The Architecture and Performance of a Stochastic Competitive Evolutionary Neural Tree Network

Davey, N., Adams, R.G. and George, S. (2000) The Architecture and Performance of a Stochastic Competitive Evolutionary Neural Tree Network. pp. 75-93. ISSN 0924-669X
Copy

A new dynamic tree structured network - the Stochastic Competitive Evolutionary Neural Tree (SCENT) is introduced. The network is able to provide a hierarchical classification of unlabelled data sets. The main advantage that SCENT offers over other hierarchical competitive networks is its ability to self-determine the number and structure of the competitive nodes in the network without the need for externally set parameters. The network produces stable classificatory structures by halting its growth using locally calculated, stochastically controlled, heuristics. The performance of the network is analysed by comparing its results with that of a good non-hierarchical clusterer, and with three other hierarchical clusterers and its non stochastic predecessor. SCENT’s classificatory capabilities are demonstrated by its ability to produce a representative hierarchical structure to classify a broad range of data sets.

picture_as_pdf

picture_as_pdf
900009.pdf
Available under Creative Commons: 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads