
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 10, OCTOBER 2010 2845

Weakly-Constrained Codes for Suppression of
Patterning Effects in Digital Communications
Alexander Shafarenko, Senior Member, IEEE, Anton Skidin, and Sergei K. Turitsyn, Member, IEEE

Abstract—We propose weakly-constrained stream and block
codes with tunable pattern-dependent statistics and demonstrate
that the block code capacity at large block sizes is close to the
the prediction obtained from a simple Markov model published
earlier. We demonstrate the feasibility of the code by presenting
original encoding and decoding algorithms with a complexity
log-linear in the block size and with modest table memory
requirements. We also show that when such codes are used for
mitigation of patterning effects in optical fibre communications,
a gain of about 0.5dB is possible under realistic conditions, at
the expense of small redundancy (≈10%).

Index Terms—Patterning effects, weakly-constrained codes,
coding theory, pre-encoding.

I. INTRODUCTION

THE patterning effect due to inter-symbol interference
(ISI) manifests itself in digital communication as de-

pendence of the transmission result for an information bit
on the surrounding pattern, i.e. the neighbouring bits. ISI
imposes one of the most severe restrictions on the speed of
data transmission and can be due to physical mechanisms
of widely varying origins. For instance, in fibre optic digital
communication, pattern dependence of errors can be caused by
the gain saturation of a semiconductor optical amplifier (see,
e.g., [1]) or by resonance interactions between pulses in bit-
overlapping transmission regimes [2], [3]. Note that the current
trend of ever-increasing channel rate makes it necessary to
use increasingly shorter carrier pulses thus also increasing the
effects of dispersive broadening of the signal and consequently
bit-overlapping. Therefore the negative impact of the pattern-
ing effects may become a very serious factor in future optical
systems.

One well-researched example of ISI is optical fibre commu-
nication at high bit rates limited by intra-channel four-wave-
mixing (ICFWM) [2], [3], which generates “ghost” pulses.
Under such conditions the main contribution to the bit error
rate comes from the ghosts pulses that appear in logical-zero
time slots surrounded by symmetric patterns of logical-ones
[4]. Mitigation of intra-channel nonlinear effects by channel
coding has been proposed in [5], [6]. Suppression of the
ICFWM effects by employing a pre-encoding was studied in

Paper approved by O. Milenkovic, the Editor for Coding Theory and
Applications of the IEEE Communications Society. Manuscript received
November 19, 2008; revised January 17, 2010.

A. Shafarenko is with the School of Computer Science, Univer-
sity of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK (e-mail:
A.Shafarenko@herts.ac.uk).

A. Skidin is with the Institute of Computational Technologies SB
RAS, Novosibirsk, 6 Acad. Lavrentjev Avenue, 630090, Russia (e-mail:
ask@skidin.org).

S. K. Turitsyn is with the Aston University, Photonics Research Group,
Birmingham B4 7ET, UK (e-mail: s.k.turitsyn@aston.ac.uk).

Digital Object Identifier 10.1109/TCOMM.2010.080310.100026

[4], [7]-[9]. Direct modeling of bit-error-rate in high-speed
wave-division-multiplexing optical communications, see [10],
[11], has shown the utility of skewed statistics pre-encoding of
the type discussed in [7]. In the present paper we will extend
the analysis begun in [7] with consideration and evaluation of
specific coding schemes.

It should be noted that practical optical transmission lines
have to rely on forward-error correction techniques for the
provision of a low-BER communication channel. When the
BER is small by itself, the FEC can cope with the errors due
to both the channel noise and patterning well enough not to
require any additional measures. However, as the patterning
effects grow stronger, at some point the FEC scheme starts to
deteriorate rapidly and it is at that point that error prevention
becomes essential in maintaining the low-BER regime. The
solution that we proposed in [7], and which we continue to
study here, is to use a weakly constrained code to adjust the
incidence of undesirable patterns down in order to reduce the
part of the BER that is due to patterning and, consequently,
bring the combined BER back under the FEC break-down
threshold. Since the FEC threshold is usually very sharply
defined, the most economical pre-encoding scheme ought to
be tuneable: any extra redundancy below the threshold is more
effective if utilised by the FEC itself. Weakly constrained
codes are codes that reduce the incidence of patterns of a
certain kind; the amount of reduction is directly linked with the
code redundancy and is controllable by a parameter that can be
varied almost continuously [7]. This makes them ideally suited
to the task of controllable pattern reduction for the purposes
of FEC.

We will present specific block and stream codes for weakly-
constrained coding and will demonstrate that for some of these
codes, which can be realized in practice, the redundancy at a
given level of pattern elimination is close to the Markov model
obtained in [7]. Finally, for our block codes we propose a log-
linear complexity encoding/decoding algorithm and evaluate
the code gain under various strengths of the patterning effect.

II. FROM “GHOST” PULSES TO PATTERN REDUCTION

Denote as 𝑏1𝑏2...𝑏𝑛 the transmitted sequence of bits. If 𝑏𝑘 =
𝑏𝑙 = 𝑏𝑚 = 1 and the bit 𝑏𝑘+𝑙−𝑚 = 0, then the “ghost” pulse
effect establishes a false 1 in the position 𝑘 + 𝑙 − 𝑚 upon
reception (see [4], [12] for more details). The patterns 1101,
1011, and 11011 are especially prone to “ghost” pulses. For
example, if 𝑏𝑝𝑏𝑝+1𝑏𝑝+2𝑏𝑝+3 = 1101, then 𝑘 = 𝑝, 𝑙 = 𝑝 + 3,
𝑚 = 𝑝 + 1 and the bit 𝑏𝑘+𝑙−𝑚 = 𝑏𝑝+2 = 0 can be received
as 1. Since the capacity of a “ghost”-constrained channel is
zero (see [12] for the proof), the complete suppression of the
effect is impossible. However, for any finite sequence complete

0090-6778/09$25.00 c⃝ 2010 IEEE

2846 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 10, OCTOBER 2010

elimination of “ghost” pulses can be achieved by constrained
coding (see [12]).

It is noteworthy that some “resonance” patterns are more
hazardous than others. It is proven that the 101 pattern, and,
of course, patterns containing it, such as 11011, 1101 etc.,
make the main contribution to the channel bit error rate. This
was observed experimentally and described in [4], [10] and
[13]. The papers [10] and [13] describe a channel simulation
and report some error statistics obtained in it.

In contrast to the complete elimination of “ghost” pulses,
which is extremely expensive in terms of the channel capac-
ity1, a mere reduction of 101 can be achieved considerably
more cheaply. Indeed, by using our proposed codes 50%
of the undesirable pattern occurrences can be removed at
6% redundancy. Such a major reduction in strong-patterning
situations leads to a similar reduction in the BER, which in
turn can return the FEC procedure to the normal, subcritical,
regime.

