) and corrected ApEn (cApEn) were both introduced by Alberto

Porta and his associates [72,98].
13/14. ApEn [99], D2 and LLE can be estimated from RQA [100].
15. Both AF and DFA are methods of assess the fractal exponent α, the former particu-

larly for point process data [101].
16. KSE can also be estimated from RQA [102].
17. See [103].
18. See [104].
19. See [105].
20. See [106].

Family trees are always incomplete, and this one is no exception. It is the result
of literature review, but not a systematic one, so represents a personal selection by the
authors. While in the final stages of preparing this paper for publication, we became aware
of a similar—if more technical—analysis of the ‘entropy universe’ by the indefatigable
Teresa Henriques and her colleagues in Porto [107]. Readers will find it instructive to
compare our two mappings. CEPS does not include the family (or ‘galaxy’) of topological
or graph entropies, for example [108], although we do plan to include some applications of
maximum entropy.
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Table 7. Complexity and entropy measures in Figure 1 and their sources, listed in alphabetical order, showing original
references, names of code providers, code type, institutions of originators and (in parentheses) of code providers, how code
was verified, and whether verification showed optimal, acceptable or divergent results (O, A or D) according to the criteria
used by Gomes [27], with optimal verification confirmed if Pearson’s R > 0.9; pD indicates partial divergence and T that
testing is still required. Names asterisked (*) are of those who provided their own codes in response to personal requests
(@ indicates no code provided in response).

Measure Original Author/s Provider Source Code Institution Verification O, A or D
AAPE Azami and Escudero 2016 [109] DataShare MATLAB Edinburgh Cuesta-Frau/D.M. D

AE Hsu et al., 2019 [110] Hsu * MATLAB Hsinchu Hsu/D.M. O
AF Allan 1966 [111] Cornforth * C++ (Newcastle) Cornforth/D.M. O

ApEn Pincus et al., 1991 [72] Monge matlabcentral (Valladolid) Rohila [HRVAnalysis,
Kubios] O [D]

BE Manis et al., 2017 [82] Manis * python Ioannina, Milan Manis, Rohila, D.P. O
BEDE Qi and Yang 2011 [112] @ n/a Shanghai n/a

CE/CCE Porta et al., 1998 [71] Monge matlabcentral Milan (Valladolid) [HRVAnalysis] D/O

CCM Karmakar et al., 2009 [113] Cornforth * C++ Melbourne
(Newcastle) Cornforth/D.M. A

CI Costa et al., 2008 [114] D.P. (tbc) MATLAB (Hertfordshire) Implementation
in progress T

CoSEn Lake and Moorman 2011 [115] D.P. (tbc) MATLAB (Hertfordshire) Implementation
in progress T

D2 Theiler 1987 [116] Faranda and
Vaiente [117] MATLAB (Paris-Saclay, Aix

Marseille)
Verification
in progress [D]

DE Rostaghi and Azami 2016 [79] DataShare MATLAB Edinburgh PyBioS/tbc T
DFA Peng et al., 1994 [118] Magris (tbc) MATLAB Harvard Castiglioni/HRVAnalysis T

DiffEn Shi et al., 2013 [119] D.P. (tbc) MATLAB (Hertfordshire) Implementation
in progress T

DnEn Grigolini et al., 2001 [120] @ n/a N Texas n/a
DistEn Li et al., 2015 [82] Li * MATLAB Harvard [PyBioS] [A]

DPE Martínez-Rodrigo et al., 2019 [121] @ n/a Castilla-La Mancha
(xxx) n/a

EoDm Nardone 2014 [122] Nardone * mathematica Bruxelles Nardone/D.P. O
EoE Hsu et al., 2017 [123] Hsu * MATLAB Hsinchu Hsu/D.M. O

EPP Satti et al., 2019 [124] Mani * MATLAB UCL Mani [Kubios HRV,
HRVAnalysis] O [A]

FD Higuchi 1988 [125] Monge matlabcentral (Valladolid) Ibáñez-Molina
[HRVAnalysis]

A
[O]

FE Chen 2007 [126] DataShare MATLAB Edinburgh Rohila [PyBioS] A [D]
fSampEn Sarlabous et al., 2014 [127] Estrada MATLAB Barcelona Estrada and Torres O

H Hurst 1965 [128] Davidson matlabcentral not known [HRVAnalysis] D
HRA Jelinek et al., 2011 [129] n/a n/a n/a n/a

ImPE Azami and Escudero 2016 [130] DataShare MATLAB Edinburgh Verification in
progress T

KSE Grassberger and Procaccia
1983 [131] n/a n/a n/a n/a n/a

LLE Rosenstein et al., 1993 [132] Kizilkaya matlabcentral n/a [HRVAnalysis] [D]
LZC Lempel and Ziv 1976 [133] Thai matlabcentral Ibáñez-Molina O (tbc)

mFmDFA Castiglioni et al., 2019 [134] Castiglioni * MATLAB Milan Implementation
in progress T

mLZC Ibáñez-Molina et al., 2015 [135] Ibáñez-Molina * MATLAB Jaén Ibáñez-Molina O (tbc)

MSE Costa et al., 2002 [77] MATLAB Harvard Reinertsen/Da
Poian/[PyBioS] D

PE Bandt and Pompe 2002 [70] DataShare MATLAB (Edinburgh) Rohila, Zunino
[PyBioS] O [D]

PhEn Rohila and Sharma 2019 [83] Rohila * MATLAB (Roorkee) Rohila [PyBioS] O [A]
PM-E Zunino et al., 2015 [136] Zunino * MATLAB La Plata Zunino O

QSE Lake 2011 [74] D.P. (tbc) MATLAB (Hertfordshire) Implementation
in progress T

RE Rényi 1961 [137] Mathworks matlabcentral (Shanghai) Verification in
progress T

RQA Zbilut et al., 2002 [138] Mathworks matlabcentral [Kubios HRV] [D]

SampEn Azami and Escudero 2016 [139] DataShare MATLAB Edinburgh Rohila [Kubios HRV,
PyBioS] O [pD 1]

SE Shannon 1948 [97] Mathworks matlabcentral various [HRVAnalysis] [O 2]
SlopeEn Cuesta-Frau 2019 [80] Cuesta-Frau * MATLAB Valencia Cuesta-Frau/D.M. O

SpEn Inouye et al., 1991 [84] tbc Implementation
in progress T

SymDyn Voss et al., 1995 [88] tbc tbc tbc Not yet implemented

TE Tsallis 1988 [140] Guan matlabcentral (Shanghai) Verification in
progress T

T-E Oida et al., 1997 [141] Karmakar MATLAB Kyoto Karmakar/D.P. O

VM Bernaola-Galván et al., 2017 [40] Bernaola-Galván * Fortran, MATLAB Málaga Implementation
in progress T

1 Agreement was better for SampEn between CEPS (DataShare) and Kubios HRV than between CEPS (DataShare) and PyBioS or CEPS
(DataShare) and HRVAnalysis, but results were partially divergent for all comparisons. However, agreement was better overall for SampEn
between CEPS (DataShare) and Kubios HRV than between Kubios HRV and PyBioS or between Kubios HRV and HRVAnalysis. Agreement
was good for various short samples of synthetic data (length 50 points) between results provided by Ashish Rohila and those from CEPS;
2 Results for a second implementation of SE (‘Entropy_MC’) are not identical and should be treated with caution.
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3.1.3. Paced Breathing

Paced breathing is used here as an example dataset to display the advantages of the
CEPS data analysis tools when focusing on complexity and entropy measures. Our analysis
investigates the effects of paced breathing on ECG, PPG and RSP variability.

For millennia, slow deep breathing at around 4 to 10 breaths per minute (0.07–0.16 Hz)
has been thought to promote both physical and mental health benefits and improve wellbe-
ing. Research over the past few decades has supported this belief and shown a number
of beneficial physiological effects, for example improving ventilation efficiency and blood
oxygenation (SpO2) in hypoxic patients [142], lowering blood pressure in the overtly
healthy [143], reducing experimental pain perception [144], and lessening anxiety scores in
school children [145].

