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Abstract—To provide multiple options for specific application in bio-signal processing, the programmable 
Gaussian-derived Gm-C wavelet filter has been proposed. To realize the programmable characteristic, the analog wavelet 
base with one numerator term is constructed by using hybrid artificial fish swarm algorithm. Also, the inverse 
follow-the-leader feedback Gm-C filter structure with a switch array is employed. By programming switches only, 
Gaussian and Marr wavelet transforms can be realized flexibly with all component parameters unchanged. The 
seventh-order programmable wavelet filter is designed as an example. Simulation results show that power consumption is 
only 141.68 pW at scale a=0.1, with dynamic range of 42.6 dB and figure-of-merit of 2.05×10-13. Due to the 
programmability, the proposed design method can implement two wavelet filters with very low circuit complexity. 

  

KEYWORDS—Wearable biomedical sensor, Physiological signal processing, Gaussian-derived wavelet transform, 
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I. INTRODUCTION 

Owing to the high-order vanishing moment, Gaussian-derived 
wavelets have been widely applied in various areas. Especially, 
as the first and second derivative of Gaussian function, 
Gaussian and Marr wavelets are extensively used in feature 
extraction of physiological signals, e.g., electroencephalogram 
(EEG) and electrocardiogram (ECG) [1]-[8]. Along with the 
emergence of intelligent medical device, wearable biomedical 
sensor integrated with wavelet transform for on-line feature 
extraction has attracted much attention. In this context, the 
analog implementation of Gaussian and Marr wavelet 
transforms has been investigated due to low power compared 
with digital counterpart, but limited to generate fixed-type 
wavelet base [1]-[4]. So far, the selection of wavelet base is still 
a major concern since the best wavelet base can be varied 
depending on specific biomedical signals [9]-[11]. Furthermore, 
multimodal measurement of physiological signals has been 
considered as a promising technique in healthcare monitoring 
and management. For example, multimodal analysis of EEG 
and ECG has been employed to improve the seizure detection 
performance [12]-[15].  

Consequently, it is indeed necessary to design a 
programmable wavelet filter for wearable biomedical sensor, 
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which can flexibly provide multiple Gaussian-derived wavelet 
bases ready for being selected for specific bio-signal processing 
as shown in Fig. 1. To date, several design methods for analog 
wavelet filter have been proposed, nonetheless, they only 
realize fixed-type wavelet transform. Theoretically, multiple 
Gaussian-derived wavelet transforms can be realized directly 
by combining fixed-type wavelet filters. However, to enhance 
approximation accuracy, high-order wavelet filters with 
complex poles and zeros are normally used. Thus, this design 
strategy will inevitably lead to high circuit complexity that is 
undesirable in wearable application where power and size 
budgets are both very stringent. 

To alleviate aforementioned difficulty, this paper aims to 
propose a programmable wavelet filter capable of realizing 
multiple Gaussian-derived wavelet transforms with low power 
consumption and small chip size. To achieve this goal, the 
Gaussian-derived wavelet base is approximated by the rational 
function with only one term in numerator. The approximation is 
conducted in time domain, in which a mathematical 
approximation model is constructed and the hybrid artificial 
fish swarm algorithm (HAFSA) is employed to find the optimal 
solution. Also, the Gm-C filter structure based on inverse 
follow-the-leader feedback (IFLF) configuration is used to 
synthesize the obtained approximation function. Simulation 
results show that the programmable wavelet filter can realize 
Gaussian and Marr wavelet transforms flexibly by using 
minimum component. Using SMIC 1V 0.18µm CMOS 
technology, the power consumption of designed programmable 
wavelet filter at scale a= 0.1 is only 141.68pW. 
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Figure 1. Wearable biomedical sensor integrated with programmable wavelet filter. 

 

DESIGN STRATEGY FOR PROGRAMMABLE 

GAUSSIAN-DERIVED WAVELET FILTER 

Continuous wavelet transform (CWT) can be expressed as 
the convolution of input signal f(t) with wavelet base ψ(t) [3], 
i.e., 
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where a is the scale parameter.  
Apparently, the CWT at scale a can be realized by wavelet 

filter whose impulse response is (1 / ) ( / )a t a  . 

Therefore, analog implementation of wavelet filter mainly 
includes the rational approximation of wavelet base (i.e., 
analog wavelet base) and the synthesis by analog filter 
structure [3].  