Could the patterns 101 be reduced or eliminated using
standard coding techniques? For example, the codes RLL(𝑑, 𝑘)
with 𝑑 ≥ 2 are suitable for such elimination as they ensure that
at least two 0s are present between any pair of 1s . Indeed,
the codes 𝑅𝐿𝐿(1,∞) and 𝑅𝐿𝐿(2,∞) have been proposed
for the worst pattern suppression (see [14]). Unfortunately,
RLL-codes have very small capacities (𝐶(2,∞) = 0.5515,
𝐶(1,∞) = 0.6942) and are therefore rather expensive for
long-haul optical transmission systems. Other codes were
suggested as a cheaper alternative, following exactly the
same logic as ours (small patterns associated with resonances
instead of all possible resonances), for example, a simple
code for avoiding the pattern “11011” is described in paper
[4], with a redundancy of only 20%; it completely eliminates
the 11011 pattern. We have been guided by the same level
of acceptable redundancy (20% or less) but our purpose has
been rather different: as mentioned in section I, we wish to
propose a code with tuneable redundancy that eliminates just
enough occurrences of the undesirable pattern to bring the
BER down to a level that FEC can process. For long patterns
that have a small rate of occurrence, e.g. 11011, which would
occur in about 3% of quintuplets in a random packet, tuning
could be compatible with complete elimination: indeed, one
could control the number of different undesirable patterns to
eliminate. However, if one were to completely eliminate short
patterns, in our case triplets, those contribute from about 15%
to 30% redundancy each, which makes fine tuning difficult.

The code presented below achieves near continuous tune-
ability using a version of the enumeration method [17]. We
must emphasise that the code in question can not be regarded
as an instance of the general RLL code, nor of Vasic’s
graph model[4]. Since it reduces, rather than eliminates, the
incidence of a pattern, it is a weakly-constrained code rather
than a constrained code.

The next section will lay theoretical foundations of our
approach.

1the best redundancy we have found in [12] was about 30%, but they also
quote redundancies up to 85%, see [12]p.70

Fig. 1. The transition diagram with eight skew-parameters.

III. SKEWED ENCODING AND ITS ASSOCIATED

REDUNDANCY

The BER of a received message is given by the formula
𝐵𝐸𝑅 =

∑7
𝑘=0 𝑃𝑘𝑄𝑘, where 𝑃𝑘 is the average frequency

of the triplet 𝑘 in the input bit string, and 𝑄𝑘 is the error
probability for the central digit in the triplet2. The message
is assumed to be long enough for neglecting the triplets at
its ends that involve bits outside the message. It is an uneven
distribution of errors 𝑄𝑘 caused by the patterning effects that
makes it possible to reduce the error rate by reducing the
frequency of some triplets. All that is required is a mapping of
the source message onto code words, which is called skewed
pre-encoding [8].

It is convenient to illustrate the skewed pre-encoding prin-
ciple using the Markov chain in Fig. 1. The vertices of the
graph correspond to the state of the process, which consists
of the three most recently transmitted digits including the
current one. The transmission of the next digit is depicted
as the transition from the current state to the next, keeping
the most recent two bits and adjoining to them a new one
(either 0 or 1), with some probability that depends on the
current state. All transitions in the diagram generally occur
with a probability different from 1/2, which would be the case
with a random bit stream without pre-encoding. The difference
between the probabilities for the transitions from the same
state 𝑘 is 𝜀𝑘 = 𝑇𝑘,2𝑘+1−𝑇𝑘,2𝑘, where 𝑇𝑘,2𝑘 = (1−𝜀𝑘)/2 and
𝑇𝑘,2𝑘+1 = (1+ 𝜀𝑘)/2, assuming modulo 8 indexing, which is
a measure of the statistical skew of the encoder. As mentioned
above, triplet 5 (pattern 101) was found to be the main cause
of errors in some optical transmission systems. A reduction
in the incidence of the triplet can be achieved by annulling
all 𝜀s, except 𝜀2 = 𝜀6 = −𝜀 < 0, see the dashed lines in
the figure. The per-bit entropy of the transmitted signal ℎ =

2We enumerate triplets according to their binary code, e.g. triplet 6 is 110.

SHAFARENKO et al.: WEAKLY-CONSTRAINED CODES FOR SUPPRESSION OF PATTERNING EFFECTS IN DIGITAL COMMUNICATIONS 2847

TABLE I
EQUATIONS FOR 𝑃𝑘

𝑃0 = 1
𝑀1+𝑀2𝐾

𝑃1 = 1+𝜀0
1−𝜀4

𝑃0

𝑃2 =
(

(𝜀5−𝜀1)(1+𝜀0)
(1+𝜀5)(1−𝜀4)

+
(1−𝜀5)(1−𝜀7)
(1+𝜀5)(1+𝜀3)

𝐾
)
𝑃0

𝑃3 = 𝑃6 = 1−𝜀7
1+𝜀3

𝐾𝑃0

𝑃4 = 𝑃1 = 1+𝜀0
1−𝜀4

𝑃0

𝑃5 =
(

(1+𝜀2)(1+𝜀0)
(1−𝜀2)(1−𝜀4)

+ (𝜀6−𝜀2)(1−𝜀7)
(1−𝜀2)(1+𝜀3)

𝐾
)
𝑃0

𝑃7 = 𝐾𝑃0

𝑀1 = 1 + 2 1+𝜀0
1−𝜀4

+ (1+𝜀2)(1+𝜀0)
(1−𝜀2)(1−𝜀4)

+ (𝜀5−𝜀1)(1+𝜀0)
(1+𝜀5)(1−𝜀4)

𝑀2 = 1 + 2 1−𝜀7
1+𝜀3

+
(1−𝜀5)(1−𝜀7)
(1+𝜀5)(1+𝜀3)

+
(𝜀6−𝜀2)(1−𝜀7)
(1−𝜀2)(1+𝜀3)

𝐾 = (1+𝜀0)(1+𝜀3)(𝜀2(𝜀5−𝜀1)+2+𝜀1+𝜀5)
(1−𝜀4)(1−𝜀7)(𝜀5(𝜀2−𝜀6)+2−𝜀2−𝜀6)

3 + g(𝜀) + 𝜀

4 + 𝜀
, and thus the code redundancy 𝑅 =

1− g(𝜀)
4 + 𝜀

,

where g(𝜀) = −1 + 𝜀

2
log2

1 + 𝜀

2
− 1− 𝜀

2
log2

1− 𝜀

2
.

In [8] the probabilities 𝑃𝑘 for arbitrary
→
𝜀 = (𝜀0, 𝜀1, ..., 𝜀7)

were found. They are shown in Table I. Ref [8] states that
the minimum-redundancy code for a given 101 skew ties the
parameters pairwise: 𝜀0 = 𝜀4, 𝜀1 = 𝜀5, 𝜀2 = 𝜀6, and 𝜀3 = 𝜀7.
Consequently we shall assume these ties in the sequel.