By measuring the HRV during a stepwise-paced breathing procedure where partic-
ipants are asked to breathe at rates ranging from 14 to 4 breaths per minute (bpm), an
individual’s respiratory ‘resonant frequency’ where the HRV is greatest can be determined
and is generally around 6 bpm (i.e., 0.01 Hz) for adults [144].

Slow breathing is known to affect both time- and frequency-domain measures of heart
rate variability [146]. However, less is known about how it impacts entropy and complexity
measures. In one study using 3-min recordings, DFA α2, ApEn, SampEn and MSE were
reduced during slow paced breathing, while DFA α1 increased [147]. Others too have
noted a reduction in MSE with slow paced breathing (at least in flight phobics, but not
in healthy controls) [148]. Porta’s research group, on the other hand, found that heart
period ‘multiscale complexity’ (but not MSE) decreased with metronome-paced breathing
at 10 bpm as a result of regularisation of variability in both LF and HF HRV bands [149]. An
associated research group noted that paced breathing at 12 bpm enhanced HRV nonlinearity,
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and that SampEn decreased significantly when moving from spontaneous breathing to
breathing paced at 12 bpm (0.2 Hz), but was substantially unchanged between spontaneous
breathing and breathing at 18 bpm (0.3 Hz), when cardiorespiratory synchronisation
competes with sinus arrhythmia [150]. Perhaps the most informative of these studies is
one in which breathing was paced at between 6 and 27 bpm. SampEn in both the ECG and
RSP signals, as well as the ECG RRi itself, increased with respiratory frequency between 6
and around 15 bpm, but results were affected by both age and sex [151].

3.2. A Brief Description of CEPS

As mentioned, CEPS is an open access MATLAB™ GUI for analysing Complexity
and Entropy in Physiological Signals. It includes data analysis tools that focus on those
complexity and entropy measures that appear most frequently in those peer-reviewed
publications that are indexed in PubMed, as well as others that are less well known.

3.2.1. Installation

CEPS, together with a Manual and Primer on complexity and entropy, is publicly
available at https://bitbucket.org/deepak_panday/pipeline/src/pipeline_V2/ (accessed
on 11 March 2021) for free, non-commercial use, although MATLAB must be installed.
The Manual and Primer are also accessible as *.pdf files via a drop-down list in the HELP
section of the GUI, as are a feedback form and the present article.

3.2.2. Loading Data

When the GUI first opens, the HELP section and a second drop-down list of six
Application Modes appears. The six modes, which should be used in order, are: Load
Data, Pre-Process Data, Test Parameters, Run Pipeline, Process Results and Classification
(the latter is not yet implemented). To proceed, data should be ready for processing and
stored in a single location. The ‘Load Data’ button is used to navigate to that location.
Data should be univariate but can be in single or multiple column format, with *.txt, *.csv,
*.mat or *.xlsx file extensions. The number of files in the chosen location with the desired
extension will appear in the Total Data Files box. Once data are loaded using the ‘Load
Data File/s’ button, the GUI is ready for use.

In the Data Type pane (at the top left of the GUI), Time Series or Non Time Series Data
can be selected. For the former, a Sample Rate (sampling frequency) in cycles per second
(Hz) will need to be selected, and if data is to be subdivided into non-overlapping epochs
for analysis, an Epoch Length in seconds will also need to be specified. For Non Time
Series Data, the Number of Data Points per Epoch should be entered.

3.2.3. Pre-Processing Data

CEPS can process raw physiological data like EEG or temperature, but in order to
process the periodic RSP BBi we used the Signal Processing MATLAB GUI mentioned above,
results being opened directly in CEPS to compute the complexity and entropy Measures.

When the Pre-Process Data mode is selected, the list of eighty-two Measures below
the Application Mode selection box is inactivated, but the central Panel on the right (II)
will show two plots (Figure 3).

Various pre-processing methods are available, including outlier removal, filtering and
adding different types of noise. In a forthcoming version of CEPS, it will also be possible
to detrend or rescale data (using min-max normalisation) or to use Z-score normalisation
(standardisation), as in EZ Entropy [9] and PyBioS [24]. In addition, as many entropy
measures are more appropriate for discrete rather than continuous data (see Table 8),
a selection of coarse-graining methods will be provided, as well as interpolation and
resampling as a basis for frequency domain analysis. More details are provided in the
Manual, and users need to ensure that data is appropriately pre-processed before moving
on to testing parameters or running the pipeline.

https://bitbucket.org/deepak_panday/pipeline/src/pipeline_V2/
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Table 8. Results of a non-systematic literature review of the data requirements for measures in CEPS (further information
and references available in the Primer accessed via the HELP section in CEPS). (A). Measure suited to discrete (d) data
(e.g., RRi) and/or continuous (c) data (e.g., EEG); (B). Measure suited to short (s) (100 data points or even less), medium
(m) (300–1000 points) and/or long (l) datasets (10,000 points or more); (C). Measure likely to be affected by noise (y or
n); (D). Measure has been or could be used with bandpass (or other) filtered data (y or n), or likely to be affected by
filtering (a); (E). Measure likely to be affected by sampling rate or down-sampling (y or n); (F). Whether measure suited to
stationary/nonstationary (s/ns) or linear/nonlinear (l/nl) data. ‘T’ indicates that testing is required to clarify. Asterisked
measures (*) are not implemented in CEPS.

Measure A: d and/or c B: s, m and/or l C: Noise D: Filtered E: Sampling F: s/ns, l/nl
AAPE d, c 1 Ts, m, Tl T T T s, ns, l, nl

AE d, Tc s, m, Tl y T y Tns, nl
AF d l T T T s, Tnl

ApEn d, c l y y, a y s, nl
BE d, c s, m, l n T T Tns, nl

CE/CCE d, c Ts, m, Tl y a y s, nl
CCM d Ts, m, Tl y T y s, ns, l, nl

CI d, c l y T y s, nl
CosEn d, c s y a y s, nl

D2 d, c l y y, T y s, nl
DE Td, c Ts, m, l y T y ns, nl

DFA d, c s, m, Tl T a y ns, nl
DiffEn Td, c m, l T y T s, Tns, l, Tnl
DnEn d, c l T T T s, nl
DistEn d, c s, m, Tl T T y ns, nl
EoDm d, c T T T T T
EoE d, Tc s, m, Tl y T y Tns, nl
EPP d, c 1 s, m, l T y, a y s, ns, l, nl
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Table 8. Cont.

Measure A: d and/or c B: s, m and/or l C: Noise D: Filtered E: Sampling F: s/ns, l/nl
FD d, c s, m, l n y, a T ns, nl
FE d, c s, m n T T ns, nl

fSampEn d, c m, Tl T y y s, nl
H d, c Ts, m, l T y, T y s, nl

IMPE d, c 1 s, m, Tl n T T ns, nl
KSE * Td, c Ts, Tm, l y T y s, nl
LLE d, c m, l y y, a y s, nl

LSampEn * d s n T T s, nl
LZC d, c s, m, l n a T ns, nl

mFmDFA d, c s, m, l T y, a T ns, nl
mLZC Td, c s, m, Tl T 2 T T ns, nl
MSE d, c m, Tl y y, a y s, nl
PE d, c 1 s, m, l n y, T n ns, nl

PhEn d, c s, m, l n 3 T y ns, nl
PM-E d, c 1 s, m, l n T T ns, nl
QSE d, c s y y y s, nl

RCmDE Td, c s, m, l n y y ns, nl
RCmFE σ Td, c s, m, l T T T ns, nl
RCmSE σ d, c Tm, l T T T Tns, nl

RE d Ts, m, Tl T T T ns, nl
RQA d, c s, m, Tl n y, a y ns, nl

SampEn d, c m, Tl y y, a y s, nl
SE d s, m, l y T T s, nl

SlopeEn d s, m, l n y T ns, nl
SpEn d, c s, m, Tl y y y s, l

SymDyn d, c Ts, m, l T T T ns, nl
TE d Ts, Tm, Tl T T T Tns, nl
T-E d M 4 y T T s, ns, nl
VM d, Tc s, m, l T T T ns, nl

1 Signal requires prior partitioning; this is implemented CEPS codes used for these variants of PE; 2 Effect of noise likely to depend
on signal-to-noise ratio; 3 Effect of noise likely to be small; 4 In T-E, 250 data points are required for Tone estimation, but only 50
for Entropy [152].