Gaussian-derived wavelet bases are constructed by the 
derivative of Gaussian function and have the general form as 
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Herein, two commonly used wavelets, i.e., Gaussian and 
Marr wavelets, are considered, which can be obtained by 
setting m=1 and m=2 (added by a minus sign) in (2), 
respectively. 

In addition, the Laplace Transform of derivatives can be 
deduced as 

    ( ){ ( )} { ( )}n nL f t s L f t                       (3) 

Based on (2) and (3), it can be concluded that the rational 
approximation of Marr wavelet in frequency domain can be 
obtained easily by multiplying that of Gaussian wavelet by s 
with a minus sign added. Inspired by above characteristic, 
the design strategy for programmable Gaussian-derived 
wavelet filter is discussed as below. 

First, the rational approximation to Gaussian wavelet 
should have minimum terms in numerator. Otherwise, the 
approximation to Marr wavelet obtained based on (3) may 
be improper rational expression and cannot be synthesized 
by analog filter. Meanwhile, keeping numerator terms 
minimum can facilitate lowering circuit complexity since 
two Gaussian-derived wavelet filters can share a great part 
of implementation circuits. Among all the approximation 
methods, the approach proposed in [3] has the unique 

advantage in programmable wavelet filter design, since the 
obtained analog wavelet base only has one numerator term. 
For example, the general form for analog Marr wavelet base 
is given as 
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Based on (3), the analog Gaussian wavelet base can be 
deduced as 
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Second, to achieve the goal of programmability, filter 
structure for synthesizing denominator and numerator of 
analog wavelet base should be independently controllable. In 
this paper, the Gm-C filter structure based on IFLF 
configuration is employed [4],[16]. Compared with other 
structures, IFLF filter structure fully meets above 
requirement, based on which the circuits for synthesizing the 
denominator of (4) and (5) can be shared. More importantly, 
IFLF structure only requires one Gm cell to realize the only 
numerator term, which provides the possibility of 
programmable realization. Also, Gm-C technique is well 
suited for low-power and multi-scale wavelet filter design 
since transconductor has the characteristics of open loop 
operation, circuit simplicity and tunability. 

Fig. 2 illustrates the schematic diagram of proposed 
programmable Gaussian-derived Gm-C wavelet filter. The 
denominator and numerator of (4) and (5) are implemented 
by Gm cells gj (j=1, 2, …, n) and ga independently. As shown 
in Table 1, switches are programed to generate Gaussian and 
Marr wavelet transforms by simply moving the input 
transconductor ga to ① and ②. Switches S1 and S2 ensures 
the selection of wavelets, while S3~S6 are employed to 
realize the minus sign in (4) by exchanging the two input 
terminals of transconductor ga. 

TABLE 1 
 PROGRAMMABILITY OF WAVELET FILTER REALIZED BY SWITCHES 

Wavelet S1 S2 S3 S4 S5 S6 

Gaussian 1 0 1 0 0 1 

Marr 0 1 0 1 1 0 
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Fig. 2. Schematic diagram of programmable Gaussian-derived Gm-C wavelet filter. 

Denoting τj=Cj/gj, the design formula for denominator 
implementation is given as [16] 
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Theoretically, the numerator can be realized by zero 
coefficient β, denoting β=ga/gj. According to [16], each 
numerator coefficient in transfer function can be realized 
independently by adding an input transconductor to the 
corresponding node connected with the capacitor in IFLF 
structure. As for Fig. 2, the numerator coefficients of (4) and (5) 
can be generated by connecting ga with node ① and ②, 
respectively.  

To synthesize (4) and (5), the design formula for β can be 
expressed as 
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It should be noted that numerator coefficient A in (4) and (5) 
can be regarded as filter gain. The inaccurate realization of A 
can be compensated in subsequent stage. Actually, realization 
deviation of A only introduces changes in absolute amplitude, 
not the relative amplitude of wavelet transform coefficient 
which plays an important role in threshold-dependent signal 
processing. Therefore, the numerator coefficient matching is 
not considered.  

As seen from Fig. 2, the proposed wavelet filter can realize 
Gaussian and Marr wavelet transforms flexibly by 
programming switch array with compact structure and 
minimum components. The same circuit complexity as that of 
fixed-type wavelet filter can be achieved, which is very 
suitable for small-size and low-power application.  
As a first step, the construction of analog wavelet base as (4) 
plays an important role in programmable wavelet filter design. 
Reference [3] provides a valuable method to deduce (4) by 
using optimization technique, but has relatively low 
approximation accuracy. To overcome the limitation, this 
paper presents a novel method to decrease the approximation 
error between (4) and ideal Marr wavelet, in which the 
approximation model is constructed and optimized both in 
time domain. 