IV. ZU LANGUAGE

Let us now consider a slightly different representation of a
bit string. Imagine a language based on two sets of symbols:
𝑧𝑘 representing a string of zeroes of size 𝑘 and similarly 𝑢𝑘,
a string of ones sized 𝑘, 𝑘 > 0. Any bit string 𝑠 of nonzero
length represents the following structure:

𝑠 = . . . 𝑈𝑍𝑈𝑍𝑈𝑍 . . .

where each 𝑍 stands for 𝑧𝑘 with some 𝑘, generally different
for different 𝑍 , and each 𝑈 similarly for a 𝑢𝑘. The string can
begin and/or end with either 𝑍 or 𝑈 , but since the end-effects
are not important for statistical calculations on a long string,
we can limit ourselves to strings of 𝑈𝑍-pairs without loss of
generality.

In an uncorrelated random bit string, the frequency of each
of the symbols is 𝑃 (𝑢𝑘) = 𝑃 (𝑧𝑘) = 2−𝑘. It is easy to
calculate the entropy of the string given those probabilities.
Since the order of Zs and Us is fixed, the entropy is the sum
of the entropies of the Z- and U-substrings, and furthermore,
the sum of the entropies of individual Z and U symbols.
Consequently,

𝐻(𝑈) = −
∞∑
𝑘=1

𝑃 (𝑢𝑘) log2 𝑃 (𝑢𝑘) = 2

and the average length in bits of a symbol 𝑢𝑘 is

𝐿(𝑈) =

∞∑
𝑘=1

𝑘𝑃 (𝑢𝑘) = 2

and the same for symbols 𝑧𝑘. Thus the information density of
the uncorrelated string is precisely 1 bit/digit as expected.

We are now prepared to analyse a 101-skewed code using
this language, by introducing a skew similarly to the Markov
model discussed earlier. Let us reduce the probability of 𝑧1,

which is equal to the frequency of the 101 triplet, and increase
the probability of every other 𝑧𝑘, 𝑘 > 1 to compensate:

𝑃 (𝑧𝑘) = 𝜀 ⋅ 𝜃(𝑘 − 2)2−(𝑘−1) + (1− 𝜀)2−𝑘 .

Here 𝜃(𝑚) = 0 for negative 𝑚 and 1 otherwise. This distri-
bution is correctly normalised for any 𝜀. A direct calculation
of the entropy gives

𝐻(𝑍) = 1 + 𝜀+ g(𝜀) ,

where g(𝜀) is exactly as defined earlier. The average length
of one 𝑍 is

𝐿(𝑍) = 2 + 𝜀 .

Remembering that 𝑍s account for half of the string symbols
and the other half has 𝐻(𝑈) = 𝐿(𝑈) = 2 the redundancy

𝑅 = 1− 𝐻(𝑍) +𝐻(𝑈)

𝐿(𝑍) + 𝐿(𝑈)
=

1− g(𝜀)
4 + 𝜀

exactly as suggested by the Markov model. The frequency of
the 101 triplet in a long ZU string is the probability of the
symbol 𝑧1, (1−𝜀)/2, normalised by the length of the ZU pair,
4 + 𝜀, which gives (1 − 𝜀)/(8 + 2𝜀), again in full agreement
with the Markov model.

It is notable that the ZU-language is a handy instrument
for constrained code analysis. Other state frequencies can be
reformulated in the ZU language very easily. For example, the
frequency

𝑃7 =
1

𝐿(𝑍𝑈)

∞∑
𝑘=3

(𝑘 − 3)𝑃 (𝑢𝑘) .

The symmetries inherent in the Markov solution, such as
𝑃1 = 𝑃4 can now be proven in the general case by observing
that the pattern 100 can only be detected in the 𝑈𝑧𝑘𝑈 situation
with 𝑘 ≥ 2 but then the same 𝑈𝑧𝑘𝑈 combination would
deliver the 001 pattern. Similarly, 𝑃3 = 𝑃6.

The Markov model is still very useful because, as the
aforementioned example of 𝑃7 shows, a finite calculation
in the Markov chain corresponds to an infinite summation
over the ZU language, which may or may not be possible
analytically. Nevertheless, unlike the Markov chain, the ZU
approach empowers us to make the next step. Below we
use the ZU-language for calculation of the bit-stuffing code
properties.

V. WEAKLY-CONSTRAINED CODES FOR PRE-ENCODING

Initially, weakly-constrained codes were presented by
K.A.S.Immink in [15] and were intended for magnetic record-
ing systems. In contrast to constrained (strictly-constrained)
codes these codes do not strictly observe the channel con-
straints, rather their codewords violate the channel constraints
infrequently. Weak constraints are motivated by the fact that
if the channel is not free of random errors due to the noise,
codes that always observe the constraint have no advantage:
it will be violated by errors anyway. Thanks to the method
of weakly-constrained coding, very effective RLL-codes have
been constructed (see [16]). Codes for reducing the frequency
of triplet 101 are weakly-constrained also, since the degree of
triplet elimination depends on the parameter 𝜀 (0 ≤ 𝜀 ≤ 1).
This parameter is the “degree of weakeness” for our code: at

2848 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 10, OCTOBER 2010

𝜀 = 1 the code is strongly-constrained (all 101s are removed
from the message), and at 𝜀 = 0 the code has no constraints
whatsoever.

A. Bit stuffing

Let us now consider a practical code. After the example of
bit stuffing which is well-known in digital recording technol-
ogy, let us insert an extra 0 in a Z-symbol to make it longer
and thus reduce the probability of the pattern 101. For this to
be practical, we need to be able to reverse the effect of stuffing,
i.e. we need to know that an extra 0 has been inserted in the
received bit sequence so that we may remove it. This can be
achieved by making the stuffing decision conditional on the
preceding U-symbol. Here is our proposed code 𝐶𝑡:

𝐶𝑡(𝑢𝑘𝑧𝑚) =

{
𝑢𝑘𝑧𝑚, if 𝑘 < 𝑡
𝑢𝑘𝑧𝑚+1 if 𝑘 ≥ 𝑡

.

The inverse code is, obviously,

𝐶−1𝑡 (𝑢𝑘𝑧𝑚) =

{
𝑢𝑘𝑧𝑚, if 𝑘 < 𝑡
𝑢𝑘𝑧𝑚−1 if 𝑘 ≥ 𝑡

,

and is undefined on any 𝑢𝑘𝑧0 combination with 𝑘 ≥ 𝑡, as
such combinations are prevented by the direct code. Code 𝐶𝑡

is controllable via the value of 𝑡: since the frequency of 𝑢𝑘

falls exponentially with 𝑘, by choosing 𝑡 large enough one
can achieve the smallest desirable degree of stuffing. As a
limiting case, code 𝐶1 always stuffs an extra zero into a Z, thus
completely eliminating the symbol 𝑧1 and its corresponding
pattern 101.3 We conclude that the code 𝐶𝑡 gives a good
degree of control over the probability of the pattern 101 at
large 𝑡.

Notice that the code we have described suffers from the
same problem as convolution codes in FEC: it has the tendency
to spread an error by making nonlocal coding decisions.
Indeed the above code mapping is local only in the ZU
representation as it maps a ZU pair on a ZU pair. However an
error 1 → 0 disrupting a string of 1s within a single U will
effectively insert an extra ZU pair. This means that a code of
the type described above would require some support from an
FEC code to neutralise those types of errors; however, when
the skew-related effects are much stronger than random errors,
the bit-stuffing code could be quite effective in combination
with FEC.

Let us now evaluate the effect of bit stuffing on redundancy
and the frequency of 101 as we did with the Markov model. It
is easy to see that the probability of the UZ pair is as follows:

𝑃 (𝑢𝑘𝑧𝑚) =

⎧⎨
⎩

2−(𝑘+𝑚), if 𝑘 < 𝑡

2−(𝑘+𝑚−1) if 𝑘 ≥ 𝑡,𝑚 ≥ 2
0 if 𝑘 ≥ 𝑡,𝑚 = 1

,

since the stuffed symbol retains its frequency but becomes one
bit longer. After a straightforward calculation we obtain the
average length of the resulting UZ-pair:

𝐿(𝐶𝑡(𝑈𝑍)) = 4 + 2−(𝑡−1) .

3The reader might think that at least 𝐶1 is an instance of RLL, the more so
that there is no tuning parameter left in the code. Still it is not the case: 𝐶1

allows 1s to come in a series uninterrupted by 0s, while eliminating single
0s, and not multiple 0s, in the output, which is something quite impossible
with RLL.

Unsurprisingly, the length is 5 when 𝑡 = 1 as we always stuff
one zero into the Z symbol, which corresponds to the 20%
redundancy under the Markov chain with 𝜀 = 1. As for the
entropy 𝐻(𝐶𝑡(𝑈𝑍)), it remains the same 𝐻 = 4 since the
code is reversible, hence the image under the code contains
exactly the same information4. The output frequency 𝑃 (𝑈𝑧1)
is

𝑃 (𝑈𝑧1) =

𝑡−1∑
𝑘=1

𝑃 (𝑢𝑘)𝑃 (𝑧1) =

𝑡−1∑
𝑘=1

2−𝑘−1 =
1

2

(
1− 2−(𝑡−1)

)

which corresponds to the Markov model with 𝜀 = 2−(𝑡−1).
Note, however, that the entropy per bit for the practical code
ℎ(𝜀) = 4/(4+ 𝜀) is different from that for the Markov chain,
and so is redundancy: 𝑅 = 𝜀/(4 + 𝜀). The redundancy curve
is plotted in Fig. 2.

B. Weakly-constrained block codes

One way of dealing with the error propagation of a bit-
stuffing code is to use finite blocks. The idea of a weakly-
constrained block code is as follows.

Let 𝑊𝑚 be a list of all length-𝑚 bit strings. Denote as
𝑊𝑚(𝑗) the 𝑗th entry of the list and as 𝐿𝑚,𝑘 the number of
length 𝑚 bit strings with no more than 𝑘 101s. The initial
members of 𝑊𝑚 with indices 0 ≤ 𝑗 < 𝐿𝑚,0 have no triplets
101, those with indices 𝐿𝑚,0 ≤ 𝑗 < 𝐿𝑚,1 have exactly one
101 etc. Finally codewords with indices 𝐿𝑚,𝑘𝑚𝑎𝑥−1 ≤ 𝑗 <
𝐿𝑚,𝑘𝑚𝑎𝑥 = 2𝑚 contain 𝑘𝑚𝑎𝑥 triplets 101. The 𝑘𝑚𝑎𝑥 value
can be found for each specific 𝑚 by construction (for example
𝑘𝑚𝑎𝑥 = 2 if 𝑚 = 5, because 5-bit strings with three or more
101s do not exist).

Let us represent the source bitstream 𝑆 as a sequence
of small blocks 𝑠𝑖 with the length 𝑛 (𝑛 ≤ 𝑚): 𝑆 =
(𝑠1, 𝑠2, ..., 𝑠𝑝). Denote as 𝐷 = (𝑑0, 𝑑1, ..., 𝑑𝑝) the encoded
message, where 𝑑𝑖 is a length-𝑚 data block. Now the block
code 𝐵(𝑚,𝑛) converts 𝑠𝑖 blocks into 𝑑𝑖 blocks thus: 𝑑𝑖 =
𝑊𝑚(𝑠𝑖), 𝑖 = 1..𝑝. This way only the codewords with indices
less than 2𝑛 are used in the coding process. For decoding
we need a table 𝑊−1𝑚 (𝑗), 0 ≤ 𝑗 < 2𝑚: 𝑊−1𝑚 (𝑞) = 𝑗 if
𝑊𝑚(𝑗) = 𝑞. Then the decoding process can be defined as
𝑠𝑖 = 𝑊−1𝑚 (𝑑𝑖), 𝑖 = 1..𝑝. This code has the redundancy
𝑅 = (𝑚− 𝑛)/𝑛.

Code example: Let us consider a code 𝐵(9, 8) that maps 8-
bit strings onto 9-bit strings. It can be verified that 𝑘𝑚𝑎𝑥 = 4.
The values of 𝐿9,𝑘 are given in Table II.

It is clear from Table II that B(9,8) codewords contain no
more than one triplet 101, since, for this code, 0 ≤ 𝑗 < 2𝑛 =
256, 𝑊9(𝑗) for 0 ≤ 𝑗 < 200 does not contain 101, and 𝑊9(𝑗)
for 200 ≤ 𝑗 < 399 contains exactly one 101.

The per-bit frequency of 101 in the output is approximately
1

𝑚𝐿𝑚,𝑘

∑𝑘
𝑖=0 𝑖𝐺𝑚,𝑖. 𝐺𝑚,𝑖 is the number of 𝑚-bit strings that

contain exactly 𝑖 triplets 101. This is an approximation that
neglects the triplets formed at the junctures of neighbouring
blocks. These depend on the frequency of certain bits at the

4this can also be established by direct calculation

SHAFARENKO et al.: WEAKLY-CONSTRAINED CODES FOR SUPPRESSION OF PATTERNING EFFECTS IN DIGITAL COMMUNICATIONS 2849

TABLE II
𝐿9,𝑘 VALUES FOR 𝐵(9, 8) WEAKLY-CONSTRAINED BLOCK CODE

𝑘 value 𝐿9,𝑘

0 200
1 399
2 490
3 511
4 512

beginning and end of a block. Indeed, the combination 101
will arise around the starting bit of a block that starts with 01,
provided that it follows a block ending with 1. Similarly, a
101 combination around the last bit of a block arises when the
block ends with 10, and the next one starts with 1. The exact
per-bit frequency of the 101 combinations is, consequently,

1

𝑚𝐿𝑚,𝑘

𝑘∑
𝑖=0

𝑖𝐺𝑚,𝑖 +
𝜙𝑒1𝜙𝑏01 + 𝜙𝑒10𝜙𝑏1

𝑚
.

Here 𝜙𝑏01,𝜙𝑏1,𝜙𝑒1, and 𝜙𝑒10 are frequencies of the blocks that
begin with 01, begin with 1, end with 1, and end with 10,
respectively. Note that due to the assumed randomness of the
source bit stream, the neighbouring patterns are uncorrelated,
which justifies the use of products of frequencies in the above
formula.

We have constructed block codes in table form for 𝑚=8, 16
and 28 by exhaustive search and computed all 𝜙 and 𝐿𝑚,𝑘 for
some small 𝑘. For comparability, Fig. 2 shows 𝑅 vs effective
𝜀, i.e. such at which 𝑃5 of the Markov chain matches the value
for the block code. Codes with 𝑚 = 8 and 𝑚 = 16 are also
practical due to their small table sizes while the 28-bit code
is less so as it requires about 1Gb of table space, but even a
code as large as this does not approach the redundancy level
of the Markov chain. For larger block codes the table method
is impractical, and an effective encoding algorithm is required.

VI. ANALYSIS OF THE WEAKLY-CONSTRAINED BLOCK

CODE

In the previous section we introduced and discussed the
block codes constructed numerically in table form. This gave
us a chance to compare the statistics of constrained block
coding with the Markov model, if only numerically and
approximately. In this section we will give an analytical view
of the block-code statistics which shows further deviations
from the idealised Markov model and explains and quantifies
them.

A. Frequency of 101 triplets

Consider a block of 𝑚 bits. Out of the 2𝑚 bit strings
there will be some 𝐺𝑚,0 strings that contain no triplet 101,
𝐺𝑚,1, strings that contain exactly one such triplet, etc. Let us
determine the value of 𝐺𝑚,𝑘 analytically.

Proposition 6.1: The following recurrence relation holds:

𝐺𝑚,𝑘 = 2𝐺𝑚−1,𝑘 −𝐺𝑚−2,𝑘 +𝐺𝑚−3,𝑘 +
𝐺𝑚−2,𝑘−1 −𝐺𝑚−3,𝑘−1 , (1)

with the initial data
𝐺3,0 = 7, 𝐺3,1 = 1, 𝐺3,𝑘 = 0 for any 𝑘 > 1;

𝐺4,0 = 12, 𝐺4,1 = 4, 𝐺4,𝑘 = 0 for any 𝑘 > 1;
𝐺5,0 = 21, 𝐺5,1 = 10, 𝐺5,2 = 1, 𝐺5,𝑘 = 0 for any 𝑘 > 2.

Proof: Denote as 𝑆𝑚,𝑘 a set of bit strings of length 𝑚
having exactly 𝑘 101 triplets, ∣𝑆𝑚,𝑘∣ = 𝐺𝑚,𝑘, and denote as
𝑆𝑎
𝑚,𝑘 ⊂ 𝑆𝑚,𝑘 the part made up of strings with the opening

segment 𝑎. Similarly introduce 𝐺𝑎
𝑚,𝑘 = ∣𝑆𝑎

𝑚,𝑘∣.
Consider an arbitrary (𝑚−1)-bit string and denote it as 𝐵.

Attach the next bit 𝑏 from the data stream to the beginning
of the string and denote the resulting string as 𝑏 ⊳ 𝐵. Assume
that the data stream is statistically unbiased and uncorrelated:
𝑃𝑏=0 = 𝑃𝑏=1 = 1/2. Now determine the conditions under
which (𝑏 ⊳ 𝐵) ∈ 𝑆𝑚,𝑘:

If 𝑏 = 1, then (𝑏 ⊳ 𝐵) ∈ 𝑆𝑚,𝑘 in two disjoint cases:

1) 𝐵 ∈ 𝑆𝑚−1,𝑘 and 𝐵 /∈ 𝑆01
𝑚−1,𝑘 (there are 𝐺𝑚−1,𝑘 −

𝐺01
𝑚−1,𝑘 such strings);

2) 𝐵 ∈ 𝑆01
𝑚−1,𝑘−1 (there are 𝐺01

𝑚−1,𝑘−1 such strings).

If 𝑏𝑚 = 0, then obviously (𝑏 ⊳ 𝐵) ∈ 𝑆𝑚,𝑘 if 𝐵 ∈ 𝑆𝑚−1,𝑘
(there are 𝐺0

𝑚,𝑘 = 𝐺𝑚−1,𝑘 such strings). Since these cases
are mutually exclusive, we have the following equation:

𝐺𝑚,𝑘 = 𝐺0
𝑚,𝑘 +𝐺1

𝑚,𝑘 =

𝐺𝑚−1,𝑘 +𝐺01
𝑚−1,𝑘−1 +𝐺𝑚−1,𝑘 −𝐺01

𝑚−1,𝑘 =

2𝐺𝑚−1,𝑘 +𝐺01
𝑚−1,𝑘−1 −𝐺01

𝑚−1,𝑘 .

Since prefixing 0 to a string does not increase the number
of 101s, 𝐺01

𝑚,𝑘 = 𝐺1
𝑚−1,𝑘. Consequently, 𝐺1

𝑚,𝑘 = 𝐺𝑚−1,𝑘 +
𝐺01

𝑚−1,𝑘−1 −𝐺01
𝑚−1,𝑘.

We arrive at the following simultaneous equations:

𝐺𝑚,𝑘 = 2𝐺𝑚−1,𝑘 +𝐺01
𝑚−1,𝑘−1 −𝐺01

𝑚−1,𝑘
𝐺01

𝑚,𝑘 = 𝐺1
𝑚−1,𝑘

𝐺1
𝑚,𝑘 = 𝐺𝑚−1,𝑘 +𝐺01

𝑚−1,𝑘−1 −𝐺01
𝑚−1,𝑘 .

After straightforward substitutions, we arrive at the equation
from the Proposition. The initial data can be verified by direct
calculation.

The above recurrence relation is useful because it has the
ability to predict the redundancy of the weakly-constrained
block code for large values of 𝑚, for which direct numerical
evaluation may be difficult (though arguably still possible
using the Monte-Carlo method), while the cost of evaluating
the recurrences is small.