3.2.4. Testing Parameters

A serious problem with many complexity and entropy measures is how to select the
parameters used to estimate them. Using fixed parameters may not work well all the
time [38]. A ‘test and plot’ facility is therefore provided to assist in both parameter selection
and multiscale analysis, for single or multiple files. In the Test Parameters mode, only
the 46 measures in the list on the left of the GUI which require parameter settings can be
selected using the check boxes provided, and only one at a time. Selecting a measure in
the list will bring up two boxes for each parameter required in the central panel of the GUI
(Run Parameter Test II). When the measure is selected, the name of its parent section in the
Measures List replaces ‘Run Parameter Test II’ as the name of the central panel. A range of
values for each parameter can then be tested, again for only one parameter at a time. Care
should be taken to enter values that will give meaningful results (guidelines are provided
in the Manual).

When a particular measure is selected for parameter testing, the user can choose
whether to test some or all of the loaded datasets, some, or all of the epochs in those files,
and which parameters to test. Parameter increments between the minimum and maximum
values chosen can also be set. Whether integers or decimals are entered here will depend
on the Parameter being tested. Results can be plotted by clicking on ‘Plot Result’ and, if
required, displayed in a Data Table as well. Both plot and table are shown in the central
area of the GUI, and both may be exported, so it is possible to double check the effects
of selecting different parameters on the behaviour of the measure investigated (Figure 4).
Computation Time is shown in the lower pane, ‘Run Parameter Test III’.
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Figure 4. CEPS in Parameter Test Application Mode (‘Test and Plot’), showing an initial increase in RCmDE for ECG RRi
data, followed by a decrease at around τ = 5 to 6 for some study participants but not others. Headings in the Measures list
are shown in yellow. Measures greyed out are not yet implemented.

3.2.5. Running the Pipeline

Both when testing parameters and running the pipeline, in the upper pane (‘Pipeline
Execution I’) the user can select whether to process either a complete data series or some or
all of the epochs into which it may be subdivided.

When running the pipeline, in contrast to when testing parameters, several measures
can be selected in the Measures List at the same time, according to user requirements and
research design, the main limitation being computer processing speed. However, now only
one value can be assigned to each parameter for a particular measure, and this value will
be used for all data files processed (hence the importance of testing parameters in order
to make an informed decision about which values to use). As when testing parameters,
options can be selected in the ‘Pipeline Execution II’ pane. A full list of the measures
available is given in Table 7.

3.2.6. Processing Results

In the ‘Process Results III’ pane (Figure 5), results can be saved in Excel and/or
MATLAB format. Parameters used for the various measures will be saved in the same file
in separate sheets, as will Computation time if this option is selected. For batch processing,
the option is given to aggregate results by mean and standard deviation or median and
interquartile range.
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Figure 5. CEPS in Processing Results Application Mode, showing plots of Higuchi FD (kmax = 13), mPE and RCmDE (both
at lag 4) for ECG RRi data. For most study participants, HFD increases during paced breathing (i.e., at even file numbers),
while mPE and RCmDE decrease (see too Figure 6). Note that the Measures list is greyed out when processing results.

3.2.7. Classifying Results

This Mode—planned, but not yet implemented—will be useful when batch processing.
For binary groupings of individuals (normal vs. paced breathing, for example), the different
measures can be assessed and compared for their sensitivity and selectivity in classifying
the individuals in each group (Simple classification). When more than two categories or
measures are considered, Compound classification is being explored, perhaps offering
options for k-means prediction, AdaBoost and Linear discriminant analysis. Results for the
different groupings can also be displayed in exportable plots.

3.2.8. System Requirements, License, Troubleshooting and Sample Data

CEPS was developed initially using MATLAB® 2019a. Existing tried and tested
MATLAB functions were implemented where possible (sources indicated in Table 8).
Currently, MATLAB must be installed before CEPS can be used, but a compiled version is
foreseen as a future development. A Windows or Linux 64-bit or Mac operating system is
required, and for fast plotting and calculation, 8 GB of RAM and a screen resolution of 1400
× 900 pixels are recommended. The complete download will take 800 MB of disk space.
As for other MATLAB-based GUIs developed using App Designer [9], MATLAB® 2018a or
later should be used for best performance.

The GUI can be downloaded from Bitbucket. CEPS is open access and free to non-
commercial users, under the terms of the GNU General Public License, version 3 or later.
Open access MATLAB scripts come with permission to redistribute, with or without
modification, and a standard warning that they cannot be assumed to be fit for a particular
purpose. Further license details are available in the Manual.

Error messages may appear in the MATLAB Command Window or as pop-ups in the
GUI itself. If you use CEPS and find a persistent problem, do feel free to report it to one of
the authors (D.M. or D.P.), or on the BitBucket site.
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Fifteen files of RRi and 19 files of unprocessed EEG data (300 s long, both in *.txt
format) are packaged with CEPS, as well as a number of synthetic data samples. Users can
of course also build their own libraries of sample data.

3.3. Paced Breathing Data—Some Basic Analysis

Of our nine participants, five were women. Ages ranged from 16 to 55 (mean 39, SD
16). Their 5-min RRi and PPi recordings were all 320 data points long (mean 319, SD 2.15),
and the RSP data was around 50 breaths long (mean 48.4, SD 19.0). Of our 198 measures,
most were normally distributed in both normal and paced breathing (more measures were
not normally distributed during paced than during non-paced breathing).

Paired t-tests with FDR = 0.12 indicated the following numbers of significant increases
and decreases in measures for the three different data types: 15 increases and 35 decreases
for the ECG data, 16 increases and 29 decreases for the PPG data, with 11 increases and
37 decreases for the RSP data. The highest-ranking ECG and RSP measures (i.e., those
with lowest effect sizes) were then removed from further analysis to ensure equal numbers
of measures (45) were compared for the three data types. Two complexity, one entropy
and two frequency-domain measures were removed for ECG and one complexity, one
time-domain and one frequency-domain measure for RSP, leaving 13 increases and 32
decreases for ECG, 16 increases and 29 decreases for PPG, and 11 increases and 34 decreases
for RSP.

3.3.1. Measures That Increased during Paced Breathing

Of the 13 remaining ECG measures that increased during paced breathing, 6 were
measures of complexity from CEPS, and 7 were frequency measures from Kubios HRV.
Median effect size was 1.894 for the former, reducing to 1.724 if ACN at lag 10 was included
[p-values ranging from 0.006 to 0.027]. For the frequency measures, median effect size was
less, at 0.946 [p from 0.012 to 0.025].

Corresponding findings for the PPG data were similar: 7 were measures of entropy or
complexity from CEPS, and 9 were frequency measures from Kubios HRV. Median effect
size for the former was 1.454 [p from 0.004 to 0.025], and 1.013 [p from 0.012 to 0.031] for
the frequency measures.

For the RSP data, in contrast, median effect size for the seven HFD measures showing
significant increases (kmax = 5 and from 9 to 14) was 1.292 [p from 0.007 to 0.029], whereas
for the three linear measures from CEPS that increased significantly, median effect size was
greater, at 1.643 [p from 0.006 to 0.022]. Effect size for the single Kubios HRV time-domain
measure that increased significantly (mean RRi) was 1.297 [p = 0.028], similar to those
for HFD.