II. APPROXIMATION OF WAVELET BASE IN TIME DOMAIN 

A. Mathematical Approximation Model 

Till now, two approximation methods have been proposed 
to obtain the analog wavelet base shown as (4), which are 
conducted in frequency domain [3], [17]. Although successful 
in many aspects, the proposed methods can not yield a high 

approximation accuracy in time domain. According to 
Parseval’s theorem, making the fitting error of analog wavelet 
base minimum in time domain can guarantee high 
approximation accuracy both in time and frequency domain 
[2]. Therefore, this paper aims to propose a novel method to 
construct analog Marr wavelet base in time domain with only 
one numerator term. 

Wavelet bases are usually noncausal and cannot be directly 
implemented by analog filter. Thus, a time delay t0 should be 
introduced. Assume h(t) and 

M 0( )t t   are the impulse 

response of analog wavelet base and the time-reversed Marr 
wavelet delayed by t0, respectively. Obviously, the optimal 
approximation in time domain can be found when h(t) and 

M 0( )t t   have the same waveform. Hence, the core task for 

constructing analog wavelet base is to find the minimum 
fitting error between h(t) and M 0( )t t   by optimizing 

coefficients in (4). 
Herein, L2-norm calculated by numerical approach with 

discretization is used to quantify the fitting error. Also, to 
evaluate the fitting error in time domain, h(t) is derived from (4) 
by using Inverse Laplace Transform, i.e., 

1
M( ) ( ( ))h t L H s                           (8) 

where L-1 denotes the operator of Inverse Laplace Transform.  
To design a stable wavelet filter, the denominator of analog 

wavelet base should be a strictly Hurwitz polynomial, that is, 
the denominator of (4) should have positive coefficients and 
the roots with negative real part. Simultaneously, the selection 
of time delay t0 should be balanced delicately. Large t0 will 
increase the range close to zero near the origin, which means 
high-order wavelet filter is required to yield a satisfied 
approximation result. Small t0 may introduce large truncation 
error and deteriorate the overall approximation accuracy. 
Clearly, improper selection of t0 may lead to large chip size 
and high power consumption that are not welcome in wearable 
sensor design. Unfortunately, in almost all the existing 
time-domain approximation methods, the value of t0 is not 
considered as an important parameter to be optimized, but 
assigned to a pre-set value manually.  

Instead, the denominator coefficients Bi (i=1, 2…n) in (4) 
and also the time delay t0 are used in this paper to construct the 
mathematic model for approximating Marr wavelet base, 
which can be defined as 

     2
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where pi represents the pole of designed analog wavelet base 
HM(s), K+1 is the number of sampling points and ΔT is the 
sampling interval.  

As seen from (9), the approximation of Marr wavelet in time 
domain essentially is an optimization problem. In this paper, 
the HAFSA is proposed to find the optimal solution of Bi and 
t0. 

B. Hybrid Artificial Fish Swarm Algorithm  

Artificial Fish Swarm Algorithm (AFSA) is an effective 
technique to deal with optimization problem thanks to the 
insensitivity to initial value selection and high performance in 
global search [18]-[22]. However, AFSA has the disadvantage 
of premature convergence and is easily trapped into local 
optima. Herein, sequential quadratic programming (SQP) is 
employed to overcome above limitation. As a local search 
method, SQP can locate the local optima efficiently, but is 
sensitive to the selected initial solution. In this context, the 
hybrid AFSA (HAFSA) consisting of AFSA and SQP is 
proposed, in which AFSA is used to locate the near-globally 
optima and provide the initial solution for SQP. 

1) Artificial Fish Swarm Algorithm 

The AFSA is a heuristic optimization method designed by 
simulating the foraging behavior of fish school. In nature, 
fishes are willing to stay in the environment with rich nutrient. 
As the fictitious entity of true fish, artificial fish is used to 
represent a candidate solution in optimization problem. 
Generally, AFSA searches the optimum solution by imitating 
fish swarm behaviors, including prey, swarm, follow and 
random. Herein, the principle of AFSA is illustrated by taking 
the maximum problem as an example. 
Prey Behavior. As a biological behavior, artificial fish tends 
to prey at the place with high food concentration. Assume the 
current state of artificial fish is at Xi. Then, a new state Xj is 
selected randomly within the perception distance Visual, 
which can be represented by 

       (0,1)j iX X Visual rand                   (10) 

where rand(0,1) generates a random number between 0 and 1. 
Herein, the food concentration at Xi is represented by f(Xi). If 
f(Xj)>f(Xi), the artificial fish swims forward a step in this 
direction. The next state ( 1)k

iX  of artificial fish can be 

expressed by  
( )

( 1) ( )
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where Step is the moving step length. 
Otherwise, the new state Xj is selected randomly again 

based on (10). If the preset number of repeated attempts 
Try_num is exceeded, artificial fish will swim forward a step 
randomly. 
Swarm Behavior. As a natural living habit, fishes usually 
gather into groups to facilitate forage and avoid predators.  
Assume the current state of artificial fish is at Xi. In addition, 
there exist n individual companions within its perception 
distance Visual. Xc is the center position of individual 
companions. δ is the congestion degree of fish swarm. If 
f(Xc)/n>δf(Xi), it means that the food concentration is high 
around center position Xc, and the surrounding is not crowded. 

Then, the artificial fish swims forward a step in the direction of 
center position. The next state ( 1)k

iX   of artificial fish can be 

expressed by 
( )
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Otherwise, the prey behavior is executed. 
Follow Behavior. During the process of foraging, fishes 
usually follow their companions which have found the food. 

Assume Xi is the current state of artificial fish. Then, Xj is 
the state within perception distance which has the highest food 
concentration f(Xj). If f(Xj)/n>δf(Xi), it means that the 
surrounding is not crowded around position Xj. The next state 

( 1)k
iX  of artificial fish can be given as 

( )
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Otherwise, the prey behavior is carried out.  
Random Behavior. By imitating the activity of random swim 
in fish’s living habit, random behavior is used to alleviate the 
premature problem of falling into local optima. The process 
for random behavior can be described as 

( 1) ( ) (0,1)k k
i iX X Visual rand                  (14)  

where ( )k
iX and ( +1)k

iX are the current state and the new state, 

respectively.    

2) Sequential Quadratic Programming Algorithm 

Sequential quadratic programming is one of the most 
powerful tools for nonlinearly constrained optimization 
problems.  

In SQP algorithm, the nonlinear optimization problem is 
solved by using an iterative procedure. At each iteration xk, the 
optimization problem (9) is modeled by a quadratic 
programming (QP) subproblem, i.e. 

      T T1
min ( ) ( , )

2
k k k

d
f x d d W x d                  (15) 

where ( )kf x  denotes the objective function E in (9), d is the 

descent direction and W(xk, λk) represents the Hessian of the 
Lagrangian for problem (9).  

Then, a new iteration xk+1 is constructed by solving the QP 
subproblem, i.e.,  

+1k kx x d                                   (16) 
Moreover, the constrained condition in problem (9) needs 

to be dealt with. Herein, the constraint for iB  can be realized 

simply by setting the lower bound on the optimization 
variables. Meanwhile, to obtain stable analog wavelet base, a 
penalty term rP(x) is introduced to the fitness function of 
artificial fishes when poles are located at the right half of 
s-plane, in which r denotes the penalty coefficient, P(x) is the 
penalty function and x represents the feasible solution. In this 
paper, r and P(x) are constructed by exterior penalty function, 
defined as 

2( / 2)
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r iter

P x real p   

 


 ，
                            (17) 

where iter is the number of iterations. 
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Finally, the mathematical model for approximating 
Marr wavelet in time domain can be expressed based on (9) 
and (17), i.e., 
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3) Implementation Steps for HAFSA 

Taking all the considerations into account, the 
implementation steps of proposed HAFSA is summarized as 
below. 
Step 1: Set the parameters in AFSA, including maximum 
number of iterations Maxiter, number of artificial fishes N, and 
also Try_num, δ, Step and Visual. 
Step 2: Initialize the state of artificial fishes X(1) and set iter=1. 
Step 3: Perform swarm and follow behaviours simultaneously 
at the current state of the ith artificial fish ( )k

iX . If 

f(
cX )/n>δf( ( )k

iX ) and f(Xj)/n>δf(Xi), the new states ( 1)k
iX   and 

( 1)' k
iX   are determined according to (12) and  (13), respectively. 

And then, jump to Step 5. Otherwise, go to Step 4. 
Step 4: Perform prey behavior. The next state of the ith 
artificial fish is obtained according to (11) and then jump to 
Step 6. 
Step 5: Compare food concentration f( ( 1)k

iX  ) with f( ( 1)' k
iX  ), and 

select the larger one to determine the next state ( 1)k
iX  . 

Step 6: i=i+1. If i≤N, go back to Step 3; otherwise, go to Step 7. 
Step 7: iter=iter+1. If iter≤Maxiter, let i=1 and go back to Step 3; 
otherwise, select the best artificial fish as the initial solution x(0) 

and go to Step 8. 
Step 8: Initial W(0) in (15) and the allowed maximum error  . 

Step 9: If ( )kf x   , stop and select kx as the optimal 

solution; otherwise, go to Step 10. 
Step 10: Convert the optimization problem (9) to QP 
subproblem based on (15). Then, determine the search 
direction d and the next iteration xk+1. 
Step 11: Calculate the Hessian matrix of Lagrange function 
W(k+1). 
Step 12: let k=k+1, and go back to Step 9. 

III. CONSTRUCTION OF ANALOG MARR WAVELET BASE 

USING HAFSA 

The proposed method can be used to approximate Marr 
wavelet at arbitrary filter orders. In this paper, the 
seventh-order analog Marr wavelet base at a=1 is selected 
to elaborate the design procedure.  

According to (9), the mathematical approximation model 
can be given as 

2000
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The HAFSA is used to find the optimal solution of (19). 
The parameters in HAFSA are set as: N=200, Maxiter=200, 
Try_num=100, Visual=25, δ=27and Step=3.  

After 200 iterations by AFSA, the obtained optimal 
solution is selected as the initial solution of SQP algorithm. 
Finally, the optimal solution of (19) obtained by HAFSA is 
B1=4.4833, B2=6.1443, B3=7.6027, B4=4.1921, B5=2.6708, 
B6=0.5942, B7=0.226, t0=3.51. Substituting above parameters 
into (4), the seventh-order analog Marr wavelet base at a=1 
can be given as 

2

7 6 5 4 3 2

2.1741
( )

0.226 0.5942 2.6708 4.1921 7.6027 6.1443 4.4833 1

s
H s

s s s s s s s




      

 (20) 
Fig. 3(a) illustrates the impulse response of (20) compared 

with existing methods. Noted that only the analog wavelet 
bases with one term in numerator are considered. Obviously, 
the proposed method can improve the approximation 
performance of AFSA by introducing SQP, and yield highest 
approximation accuracy among exiting methods. Table 2 
gives the values of approximation error and time delay t0 
obtained or selected in different methods. Clearly, by 
introducing t0 as an optimized parameter in approximation 
model, the proposed method can find the optimal t0 for the 
purpose of enhancing approximation result. Fig. 3(b) shows 
the frequency response of constructed analog wavelet base. 
It can be seen that the proposed method can also yield a 
satisfied approximation result in frequency domain.  

 
      (a) 

   
      (b) 

Fig. 3. Approximation of Marr wavelet by proposed method (a) impulse 
response (b) frequency response. 
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TABLE 2 
COMPARISON OF L2-NORM APPROXIMATION ERROR IN TIME DOMAIN FOR DIFFERENT APPROXIMATION METHODS.  

Method 
Spec. 

Casson et al 
[17] 

Zhao et al 
[3] 

AFSA 
This work 
(HAFSA) 

Order 7 7 7 7 
Approximation error 5.3 2 2.05 1 

Time delay t0 4s 3.3s 3.9s 3.5s 

 
Fig. 4. Seventh-order programmable Gm-C wavelet filter. 

2
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s
H s
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          (21) 

 

IV. DESIGN OF PROGRAMMABLE GAUSSIAN-DERIVED GM-C 

WAVELET FILTER 

Fig. 4 shows the seventh-order programmable 
Gaussian-derived Gm-C wavelet filter derived from Fig. 2. Due 
to the bandpass characteristic in frequency domain, the desired 
wavelet scales can be realized by denormalizing (20) to related 
center frequency f0. Herein, to extract the features of bio-signals 
commonly in 0-100 Hz range, e.g., ECG and EEG, scale a=0.1 
(f0 =2.5Hz) is chosen as a design example. The transfer function 
at a=0.1 is written as (21). 