Let us first restrict ourselves to the code with minimum
redundancy: 𝑘 = 0, and denote 𝐺𝑚,0 as 𝐺𝑚. Proposition 6.1
will now come to: 𝐺𝑚 − 2𝐺𝑚−1 +𝐺𝑚−2 −𝐺𝑚−3 = 0 with
the initial data 𝐺3 = 7, 𝐺4 = 12, 𝐺5 = 21. For 𝑦𝑚 = 𝐺𝑚+3

(𝑚 = 0, 1, ...). we have 𝑦𝑚+3 − 2𝑦𝑚+2 + 𝑦𝑚+1 − 𝑦𝑚 = 0.
Using standard methods, the solution of this equation can be
found: 𝐺𝑚+3 = 𝑦𝑚 = 𝑐1𝜉

𝑚 + 𝜌𝑚(𝑐2 cos𝑚𝜑 + 𝑐3 sin𝑚𝜑),
where 𝑐1 ≈ 6.8486, 𝑐2 ≈ 0.1514, 𝑐3 ≈ −0.0496, 𝜑 ≈ 1.408,
𝜌 ≈ 0.7549.

Note that since 𝜌 < 1, 𝑦𝑚 = 𝑂(𝜉𝑚) in the limit of large
𝑚. Since the number of code words of length 𝑚 is in fact
𝐺𝑚 = 𝑦𝑚−3 and the number of all strings of length 𝑚 is 2𝑚,
the asymptotic code capacity 1

𝑚 log2 𝐺𝑚 → log2 𝜉 ≃ 0.8114
bits per digit. This is higher than the Markov chain result 0.8.
Remember that our block codes are optimised for minimum
redundancy at a given skew by sorting the list of code words
in the ascending order in the number of 101 triplets per word.

2850 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 10, OCTOBER 2010

Evidently, this procedure effectively changes not only the two
pairs of transitions (in the language of the Markov chain) but
perhaps all of them to some extent.

B. Redundancy of the block code for arbitrary 𝜀

Denote as 𝑃 (𝑥) the probability that the bit sequence 𝑥
occurs in the encoded message. For example, P(1010) is the
probability that four consecutive bits taken at random will
turn out to be the sequence 1010. Also denote as 𝑆(𝑚, 𝑘) a
set of length-𝑚 sequences, where each sequence has exactly
𝑘 triplets 101.

First of all, the codeword space of the block code for any
𝜀 will include all codewords containing zero triplets 101.
Therefore 𝑃000 ∕= 0, because the zero codeword is included in
the codeword space anyway. Similarly 𝑃100 ∕= 0 and 𝑃110 ∕= 0.

Lemma 6.2: For any 𝑘 ≥ 0, 𝑚 ≥ 5 , the equation
𝑃 (00000) = 𝑃 (00100) holds.

Proof: Since neither the replacement 00000 → 00100,
nor its inverse modifies the frequency of 101s in the se-
quence, these replacements exchange a codeword 𝐵 ∈
𝑆(𝑚, 𝑘) with another codeword 𝐵′ ∈ 𝑆(𝑚, 𝑘). Similarly it
can be proven that 𝑃 (00001) = 𝑃 (00011), 𝑃 (10001) =
𝑃 (10011), 𝑃 (00010) = 𝑃 (00110), 𝑃 (11101) = 𝑃 (11011),
𝑃 (001100) = 𝑃 (001000), 𝑃 (000010) = 𝑃 (001110).

Since the block code for each 𝜀 will contain at least one
codeword with patterns 0000, 0001 1000, 1001, 1110, 1111,
0110, 0111, the inequalities ∣𝜀0∣ ∕= 1, ∣𝜀4∣ ∕= 1, ∣𝜀3∣ ∕= 1 and
∣𝜀7∣ ∕= 1 are correct. Therefore according to Table I, 𝑃1 =
𝑃4 = 𝑃0(1+𝜀0)/(1−𝜀4), 𝑃3 = 𝑃6 = 𝑃7(1−𝜀7)/(1+𝜀3) for
any skew-parameter vector

→
𝜀 = (𝜀0, 𝜀1, 𝜀2, 𝜀3, 𝜀4, 𝜀5, 𝜀6, 𝜀7).

Let us find this vector using the above codeword properties.
Bearing the above lemma in mind and remembering the
transition probabilities of the Markov chain, we derive the
skew parameter vector:

→
𝜀 = 𝜀0

(
1,−1,

𝜀20 − 2𝜀0 + 5

(1 + 𝜀0)2
,−1,

1,−1,
𝜀20 − 2𝜀0 + 5

(1 + 𝜀0)2
,−1

)
, (2)

where every skew parameter is expressed in terms of a single
skew 𝜀0 (see Table III).

However, to be able to juxtapose the multi-skew block code
and a single-skew Markov chain, we must first define the basis
for comparison. Such a basis could be an effective skew value
𝜀eff such that the density of 101 in the block code at a given �⃗�
corresponds to the density of 101 in the single-skew Markov
chain at the skew value 𝜀eff. In other words, 𝜀eff indicates how
much the single-skew Markov chain would have to be skewed
to achieve the same density of the undesirable states. The
latter is simply 𝑃5 = (1 − 𝜀eff)/(8 + 2𝜀eff) whereas from the
Markov chain density and the �⃗� expression above we get

𝑃5 =
𝜀40 + 6𝜀20 + 8𝜀0 + 1

8(2𝜀20 + 𝜀0 + 1)
= (1− 𝜀eff)/(8 + 2𝜀eff) .

This gives us 𝜀0 in terms of 𝜀eff.

TABLE III
CALCULATION OF THE 𝜀𝑖 VALUES

Property Corollary
𝑃 (00001) = 𝑃0𝑃0→0𝑃0→1 𝜀1 = −𝜀0
𝑃 (00011) = 𝑃0𝑃0→1𝑃1→3

𝑃 (10011) = 𝑃4𝑃4→1𝑃1→3 𝜀4 = 𝜀0
𝑃 (10001) = 𝑃4𝑃4→0𝑃0→1

𝑃 (00010) = 𝑃0𝑃0→1𝑃1→2 𝜀3 = −𝜀0
𝑃 (00110) = 𝑃1𝑃1→3𝑃3→6 =

𝑃0
1+𝜀0
1−𝜀4

𝑃1→3𝑃3→6

𝑃 (00000) = 𝑃0𝑃0→0𝑃0→0 𝜀2 = 1− (1−𝜀0)3

(1+𝜀0)2
=

𝑃 (00100) = 𝑃1𝑃1→2𝑃2→4 =
𝜀0(𝜀20−2𝜀0+5)

(1+𝜀0)2

𝑃0
1+𝜀0
1−𝜀4

𝑃1→2𝑃2→4

𝑃 (001100) = 𝑃1𝑃1→3𝑃3→6𝑃6→4 𝜀6 = 𝜀2 =

𝑃 (001000) = 𝑃1𝑃1→2𝑃2→4𝑃4→0
𝜀0(𝜀20−2𝜀0+5)