HFD at various lags increased consistently for all three data types (3 for ECG, 4 for
PPG and 7 for RSP), with median effect sizes 1.894 [p from 0.006 to 0.013], 2.035 [p from
0.004 to 0.011] and 1.292 [p from 0.007 to 0.029], respectively. Cohen’s d was particularly
high for RQA ENT (Shannon entropy of the line length distribution in the recurrence plot)
in the ECG data, with a value of 2.214 [p = 0.003], but although d was also high in the PPG
data (2.239, p = 0.002), this was not significant after applying the Benjamini–Hochberg
procedure. RQA ENT in the RSP data decreased significantly between baseline and paced
breathing, with effect size 0.814 [p = 0.029].

3.3.2. Measures That Decreased during Paced Breathing

Many more measures decreased than increased with paced breathing for ECG and
RSP, but not for PPG. As the measures were not all independent of each other, there is
no readily available statistical test to assess the significance of differences between the
numbers of those that increased and decreased. However, as an indication, the p-value
associated with the Binomial test (a test of independent measures) would yield values of
0.007 for ECG, 0.001 for RSP, but only 0.072 for PPG.
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For ECG, median effect size for the 25 complexity and entropy measures that decreased
significantly was 1.991 [p from to 0.004 to 0.033], reducing to 1.903 if four ACN lags are
included, whereas for the four frequency-domain measures showing significant differences
it was less, at 1.035 [p = 0.008 or 0.029], and for the Kubios Stress Index [153], it was only
0.500 [p = 0.029].

For PPG, median effect size for the 23 complexity and entropy measures that decreased
was 1.933 [p from 0.003 to 0.033] and for Hjorth complexity (a linear measure) it was 1.419
[p = 0.026], whereas for the 5 frequency-domain measures it was only 0.901 [p from 0.005
to 0.027].

For RSP, results were a little more complicated. Median effect size for the 24 complexity
and entropy measures that decreased significantly was 1.483, decreasing to 1.475 if the
one significant ACN lag is included [p from 0.008 to 0.030], whereas for the two frequency-
domain measures that decreased significantly it was 0.801 [p = 0.007, 0.010], and for the
three Kubios time-domain measures that decreased significantly it was 1.546 [p from 0.006
to 0.024]. For the linear measures in CEPS and for Skewness, it was 1.617 [p from 0.006
to 0.023].

Figures 6 and 7 illustrate how results differ for mPE, HFD and conventional HRV HF
and LF relative (%) power measures, for both ECG (RRi) and RSP (BBi) data. Results for
PPG (PPi) data are not shown, as they were very similar to those for the RRi data.
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Figure 6. Change in CEPS mPE between normal breathing and paced breathing at 7 bpm, for values of lag τ from 1 to 10.
The left plot shows results for ECG RRi data and the right for RSP BBi.

The mPE measures show a similar decreasing patten for both RRi and BBi, but the
Welch relative (%) HF and LF power measures shows opposite patterns for the two data
types, with LF power increasing from normal breathing to breathing paced at 7 bpm for RRi,
and HF power decreasing, whereas for BBi HF power increases and LF power decreases.
Note that for the RRi data the slope of the line of HF power is less steep than that for the
mPE measures, while for the BBi data this is the case for the line of LF power. Steeper
slopes correspond to greater effect sizes.
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Figure 7. Change in CEPS HFD between normal breathing and paced breathing at 7 bpm, for values of kmax from 5 to 14.
The left plot shows results for ECG RRi data and the right for RSP BBi.

The HFD measures are quite different for the RRi and BBi data, with less variation
in slope for the latter. Note that for the RRi data the slope of the line of LF power is less
steep than that for the HFD measures, while for the BBi data this is the case for the line of
HF power.

3.3.3. Conclusion of Paced Breathing Example Study

In conclusion, as anticipated, for all three data streams, complexity and entropy
measures differentiated more clearly than conventional linear, time- and frequency-domain
measures, between spontaneous and 7 bpm paced breathing. More measures decreased
than increased, Higuchi fractal dimension at various lags being a notable exception.

4. Discussion

CEPS is a work in progress, and our dream is inevitably not yet fully materialised. We
realise that there will be limitations to the use of CEPS which are dependent on the accuracy
of the data used whether it be disease-related or simply based on normal physiological
functioning. As a platform for analysis of Complexity and Entropy in Physiological Signals,
CEPS meets a number of clinical research requirements for both large and small data
samples. In future, other utilities may be added using a plug-in function (see Conclusions
for future developments). As CEPS is issued under a creative commons license, it is free to
use and can be modified and redistributed as long as the authors and this article are cited.
This also applies to results that are generated with the GUI and are published in the future.

4.1. Limitations

As with all publications in a rapidly moving field the literature review that has
informed the development of CEPS is continuously evolving, as is CEPS itself. It is
worth stating that PubMed only provides a limited insight into patterns of publication but
that a full literature review would have quite unmanageable in the time available to us
and beyond the scope of this paper. As an illustration, whereas the number of papers in
PubMed located using the search term ‘entropy’ was 34,647 in August 2020, before PubMed
indexing of Entropy was rolled out in December 2020, this number had swelled to 39,571 by
23 January 2021. By that date the corresponding number for SCOPUS was 260,974, or more
than 6.5 times greater, with around 3.5 million mentions in Google Scholar.
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A particular technical limitation is that CEPS is not yet able to import data in all the
various proprietary output formats by a burgeoning number of wearable technologies.

Certain functions are planned but remain to be fully implemented. In the Pre-
processing mode, these include various methods of data interpolation, normalisation,
coarse-graining, resampling and detrending. In the time-frequency domain, a number of
spectral entropy methods have also not yet been implemented. Furthermore, while data
segmentation is implemented, sliding window analysis is not yet a feature.

Inevitable technical glitches still exist—users are encouraged to report these. Users
should also remember that CEPS is not magic, but a tool that must be used with care and
discrimination.

4.2. Advantages

CEPS has been designed for the analysis of Complexity and Entropy in Physiological
Signals intended to suit the requirements of clinical research on both large and small
data samples. Although other such software packages exist (PyBioS and EZ Entropy are
elegant examples), many are quite technical to use for non-specialist clinicians, and none
include so many established or innovative complexity and entropy measures as CEPS.
One particularly useful feature is the ability to test the effect of parameter variation on the
different measures and to visualise how multiscaling may affect them. Another advantage
is the facility for easy comparison of changes in different CEPS measures for the same or
parallel physiological data streams, as we have done here in our biomedical engineering
investigation of the effects of paced breathing on ECG, PPG and RSP variability.

5. Conclusions and Future Directions

We are aware that CEPS is not unique, and that some clinicians may find other
packages more suited to their needs. In general terms, we have proven the utility of CEPS
as a cross-platform (Linux, Mac or Windows based machines) MATLAB graphical user
interface (GUI) which is more intuitive than command-line or menu-driven interfaces that
rely on programming skills or are limited in the analysis options available. GUIs allow
direct manipulation of graphical icons such as buttons, scroll bars, windows, tabs, menus,
and cursors and allow the exchange of data between different software applications or
data sets. They are much easier to use for beginners who do not have to learn command
line routines, are easy to explore using the WIMP (windows, icons, menus, pointer) GUI
interface provided by CEPS and provide a platform where the user can switch easily
between tasks. Even using data with artefacts, we can tentatively conclude that CEPS has
shown its usefulness. It has been possible, for instance, to process a welter of results to find
a few measures that appear stable to ectopic beats or noise in RRi data. We are also pleased
that use of CEPS has enabled us to confirm the general finding that complexity and entropy
changes often show more significant changes than conventional linear measures (here, in
the analysis of changes that are found during paced compared to spontaneous breathing).
The general reduction in complexity in ECG and PPG variability during breathing at 7 bpm
echoes that in RSP variability itself, but the latter also requires further investigation. The
autonomic implications of the changes found also invite research. Future study, for which
recruitment is currently underway, will explore the effects of paced breathing at different
rates on a broader selection of CEPS measures and for a larger sample. We also plan to use
CEPS in analysing the effects of different frequencies of peripheral electrical stimulation on
EEG, HRV, respiration, postural sway and temperature data.

Two of our original objectives have not yet been met. Future developments of CEPS
will include a ‘plug-in’ facility to allow other researchers to add measures not already
included in the list available, and Classification will be added as a further item in the
Application Mode drop-down list, providing alternative methods of classifying results
from using CEPS or from other sources. AdaBoost, Sensitivity-Specificity and Linear
discriminant analysis are being considered for inclusion in the next iteration of CEPS. No
doubt other developments will be made in time and in response to user feedback.
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Nonetheless, although still in process of development, CEPS is already a versatile tool
for the analysis of complexity and entropy in physiological signals, and we feel justified in
releasing it at this stage to invite feedback and foster awareness of the hidden mycelium
that nourishes the burgeoning worlds of complexity and entropy.

Supplementary Materials: The following are available online at https://www.mdpi.com/1099-4
300/23/3/321/s1. SM1. A brief review of studies comparing nonlinear measures of complexity or
entropy with traditional linear measures (Tables S1 and S2, Figure S1). SM2. Names of researchers
who have contributed most papers on each complexity and entropy measure (Tables C1–C3). SM3.
Software packages for physiological data analysis [154–263].
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AAPE Amplitude-aware Permutation Entropy
ACV 1-10 Autocovariance, lags 1-10
AE Average Entropy
AE global Average Entropy (global)
AE local Average Entropy (local)
AF Allan Factor
ApEn Approximate Entropy
AR Allan Ratio
BBi Inter-breath interval
BE Bubble Entropy
BEDE Balanced Estimation of Diffusion En
BMI Body Mass Index

https://www.mdpi.com/1099-4300/23/3/321/s1
https://www.mdpi.com/1099-4300/23/3/321/s1
https://ordo.open.ac.uk/
https://ordo.open.ac.uk/


Entropy 2021, 23, 321 23 of 34

c . . . Corrected
cCE Corrected Conditional Entropy
CCM Complex Correlation Measure
CE Conditional Entropy
CI Complexity Index
CoSEn Coefficient of Sample Entropy
cRPE Corrected Rényi permutation entropy
D2 Correlation Dimension
DE Dispersion Entropy
DFA Detrended Fluctuation Analysis
DiffEn Differential Entropy
DistEn Distribution Entropy
DnEn Diffusion Entropy
DPE Delayed Permutation Entropy
E-MC Entropy using Mo Chen’s algorithm
EoDm Entropy of Difference (order m)
EoE global Entropy of Entropy (global)
EoE local Entropy of Entropy (local)
EPP Extended Poincaré plot
FD Fractal Dimension
FE Fuzzy Entropy
fSampEn Fixed Sample Entropy
H Hurst Exponent
HFD 12 Higuchi’s fractal dimension lag k = 12
Hjorth A, M and M Hjorth activity, motility and complexity parameters
HR Heart Rate
HRA Heart Rate Asymmetry
HRV Heart Rate Variability
ImPE Improved Multiscale
Katz FD Katz Fractal Dimension
KLDm Kullback-Leibler Divergence (order m)
KSE Kolmogorov(-Sinai) Entropy
LF/HF Ratio of low frequency to high frequency HRV power
LLE Largest Lyapunov Exponent
LSampEn Local Sample Entropy
LZC Lempel-Ziv Complexity
m . . . Multiscale
M-E Min-Entropy
mF Multifractal
mFmDFA Multifractal Multiscale Detrended Fluctuation Analysis
MSE Multiscale Entropy
PB Paced Breathing
PE Permutation Entropy
PhEn Phase Entropy
PM-E Permutation Min-Entropy
PP Poincaré Plot
PPG Photoplethysmography
PPi Pulse-to-Pulse PPG interval
QSE Quadratic Sample Entropy
RC Refined Composite
RCmDE Refined Composite Multiscale Dispersion Entropy
RCmFE Refined Composite Multiscale Fuzzy Entropy
RCMSEσ Refined Composite Multiscale Sample Entropy based on SD (σ)
RE Rényi Entropy
RMSSD Root mean square of successive RRi
RoCV Robust Coefficient of Variation
RQA Recurrence Quantification Analysis



Entropy 2021, 23, 321 24 of 34

RQA DET RQA Determinism
RQA LAM RQA Laminarity
RQA Lmax RQA Length of longest (diagonal) line segment
RQA TT Recurrence Quantification Analysis Trapping time
RRi Intervals in time between successive R waves in the ECG
RSP Respiration
SampEn Sample Entropy
SD1 10 Standard Deviation along the minor axis of the Poincaré plot (lag k = 10)
SD2 3 Standard Deviation along the major axis of the PP (lag k = 3)
SDNN Standard Deviation of normal-to-normal ECG RR intervals (RRi)
SDRR Standard Deviation of all sinus beat RR intervals
SE Shannon Entropy
SlopeEn Slope Entropy
SpEn Spectral Entropy
SymDyn Symbolic Dynamics
tbc To be confirmed
TE Tsallis Entropy
T-E Tone-Entropy
VLF Very Low Frequency
VM Volatility Method
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59. Kudryński, K.; Strumiłło, P.; Ruta, J. Computer software tool for heart rate variability (HRV), T-wave alternans (TWA) and heart

rate turbulence (HRT) analysis from ECGs. Med. Sci. Monit. 2011, 17, MT63–MT71. [CrossRef] [PubMed]
60. Jadav, G.M.; Lerga, J.; Štajduhar, I. Adaptive filtering and analysis of EEG signals in the time-frequency domain based on the local

entropy. EURASIP J. Adv. Signal. Process. 2020, 7, 1–8. [CrossRef]
61. Dias, D.P.M. CardioSeries Software. 2020. Available online: www.danielpenteado.com (accessed on 11 May 2020).
62. Woo, M.A.; Stevenson, W.G.; Moser, D.K.; Trelease, R.B.; Harper, R.M. Patterns of beat-to-beat heart rate variability in ad-vanced

heart failure. Am. Heart J. 1992, 123, 704–710. [CrossRef]
63. Gusev, V.D.; Kulichkov, V.A.; Chupakhina, O.M. The Lempel-Ziv complexity and local structure analysis of genomes. Biosystems

1993, 30, 183–200. [CrossRef]
64. Bartels, R.; Neumamm, L.; Peçanha, T.; Carvalho, A.R. SinusCor: An advanced tool for heart rate variability analysis. Biomed.

Eng. Online 2017, 16, 1–5. [CrossRef]
65. Barth, M.; Bryan, R.K.; Hegerl, R.; Baumeister, W. Estimation of missing cone data in three-dimensional electron microsco-py.

Scanning Microsc. Suppl. 1988, 2, 277–284. [PubMed]
66. Gonzalez Andino, S.L.; Grave de Peralta Menendez, R.; Thut, G.; Spinelli, L.; Blanke, O.; Michel, C.M.; Seeck, M.; Landis, T.

Measuring the complexity of time series: An application to neurophysiological signals. Hum. Brain Mapp. 2000, 11, 46–57.
[CrossRef]

67. Xu, F.H.; Qi, B.; Ma, X.F.; Xu, H.; Zheng, H.X.; Lo, H.K. Ultrafast quantum random number generation based on quantum phase
fluctuations. Opt. Express 2012, 20, 12366–12377. [CrossRef]

68. Malacarne, L.C.; Mendes, R.S.; Pedron, I.T.; Lenzi, E.K. Nonlinear equation for anomalous diffusion: Unified power-law and
stretched exponential exact solution. Phys. Rev. E Stat. Nonlinear Soft. Matter. Phys. 2001, 63, 030101. [CrossRef]

69. Cohen, A.; Procaccia, I. Computing the Kolmogorov entropy from time signals of dissipative and conservative dynamical systems.
Phys. Rev. A Gen. Phys. 1985, 31, 1872–1882. [CrossRef]

70. Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102.
[CrossRef] [PubMed]

71. Porta, A.; Baselli, G.; Liberati, D.; Montano, N.; Cogliati, C.; Gnecchi-Ruscone, T.; Malliani, A.; Cerutti, S. Measuring regu-larity
by means of a corrected conditional entropy in sympathetic outflow. Biol. Cybern. 1998, 78, 71–78. [CrossRef] [PubMed]