To keep the capacitance realistic for chip fabrication in low 
frequency application, the transconductance of integrator 
transconductors in Fig. 4 are set to be g1=100pS, g2=100pS, 
g3=300pS, g4=200pS, g5=300pS, g6=500pS, g7=500pS. Then, 
the capacitance values in Fig. 4 can be calculated as 
C1=44.833pF, C2=13.7pF, C3=37.11pF, C4=11.02pF, 
C5=19.11pF, C6=11.1pF, C7=19pF. The transconductance of 
input transconductor ga is -106pS calculated by -A/B2 in (21).  

To facilitate low voltage and low power operation, the 
transconductor consisting of simple differential pair is employed 
[3]. Fig. 5 shows the structure of Gm circuit, with all transistors 
working in deep weak inversion. The values of 
transconductance can be realized by setting bias current Ibias. For 
example, g1=100pS can be obtained by setting Ibias=6.5pA. 
   To provide a low impedance path, all the switches in Fig. 4 are 
implemented by small size NMOS transistors.  

V. SIMULATION RESULTS  

The programmable wavelet filter at a=0.1 is designed using 
standard SMIC 0.18μm, MIM-cap, 1 poly 6 metal CMOS 
process with 1V power supply.  

By programming switches according to Table 1, Gaussian 
and Marr wavelets can be generated flexibly with minimum 
circuit components. Fig. 6 and Fig. 7 illustrate the simulated 
response of generated Gaussian and Marr wavelet filters, 
respectively. Apparently, the simulated post-layout responses  

 

are satisfied compared with ideal wavelet bases and pre-layout 
simulation results.  

 
Fig. 5. Circuit structure of Gm cell.  

Table 3 summarizes the simulated filter specifications. The 
signal input range is calculated for a 1% total harmonic 
distortion (THD). Assume that the input signal of a filter is a 
sinusoidal signal of fundamental frequency f. Then, the THD 
can be calculated by [23] 

2

2
2

THD= 100%khk

f

V

V



                         (22)

 

where Vf is the amplitude of the fundamental tone, 
khV is the 

amplitude of the kth harmonic. 
In addition, the input reference noise can be obtained by 

dividing the output noise by the magnitude response, in which 
the output noise is measured by observing the output frequency 
spectrum when no input is applied to the filter [24]. The 
third-order intermodulation distortion (IMD3) of Gaussian 
wavelet filter can be measured when sine waves at 2 and 2.1Hz 
are applied. Both input components have same amplitude 5mV 
giving a 20mVpp input signal [24]. As for Marr wavelet filter, 
sine waves at 2.5 and 2.6Hz are applied so that the modulation 
products can fall within the passband of filter [24]. The DR and 
signal-to-noise ratio (SNR) can be calculated by (23) and (24), 
respectively.  
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10DR=20log
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2
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2

noise

( )

10SNR=10log
V

V                             (24) 

where Vim is the maximum input signal voltage, Vfloor is the noise 
floor, Virms and Vnoise represent the input root-mean-square and 
the input-referred noise voltage, respectively [3]. 

Also, the figure-of-merit (FoM) is defined as (25) [17],[25] 

   FoM= dd

c

P V

n f DR


 

                                (25) 

where P is the filter power consumption, n and fc represent the 
number of poles and the center frequency, respectively. Low 
FoM values are desired for high performance filter design. 

To evaluate the effect of process parameters variation and 
mismatch, a 100 runs Monte Carlo simulation of designed 
wavelet filter is shown in Fig. 8. As can be seen in Fig 8(a), the 
frequency responses are close to each other when running a 
simulation over 100 times using Monte Carlo. In addition, Fig. 
8(b) shows that the standard deviation (SD) of the bandwidth at 
center frequency 5Hz (i.e., scale a=0.05) is only 0.1Hz. 
Obviously, the designed wavelet filter shows a strong reliability 
for mismatch and process parameters variation. 

The scale of wavelet filter can be adjusted by changing the 
transconductance value of Gm cells. For example, wavelet 
scales at 0.1, 0.05, 0.025, 0.0125 and 0.00625 can be 
implemented by setting bias current Ibias of each Gm cell in Fig. 
4, which is shown in Table 4. Fig. 9 shows the frequency 
responses of Marr wavelet filter at different wavelet scales. 
Apparently, the proposed design method can realize the wavelet 
transform coefficients at different scales accurately.  