(1+𝜀0)2

𝑃 (11101) = 𝑃7𝑃7→6𝑃6→5 𝜀5 = 𝜀1 = −𝜀0
𝑃 (11011) = 𝑃6𝑃6→5𝑃5→3 = if 𝜀6 ∕= −1

𝑃7
1−𝜀7
1+𝜀3

𝑃6→5𝑃5→3

If 𝜀6 = −1, the 𝜀5 value has no any
meaning and can be assigned as 𝜀5 = 𝜀1 .
𝑃 (000010) = 𝑃0𝑃0→0𝑃0→1𝑃1→2 𝜀7 = 𝜀3 = −𝜀0

𝑃 (001110) = 𝑃1𝑃1→3𝑃3→7𝑃7→6 =

𝑃0
1+𝜀0
1−𝜀4

𝑃1→3𝑃3→7𝑃7→6

C. Calculation of the redundancy

The above-mentioned quartic equation is of the form:

𝜀0
4 + 2𝜀0

2(3− 8𝑃5) + 8𝜀0(1− 𝑃5)− 8𝑃5 + 1 = 0

and can be proven to have a single root in the interval
−1 ≤ 𝜀0 ≤ 1 given that 0 ≤ 𝑃5 ≤ 1/8. Obtaining the
root numerically presents no technical problem, so 𝜀0 can be
assumed to be functionally dependent on 𝜀eff in a known way.

Consequently, let us express the entropy in terms of 𝜀0.
Using the general formula from [8] and interpreting �⃗� as a
function of 𝜀0 we get

ℎ(𝜀0) = −
7∑

𝑘=0

𝑃𝑘(�⃗�(𝜀0))𝑓(�⃗�(𝜀0)),

where 𝑓(𝑥) = 1+𝑥
2 log2

1+𝑥
2 + 1−𝑥

2 log2
1−𝑥
2 . By simplifying

the equations from Table I for four 𝜀s as mentioned above and
using 2 we establish that

ℎ(𝜀0) = 𝑓(𝜀0)(𝑃0(𝜀0) + 𝑃1(𝜀0) + 𝑃3(𝜀0) +

𝑃4(𝜀0) + 𝑃5(𝜀0) + 𝑃7(𝜀0)) +

𝑓(𝜀2(𝜀0))(𝑃2(𝜀0) + 𝑃6(𝜀0)).

By varying 𝜀eff (and via it, 𝜀0) over its range, we obtain
the curve Bk∞ in Fig. 2. Observe that block size 128 is
roughly as close to the result obtained from the single-skew
Markov chain as the theoretical limit of all weakly-constrained
codes with a single skew, i.e. the curve “Markov chain”. It
seems likely that for any practical purpose block size 128
will be sufficient. Another consideration would be the required
level of interleaving and/or FEC to mitigate significant error
propagation that a block code longer than 128 would be prone
to.

D. Code gain

We assume that the vector of error probabilities is
→
𝑄 =

𝑞(1, 1, 1, 1, 1,𝑀, 1, 1). Since the code constructed above is a

SHAFARENKO et al.: WEAKLY-CONSTRAINED CODES FOR SUPPRESSION OF PATTERNING EFFECTS IN DIGITAL COMMUNICATIONS 2851

Fig. 2. 𝑅(𝜀) graph for various codes. Here Bk𝑋 marks the block code
with block length of 𝑋 bits; the curve “one skew” shows the redundancy of
Markov chain with one skew parameter (𝜀2 = −𝜀); Bk∞ marks the limiting
block code with infinite block length.

block code and since it is capable of propagating errors up
to the block borders, it makes sense to express the code gain
using the block error rate (𝐵𝐿𝐸𝑅) rather than the 𝐵𝐸𝑅. For
the sake of clarity denote as 𝐵𝐸𝑅0 and 𝐵𝐿𝐸𝑅0 the 𝐵𝐸𝑅
and the 𝐵𝐿𝐸𝑅 for the unencoded data block respectively;
also denote as 𝐵𝐸𝑅(𝜀) and 𝐵𝐿𝐸𝑅(𝜀) the 𝐵𝐸𝑅 and the
𝐵𝐿𝐸𝑅 for the encoded data block. Obviously, 𝐵𝐸𝑅0 = 𝑞+
1
8 ⋅ 𝑞(𝑀 − 1) and 𝐵𝐸𝑅(𝜀) = 𝑞 + 𝑃5(𝜀)𝑞(𝑀 − 1). Then
𝐵𝐿𝐸𝑅0 = 1− (1−𝐵𝐸𝑅0)

𝑝, where 𝑝 is the unecoded block
length.

Since our codes have the redundancy 𝑅(𝑝, 𝜀), which de-
pends on the block length and the value of 𝜀, 𝐵𝐿𝐸𝑅(𝜀) =
1 − (1 − 𝐵𝐸𝑅(𝜀))𝑝(1+𝑅(𝑝,𝜀)). Using this equation the value
of 𝐵𝐸𝑅′(𝜀) = 1 − (1 − 𝐵𝐿𝐸𝑅(𝜀))1/𝑝 can be found. The
bit error rate 𝐵𝐸𝑅′(𝜀) corresponds to the unencoded data
block with the block error rate 𝐵𝐿𝐸𝑅(𝜀). After elementary
transformations we get 𝐵𝐸𝑅′(𝜀) = 1−(1−𝐵𝐸𝑅(𝜀))1+𝑅(𝑝,𝜀).
It can be proven that 𝐵𝐸𝑅′(𝜀) ≥ 𝐵𝐸𝑅(𝜀) for any value
𝑅(𝑝, 𝜀).

Remember that in our case the distortion of data during
transmission is data-dependent, which is what is usually
termed signal-dependent noise (SDN). Since methods for
SDN analysis are not readily available, below we quantify
SDN in terms of the effective AWGN. To quantify the BER
improvement due to our block code we introduce an effective
code gain defined as Γ = 20 log10(𝐴(𝑀, 𝑞)/𝐴𝑐(𝑀, 𝑞, 𝜀)),
where 𝐴(𝑀, 𝑞) is the RMS of the effective AWGN over
the source signal, i.e. the magnitude that corresponds to the
observed BER, and where 𝐴𝑐(𝑀, 𝑞, 𝜀) is the RMS of the
effective AGWN after the block coding. Then 𝐴2(𝑀, 𝑞) =
𝜎2, where 𝜎2 is the standard variation of the AWG noise.
Similarly, 𝐴2

𝑐(𝑀, 𝑞, 𝜀) = 𝜎′2, where 𝜎′2 is the variation of
the total noise for the encoded signal. The 𝜎 values can be

quantified by solving the equations: 𝐵𝐸𝑅0 =
1

2
⋅Φ

(
1

𝜎
√
2

)
,

𝐵𝐸𝑅′(𝜀) =
1

2
⋅ Φ

(
1

𝜎′
√
2

)
. Here Φ(𝑥) is a complementary

error function. Finally we get Γ = 10 log10
𝜎2

(𝜎′)2
.