72. Pincus, S.M.; Gladstone, I.M.; Ehrenkranz, R.A. A regularity statistic for medical data analysis. J. Clin. Monit. 1991, 7, 335–345.
[CrossRef] [PubMed]

73. Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.
Heart Circ. Physiol. 2000, 278, H2039–H2049. [CrossRef]

http://doi.org/10.1097/00005382-199424000-00002
http://www.ncbi.nlm.nih.gov/pubmed/8114170
http://doi.org/10.1007/BF02667355
http://doi.org/10.23919/CinC49843.2019.9005745
http://doi.org/10.1007/BF00275681
http://doi.org/10.1088/1361-6579/aae021
https://www.macalester.edu/~{}kaplan/hrv/doc/
https://www.macalester.edu/~{}kaplan/hrv/doc/
http://doi.org/10.1063/1.166141
http://doi.org/10.1073/pnas.83.10.3513
http://doi.org/10.1007/s004210050242
http://doi.org/10.1111/2041-210X.13393
http://doi.org/10.1109/ICOSP.2002.1180076
http://doi.org/10.21105/joss.01867
http://doi.org/10.12659/MSM.881919
http://www.ncbi.nlm.nih.gov/pubmed/21873955
http://doi.org/10.1186/s13634-020-00667-6
www.danielpenteado.com
http://doi.org/10.1016/0002-8703(92)90510-3
http://doi.org/10.1016/0303-2647(93)90070-S
http://doi.org/10.1186/s12938-017-0401-4
http://www.ncbi.nlm.nih.gov/pubmed/3244969
http://doi.org/10.1002/1097-0193(200009)11:1&lt;46::AID-HBM40&gt;3.0.CO;2-5
http://doi.org/10.1364/OE.20.012366
http://doi.org/10.1103/PhysRevE.63.030101
http://doi.org/10.1103/PhysRevA.31.1872
http://doi.org/10.1103/PhysRevLett.88.174102
http://www.ncbi.nlm.nih.gov/pubmed/12005759
http://doi.org/10.1007/s004220050414
http://www.ncbi.nlm.nih.gov/pubmed/9485587
http://doi.org/10.1007/BF01619355
http://www.ncbi.nlm.nih.gov/pubmed/1744678
http://doi.org/10.1152/ajpheart.2000.278.6.H2039


Entropy 2021, 23, 321 27 of 34

74. Lake, D.E. Improved entropy rate estimation in physiological data. In Proceedings of the Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; Volume 33, pp. 1463–1466.
[CrossRef]

75. Cirugeda-Roldán, E.M.; Cuesta-Frau, D.; Miró-Martínez, P.; Oltra-Crespo, D.; Vigil-Medina, L.; Varela-Entrecanales, M. A new
algorithm for quadratic sample entropy optimization for very short biomedical signals: Application to blood pressure records.
Comput. Methods Programs Biomed. 2014, 114, 231–239. [CrossRef]

76. Estrada, L.; Torres, A.; Sarlabous, L.; Jané, R. EMG-derived respiration signal using the fixed sample entropy during an in-
spiratory load protocol. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), Milan, Italy, 25–29 August 2015; Volume 2015, pp. 1703–1706. [CrossRef]

77. Costa, M.; Goldberger, A.L.; Peng, C.-K. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 2002, 89,
068102. [CrossRef]

78. Di Zenzo, S.; Cinque, L.; Levialdi, S. Image thresholding using fuzzy entropies. IEEE Trans. Syst. Man Cybern. B Cybern. 1998, 28,
15–23. [CrossRef]

79. Rostaghi, M.; Azami, H. Dispersion entropy: A measure for time-series analysis. IEEE Signal Proc. Lett. 2016, 23, 610–614.
[CrossRef]

80. Cuesta-Frau, D. Slope entropy: A new time series complexity estimator based on both symbolic patterns and amplitude
information. Entropy 2019, 21, 1167. [CrossRef]

81. Manis, G.; Aktaruzzaman, M.; Sassi, R. Bubble entropy: An entropy almost free of parameters. IEEE Trans. Biomed. Eng. 2017, 64,
2711–2718. [PubMed]

82. Li, P.; Liu, C.Y.; Li, K.; Zheng, D.C.; Liu, C.C.; Hou, Y.L. Assessing the complexity of short-term heartbeat interval series by
distribution entropy. Med. Biol. Eng. Comput. 2015, 53, 77–87. [CrossRef] [PubMed]

83. Rohila, A.; Sharma, A. Phase entropy: A new complexity measure for heart rate variability. Physiol. Meas. 2019, 40, 105006.
[CrossRef] [PubMed]

84. Inouye, T.; Shinosaki, K.; Sakamoto, H.; Toi, S.; Ukai, S.; Iyama, A.; Katsuda, Y.; Hirano, M. Quantification of EEG irregular-ity by
use of the entropy of the power spectrum. Electroencephalogr. Clin. Neurophysiol. 1991, 79, 204–210. [CrossRef]

85. Kapsalis, J.G.; Walker, J.E., Jr.; Wolf, M. A physico-chemical study of the mechanical properties of low and intermediate moisture
foods. J. Texture Stud. 1970, 1, 464–483. [CrossRef]

86. Allegrini, P.; Grigolini, P.; Hamilton, P.; Palatella, L.; Raffaelli, G. Memory beyond memory in heart beating, a sign of a healthy
physiological condition. Phys. Rev. E 2002, 65, 041926. [CrossRef]

87. Goldberg, D.H.; Victor, J.D.; Gardner, E.P.; Gardner, D. Spike train analysis toolkit: Enabling wider application of infor-mation-
theoretic techniques to neurophysiology. Neuroinformatics 2009, 7, 165–178. [CrossRef]

88. Voss, A.; Kurths, J.; Kleiner, H.J.; Witt, A.; Wessel, N. Improved analysis of heart rate variability by methods of nonlinear dynamics.
J. Electrocardiol. 1995, 28 (Suppl. S1), 81–88. [CrossRef]

89. Schepers, H.E.; van Beek, J.H.G.M.; Bassingthwaighte, J.B. Four methods to estimate the fractal dimension from self-affine signals.
IEEE Eng. Med. Biol. Mag. 2002, 11, 57–64. [CrossRef]

90. Kotimäki, V.; Räsänen, E.; Hennig, H.; Heller, E.J. Fractal dynamics in chaotic quantum transport. Phys. Rev. E 2013, 88, 022913.
[CrossRef] [PubMed]

91. Bryce, R.M.; Sprague, K.B. Revisiting detrended fluctuation analysis. Sci. Rep. 2012, 2, 315. [CrossRef] [PubMed]
92. Grassberger, P.; Procaccia, I. Measuring the strangeness of strange attractors. Physica D 1983, 9, 189–208. [CrossRef]
93. Eckmann, J.-P.; Oliffson Kamphorst, S.; Ruelle, D. Recurrence plots of dynamical systems. Eur. Lett. 1987, 4, 973–977. [CrossRef]
94. Aquino, G.; Grigolini, P.; Scafetta, N. Sporadic randomness, Maxwell’s Demon and the Poincaré recurrence times. Chaos Solitons

Fractals 2001, 12, 2023–2038. [CrossRef]
95. Faes, L.; Gómez-Extremera, M.; Pernice, R.; Carpena, P.; Nollo, G.; Porta, A.; Bernaola-Galván, P. Comparison of methods for the

assessment of nonlinearity in short-term heart rate variability under different physiopathological states. Chaos 2019, 29, 123114.
[CrossRef] [PubMed]

96. Bologna, M.; Tsallis, C.; Grigolini, P. Anomalous diffusion associated with nonlinear fractional derivative Fokker-Planck-like
equation: Exact time-dependent solutions. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 2000, 62, 2213–2218.
[CrossRef] [PubMed]

97. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
98. Porta, A.; Gnecchi-Ruscone, T.; Tobaldini, E.; Guzzetti, S.; Furlan, R.; Montano, N. Progressive decrease of heart period variability

entropy-based complexity during graded head-up tilt. J. Appl. Physiol. 2007, 103, 1143–1149. [CrossRef]
99. García-González, M.A.; Fernández-Chimeno, M.; Ramos-Castro, J. Errors in the estimation of approximate entropy and other

recurrence-plot-derived indices due to the finite resolution of RR time series. IEEE Trans. Bio-Med. Eng. 2009, 56, 345–351.
[CrossRef] [PubMed]

100. Thiel, M.; Romano, M.C.; Read, P.L.; Kurths, J. Estimation of dynamical invariants without embedding by recurrence plots. Chaos
2004, 14, 234–243. [CrossRef] [PubMed]

101. Lamanna, J.; Malgaroli, A.; Cerutti, S.; Signorini, M.G. Detection of fractal behavior in temporal series of synaptic quantal release
events: A feasibility study. Comput. Intell. Neurosci. 2012, 2012, 704673. [CrossRef]

http://doi.org/10.1109/IEMBS.2011.6090339
http://doi.org/10.1016/j.cmpb.2014.02.008
http://doi.org/10.1109/EMBC.2015.7318705
http://doi.org/10.1103/PhysRevLett.89.068102
http://doi.org/10.1109/3477.658574
http://doi.org/10.1109/LSP.2016.2542881
http://doi.org/10.3390/e21121167
http://www.ncbi.nlm.nih.gov/pubmed/28182552
http://doi.org/10.1007/s11517-014-1216-0
http://www.ncbi.nlm.nih.gov/pubmed/25351477
http://doi.org/10.1088/1361-6579/ab499e
http://www.ncbi.nlm.nih.gov/pubmed/31574498
http://doi.org/10.1016/0013-4694(91)90138-T
http://doi.org/10.1111/j.1745-4603.1970.tb00745.x
http://doi.org/10.1103/PhysRevE.65.041926
http://doi.org/10.1007/s12021-009-9049-y
http://doi.org/10.1016/S0022-0736(95)80021-2
http://doi.org/10.1109/51.139038
http://doi.org/10.1103/PhysRevE.88.022913
http://www.ncbi.nlm.nih.gov/pubmed/24032907
http://doi.org/10.1038/srep00315
http://www.ncbi.nlm.nih.gov/pubmed/22419991
http://doi.org/10.1016/0167-2789(83)90298-1
http://doi.org/10.1209/0295-5075/4/9/004
http://doi.org/10.1016/S0960-0779(00)00162-4
http://doi.org/10.1063/1.5115506
http://www.ncbi.nlm.nih.gov/pubmed/31893647
http://doi.org/10.1103/PhysRevE.62.2213
http://www.ncbi.nlm.nih.gov/pubmed/11088687
http://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://doi.org/10.1152/japplphysiol.00293.2007
http://doi.org/10.1109/TBME.2008.2005951
http://www.ncbi.nlm.nih.gov/pubmed/19272924
http://doi.org/10.1063/1.1667633
http://www.ncbi.nlm.nih.gov/pubmed/15189051
http://doi.org/10.1155/2012/704673


Entropy 2021, 23, 321 28 of 34

102. Faure, P.; Korn, H. A new method to estimate the Kolmogorov entropy from recurrence plots: Its application to neuronal signals.
Phys. D Nonlinear Phenom. 1998, 122, 265–279. [CrossRef]

103. Kamizawa, T.; Hara, T.; Ohya, M. On relations among the entropic chaos degree, the Kolmogorov-Sinai entropy and the Lyapunov
exponent. J. Math. Phys. 2014, 55, 03270. [CrossRef]

104. Finn, J.M.; Goettee, J.D.; Toroczkai, Z.; Anghel, M.; Woodet, B.P. Estimation of entropies and dimensions by nonlinear symbolic
time series analysis. Chaos 2003, 13, 444–456. [CrossRef]

105. Bandt, C.; Shiha, F. Order patterns in time series. J. Time Ser. Anal. 2007, 28, 646–665. [CrossRef]
106. Grigolini, P.; Leddon, D.; Scafetta, N. Diffusion entropy and waiting time statistics of hard-x-ray solar flares. Phys. Rev. E Stat.

Nonlinear Soft Matter Phys. 2002, 65, 046203. [CrossRef]
107. Ribeiro, M.; Henriques, T.; Castro, L.; Souto, A.; Antunes, L.; Costa-Santos, C.; Teixeira, A. The entropy universe. Entropy 2021, 23,

222. [CrossRef]
108. Li, W.S.; Zhao, Y.X.; Wang, Q.; Zhou, J. Twenty years of entropy research: A bibliometric overview. Entropy 2019, 21, 694.

[CrossRef]
109. Azami, H.; Escudero, J. Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation. Comput.

Methods Programs Biomed. 2016, 128, 40–51. [CrossRef] [PubMed]
110. Hsu, C.F.; Lin, P.Y.; Chao, H.H.; Hsu, L.; Chi, S. Average entropy: Measurement of disorder for cardiac RR interval signals. Phys.

A Stat. Mech. Appl. 2019, 529, 121533. [CrossRef]
111. Allan, D.W. Statistics of atomic frequency standards. Proc. IEEE 1966, 54, 221–230. [CrossRef]
112. Qi, J.C.; Yang, H.J. Hurst exponents for short time series. Phys. Rev. E 2011, 84, 066114. [CrossRef] [PubMed]
113. Karmakar, C.K.; Khandoker, A.H.; Gubbi, J.; Palaniswami, M. Complex Correlation Measure: A novel descriptor for Poincaré

plot. Biomed. Eng. Online 2009, 8, 1–12. [CrossRef]
114. Costa, M.; Ghiran, I.; Peng, C.-K.; Nicholson-Weller, A.; Goldberger, A.L. Complex dynamics of human red blood cell flickering:

Alterations with in vivo aging. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2008, 78, 02090. [CrossRef]
115. Lake, D.E.; Moorman, J.R. Accurate estimation of entropy in very short physiological time series: The problem of atrial fibrillation

detection in implanted ventricular devices. Am. J. Physiol. Heart Circ. Physiol. 2011, 300, H319–H325. [CrossRef]
116. Theiler, J. Efficient algorithm for estimating the correlation dimension from a set of discrete points. Phys. Rev. A Gen. Phys. 1987,

36, 4456–4462. [CrossRef]
117. Faranda, D.; Vaienti, S. Correlation dimension and phase space contraction via extreme value theory. Chaos 2018, 28, 041103.

[CrossRef]
118. Peng, C.-K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of DNA nucleotides. Phys.

Rev. E 1994, 49, 1685–1689. [CrossRef]
119. Shi, L.C.; Jiao, Y.Y.; Lu, B.L. Differential entropy feature for EEG-based vigilance estimation. In Proceedings of the 35th Annual

International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; Volume
2013, pp. 6627–6630. [CrossRef]

120. Grigolini, P.; Palatella, L.; Raffaelli, G. Asymmetric anomalous diffusion: An efficient way to detect memory in time series. Fractals
2001, 9, 439–449. [CrossRef]

121. Martínez-Rodrigo, A.; García-Martínez, B.; Zunino, L.; Alcaraz, R.; Fernández-Caballero, A. Multi-lag analysis of symbolic
entropies on EEG recordings for distress recognition. Front. Neuroinform. 2019, 13, 40. [CrossRef]

122. Nardone, P. Entropy of Difference. 2014. Available online: https://arxiv.org/abs/1411.0506v2 (accessed on 1 December 2020).
123. Hsu, C.F.; Wei, S.Y.; Huang, H.P.; Hsu, L.; Chi, S. Entropy of entropy: Measurement of dynamical complexity for biological

systems. Entropy 2017, 19, 550. [CrossRef]
124. Satti, R.; Abid, N.U.H.; Bottaro, M.; De Rui, M.; Garrido, M.; Raoufy, M.R.; Montagnese, S.; Mani, A.R. The application of the

extended Poincaré plot in the analysis of physiological variabilities. Front. Physiol. 2019, 10, 116. [CrossRef]
125. Higuchi, T. Approach to an irregular time-series on the basis of the fractal theory. Physica D 1988, 31, 277–283. [CrossRef]
126. Chen, W.T.; Wang, Z.Z.; Xie, H.B.; Yu, W.X. Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans. Neural