Owing to the programmable structure, the proposed method 
can implement two wavelet bases using minimum circuit 
complexity and thus lowest power consumption. At scale a=0.1, 
the center frequency of 2 Hz for Gaussian wavelet and 2.5 Hz 
for Marr wavelet are achieved with ultra-low power 
consumption of 141pW. 

Fig. 10 shows the performance of proposed wavelet filter in 
feature extraction of physiological signals, namely wavelet 
coefficients. The generated Gaussian wavelet filter is used to 
extracting features from ECG, while Marr wavelet filter is for 
feature extraction of EEG. The proposed wavelet filter can 
achieve almost the same performance in feature extraction as 
analog wavelet bases, which is very suitable for biomedical 
signal processing in low power and small size application. 

 

 
(a) 

 
(b) 

Fig. 6. Simulated response of Gaussian wavelet filter (a) Impulse response (b) 
Frequency response. 
 

 
(a) 

 
(b) 

Fig. 7.  Simulated response of Marr wavelet filter (a) Impulse response (b) 
Frequency response. 
 

 
(a) 
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(b) 

Figure 8. (a) A 100 runs Monte Carlo simulation of frequency responseof 
designed wavelet filter at fc=5Hz (b) mismatch and process parameters variation 
on the bandwidth for the designed wavelet filter at fc=5Hz. 
 

 
Figure 9. Simulated response of designed Marr wavelet filter at different scales. 
 

 
(a) 

 
(b) 

Figure 10. Features extracted by analog wavelet base and designed 
programmable wavelet filter (a) EEG feature extracted by Marr wavelet (b) 
ECG feature extracted by Gaussian wavelet. 

 

TABLE 3 
SUMMARY OF WAVELET FILTER’S PERFORMANCE. 

                  Wavelet 
Spec. 

 

Gaussian Marr 

Pre-layout Post-layout Pre-layout Post-layout 

Power (pW) 138  141.68 138 141.68 

Signal input range 
(mVpp) 

20 20 20 20 

DR (dB) 42.1 42.6 39 39.5 
SNR (dB) 39.1 40 33 33.5 

Input reference noise 
(μVrms) 

78.3 74.2 158 149 

IMD3 (dBc) -32 -32 -45 -44 
THD 1% 1% 1% 1% 

FoM (10-13) 2.34 2.4 2.02 2.05 

 
TABLE 4   

BIAS CURRENT VALUE OF EACH TRANSCONDUCTOR IN FIG.4 FOR REALIZING 

FIVE CENTER FREQUENCIES    

Gm 
Ibias/pA 

fc=2.5Hz fc=5Hz fc=10Hz fc=20Hz fc=40Hz 

g1 6.3 12.6 25.2 50.4 100.8 

g2 6.3 12.6 25.2 50.4 100.8 

g3 18.9 37.8 75.6 151.2 302.4 

g4 12.6 25.2 50.4 100.8 201.6 

g5 18.9 37.8 75.6 151.2 302.4 

g6 31.5 63 126 252 504 

g7 31.5 63 126 252 504 

ga 4.1 8.1 16 31 56 

 

VI. CONCLUSION 

A programmable wavelet filter is proposed for generating 
multiple-type wavelets. Based on Laplace Transform, the 
Gaussian and Marr wavelet filters can be realized by moving 
input transconductor to related internal node with all 
component parameters unchanged. Then, minimum 
components are required for filter design, a feature that is very 
suitable for power-constrained wearable biomedical sensor 
integrated with local intelligence algorithms. Also, a novel 
approximation method is presented to construct the analog 
wavelet base with one numerator term required by 
programmable characteristic. To enhance the approximation 
accuracy, the approximation of wavelet base is modeled as an 
optimization problem in time domain and the HAFSA is 
proposed to locate the optimal solution. 

A seventh-order programmable wavelet filter is designed in 
0.18 µm CMOS process. Simulation results demonstrate that an 
ultra-low power dissipation can be achieved with only 141.68 
pW at scale a=0.1. Very low FoM values of 2.4×10-13 and 
2.05×10-13are obtained when generating Gaussian and Marr 
wavelets, respectively. Experiment result shows that the 
proposed programmable Gaussian-derived wavelet filter can be 
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used for accurate extraction of transient features in biomedical 
signal processing. 

VII Data Availability Statement 

The data that support the findings of this study are available 
from the corresponding author upon reasonable request. 
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