Syst. Rehabil. Eng. 2007, 15, 266–272. [CrossRef] [PubMed]
127. Sarlabous, L.; Torres, A.; Fiz, J.A.; Jané, R. Evidence towards improved estimation of respiratory muscle effort from diaphragm

mechanomyographic signals with cardiac vibration interference using sample entropy with fixed tolerance values. PLoS ONE
2014, 9, e88902. [CrossRef]

128. Hurst, H.E. Long-Term Storage: An Experimental Study; Constable: London, UK, 1965.
129. Jelinek, H.F.; August, K.G.; Imam, M.H.; Khandoker, A.H.; Koenig, A.; Robert Riener, R. Heart rate asymmetry and emotional

response to robot-assist task challenges in post-stroke patients. Comput. Cardiol. 2011, 38, 521–524.
130. Azami, H.; Escudero, J. Improved multiscale permutation entropy for biomedical signal analysis: Interpretation and application

to electroencephalogram recordings. Biomed. Signal Process. Control 2016, 23, 28–41. [CrossRef]
131. Grassberger, P.; Procaccia, I. Characterization of strange attractors. Phys. Rev. Lett. 1983, 50, 346–349. [CrossRef]
132. Rosenstein, M.T.; Collins, J.J.; De Luca, C.J. A practical method for calculating largest Lyapunov exponents from small data sets.

Phys. D Nonlinear Phenom. 1993, 65, 117–134. [CrossRef]
133. Lempel, A.; Ziv, J. On the complexity of finite sequences. IEEE Trans. Inf. Theory 1976, 75–81. [CrossRef]

http://doi.org/10.1016/S0167-2789(98)00177-8
http://doi.org/10.1063/1.4868217
http://doi.org/10.1063/1.1555471
http://doi.org/10.1111/j.1467-9892.2007.00528.x
http://doi.org/10.1103/PhysRevE.65.046203
http://doi.org/10.3390/e23020222
http://doi.org/10.3390/e21070694
http://doi.org/10.1016/j.cmpb.2016.02.008
http://www.ncbi.nlm.nih.gov/pubmed/27040830
http://doi.org/10.1016/j.physa.2019.121533
http://doi.org/10.1109/PROC.1966.4634
http://doi.org/10.1103/PhysRevE.84.066114
http://www.ncbi.nlm.nih.gov/pubmed/22304162
http://doi.org/10.1186/1475-925X-8-17
http://doi.org/10.1103/PhysRevE.78.020901
http://doi.org/10.1152/ajpheart.00561.2010
http://doi.org/10.1103/PhysRevA.36.4456
http://doi.org/10.1063/1.5027386
http://doi.org/10.1103/PhysRevE.49.1685
http://doi.org/10.1109/EMBC.2013.6611075
http://doi.org/10.1142/S0218348X01000865
http://doi.org/10.3389/fninf.2019.00040
https://arxiv.org/abs/1411.0506v2
http://doi.org/10.3390/e19100550
http://doi.org/10.3389/fphys.2019.00116
http://doi.org/10.1016/0167-2789(88)90081-4
http://doi.org/10.1109/TNSRE.2007.897025
http://www.ncbi.nlm.nih.gov/pubmed/17601197
http://doi.org/10.1371/journal.pone.0088902
http://doi.org/10.1016/j.bspc.2015.08.004
http://doi.org/10.1103/PhysRevLett.50.346
http://doi.org/10.1016/0167-2789(93)90009-P
http://doi.org/10.1109/TIT.1976.1055501


Entropy 2021, 23, 321 29 of 34

134. Castiglioni, P.; Faini, A. A fast DFA algorithm for multifractal multiscale analysis of physiological time series. Front. Physiol. 2019,
10, 115. [CrossRef] [PubMed]

135. Ibáñez-Molina, A.J.; Iglesias-Parro, S.; Soriano, M.F.; Aznarte, J.I. Multiscale Lempel-Ziv complexity for EEG measures. Clin.
Neurophysiol. 2015, 126, 541–548. [CrossRef] [PubMed]

136. Zunino, L.; Olivares, F.; Rosso, O.A. Permutation min-entropy: An improved quantifier for unveiling subtle temporal correlations.
Eur. Lett. 2015, 109, 10005-p1–10005-p6. [CrossRef]

137. Rényi, A. On measures of information and entropy. In Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics
and Probability, Berkley, CA, USA, 20–30 June 1960; Volume 4, pp. 547–561.

138. Zbilut, J.P.; Thomasson, N.; Webber, C.L. Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary
cardiac signals. Med. Eng. Phys. 2002, 24, 53–60. [CrossRef]

139. Azami, H.; Escudero, J. Matlab Codes for “Refined Multiscale Fuzzy Entropy based on Standard Deviation for Biomedical Signal
Analysis”, [Software]. Institute for Digital Communications, School of Engineering, University of Edinburgh. Available online:
https://datashare.is.ed.ac.uk/handle/10283/2099 (accessed on 29 November 2020). [CrossRef]

140. Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [CrossRef]
141. Oida, E.; Moritani, T.; Yamori, Y. Tone-entropy analysis on cardiac recovery after dynamic exercise. J. Appl. Physiol. 1997, 82,

1794–1801. [CrossRef]
142. Bilo, G.; Revera, M.; Bussotti, M.; Bonacina, D.; Styczkiewicz, K.; Caldara, G.; Giglio, A.; Faini, A.; Giuliano, A.; Lombardi, C.;

et al. Effects of slow deep breathing at high altitude on oxygen saturation, pulmonary and systemic hemodynamics. PLoS ONE
2012, 7, e49074. [CrossRef]

143. Zhang, Z.B.; Wang, B.Q.; Wu, H.; Chai, X.K.; Wang, W.D.; Peng, C.K. Effects of slow and regular breathing exercise on
cardiopulmonary coupling and blood pressure. Med. Biol. Eng. Comput. 2017, 55, 327–341. [CrossRef]

144. Busch, V.; Magerl, W.; Kern, U.; Haas, J.; Hajak, G.; Eichhammer, P. The effect of deep and slow breathing on pain perception,
autonomic activity, and mood processing—An experimental study. Pain Med. 2012, 13, 215–228. [CrossRef]

145. Sellakumar, G.K. Effect of slow-deep breathing exercise to reduce anxiety among adolescent school students in a selected higher
secondary school in Coimbatore, India. J. Psychol. Ed. Res. 2015, 23, 54–72.

146. Steffen, P.R.; Austin, T.; DeBarros, A.; Brown, T. The impact of resonance frequency breathing on measures of heart rate variability,
blood pressure, and mood. Front. Public Health 2017, 5, 222. [CrossRef]

147. Weippert, M.; Behrens, K.; Rieger, A.; Kumar, M.; Behrens, M. Effects of breathing patterns and light exercise on linear and
nonlinear heart rate variability. Appl. Physiol. Nutr. Metab. 2015, 40, 762–768. [CrossRef] [PubMed]

148. Bornas, X.; Llabrés, J.; Noguera, M.; López, A.M.; Gelabert, J.M.; Vila, I. Fear induced complexity loss in the electrocardiogram of
flight phobics: A multiscale entropy analysis. Biol. Psychol. 2006, 73, 272–279. [CrossRef]

149. Porta, A.; Bari, V.; Ranuzzi, G.; De Maria, B.; Baselli, G. Assessing multiscale complexity of short heart rate variability series
through a model-based linear approach. Chaos 2017, 27, 093901. [CrossRef] [PubMed]

150. Faes, L.; Zhao, H.; Chon, K.H.; Nollo, G. Time-varying surrogate data to assess nonlinearity in nonstationary time series:
Application to heart rate variability. IEEE Trans. Biomed. Eng. 2008, 56, 685–695. [CrossRef] [PubMed]
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