The value of Γ corresponds to the increase of SNR that

Fig. 3. Block code gain versus BER (𝑅 = 10.27%, block length — 128
bit).

delivers the same error probability reduction in the case of
AGWN without patterning as the block code delivers under

the patterning defined by the vector
→
𝑄.

Fig. 3 shows the code gain as a function of the BER for
the block code Bk128 (see Fig. 2) taken at 10% redundancy.
It is remarkable that a gain of about 0.5dB is possible for a
channel with 𝐵𝐿𝐸𝑅 = 0.3 (𝐵𝐸𝑅 = 2.7 ⋅ 10−3) from the
simple code with 𝑅 = 10%. It should be borne in mind that
the gain displayed in the figure does not take into account any
processes associated with decoding (and long block codes are
almost as prone to error propagation as convolution codes).
Nevertheless, if adequately protected by FEC, the effects of
error propagation with a moderate block size can be alleviated.
Schemes for a constrained code and FEC concatenation are
considered in [17]. Similar schemes can be used in our case,
too. It may also be possible to devise a soft decoding scheme
based on the algorithm presented in the next section, which is
less prone to error propagation effects.

E. Encoder/decoder algorithms for large block sizes

In contrast to the Markov model the weakly-constrained
block code described above includes, by construction, the
maximum number of code words satisfying the pattern con-
straint for a given 𝜀. Consequently it has the least redundancy
among all codes with that 𝜀. It is therefore quite important to
find algorithms that realise the encoder and decoder mappings
efficiently and to get an idea of their complexity.

For a small 𝑚, the best coding strategy is table look-up:
build a table of code words indexed by the source message
block and use it for encoding. This way encoding is achieved
by a single table reference per block. Decoding could be
done similarly, by preparing the inverse table in advance. As
the value of 𝑚 increases (in practice already at 𝑚 ≥ 32),
storage requirements become prohibitive, necessitating a com-
putational rather than purely table-based solution. As we have
seen earlier, the redundancy curve saturates near 𝑚 = 128,
where table look-up is many orders of magnitude beyond
any reasonable storage capacity, so the need for an efficient
algorithm will not be eliminated by improvements in storage
capacity in the foreseeable future. Besides low redundancy, an

2852 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 10, OCTOBER 2010

advantage of a large 𝑚 is the fact that the list of codewords,
which is of the length 𝐿𝑚,𝑘, could be shortened to the length
2𝑛 where 𝑛 = ⌊𝑙𝑜𝑔2𝐿𝑚,𝑘⌋ increasing redundancy by a fraction
of one bit for every 𝑛 bits of the message, a negligible increase
for 𝑚 = 128 (corresponding to 𝑛 > 0.8 ⋅ 128 ∼ 100). The
benefit of the shortening is that the shortened code replaces
a string of 𝑛 bits by a string of 𝑚 bits and then applies the
same function to the next portion of 𝑛 bits. Below we shall
only deal with a single block.

Specification Given the index of an 𝑚-bit code word in
the (imaginary) table for block code (𝑚, 𝑘), compute the code
word. Assume that 𝑚 ≥ 5, otherwise use actual table look-up.
Similarly for decoding: given a valid 𝑚-bit code word for the
block code (𝑚, 𝑘), i.e. any 𝑚-bit string with no more than 𝑘
101-triplets, find the index of this code word in the imaginary
code table. The code table is assumed to have been sorted in
ascending order within each fixed-𝑘 segment.

Solution idea: Generally, encoding/decoding procedures are
based on enumerative techniques. In [17] enumerative algo-
rithms for RLL-sequences were proposed. Below we develop
similar algorithms for a constrained code other than RLL,
namely the weakly-constrained block code for the suppression
of triplets 101.

Denote as 𝑁 the index of the code word that contains no
more than 𝑘 101-combinations. Then 0 ≤ 𝑁 < 𝐿𝑚,𝑘. The
algorithm emulates a reference to the code look-up table, in
which elements with indices 0 ≤ 𝑁 < 𝐺𝑚,0 have no 101
triplets, those with indices 𝐺𝑚,0 ≤ 𝑁 < 𝐺𝑚,0 + 𝐺𝑚,1 have
exactly one 101 triplet, etc. and generally those with indices∑𝑘−1

𝑗=0 𝐺𝑚,𝑗 ≤ 𝑁 <
∑𝑘

𝑗=0 𝐺𝑚,𝑗 = 𝐿𝑚,𝑘 have exactly 𝑘
undesirable triplets. Consequently this virtual table is laid out
in the increasing order of codeword values and nondecreasing
order of triplets-per-word as required for the block code.

For encoding we need first to find the value of 𝑑: the number
of 101-triplets in the result code word, 𝑑 = max{𝑝 ∣ 𝑁 ≥∑𝑝−1

𝑗=0 𝐺𝑚,𝑗}. Next compute 𝑀 = 𝑁 − 𝐿𝑚,𝑑−1 the code-
word index in the section of the table with 𝑑 101-triplets,
counting from the bottom of the segment; it is obvious that
0 ≤ 𝑀 < 𝐺𝑚,𝑑.

Denote the 𝑖-th bit of the code word as 𝑏𝑖 (0 ≤ 𝑖 < 𝑚− 1
and the numbering is from the least significant bit). The code
word is computed bit-by-bit starting with the most significant
bit. The computation closely follows the recurrence relation
(Eq. 1).

1. Find 𝑏𝑚−1: Introduce a running 𝑀𝑖, 0 ≤ 𝑖 ≤ 𝑚 − 1
and set 𝑀𝑚−1 = 𝑀 . If 0 ≤ 𝑀 < 𝐺𝑚−1,𝑑 we determine
𝑏𝑚−1 = 0 and then we set 𝑀𝑚−2 = 𝑀𝑚−1. Otherwise, if
𝐺𝑚−1,𝑑 ≤ 𝑀 < 𝐺𝑚,𝑑, we determine 𝑏𝑚−1 = 1 and set
𝑀𝑚−2 = 𝑀𝑚−1 −𝐺𝑚−1,𝑑.

2. Assume that 𝑝 ≥ 1 most significant bits have been
determined : 𝑏𝑚−1, 𝑏𝑚−2,. . . , 𝑏𝑚−𝑝. These bits will include
𝑑𝑝 ≤ 𝑑 101-triplets. We determine that 𝑏𝑚−𝑝−1 = 0, and set
𝑀𝑚−𝑝−1 = 𝑀𝑚−𝑝, if 0 ≤ 𝑀𝑚−𝑝 < A, and otherwise we
conclude that 𝑏𝑚−𝑝−1 = 1, and set 𝑀𝑚−𝑝−1 = 𝑀𝑚−𝑝 −A.
Here A is a threshold value, which depends on the two pre-
viously determined bits (we can legitimately assume 𝑏𝑚 = 0
for the very first application of step 2).

The threshold values are summarised in Table IV. After
elementary transformations that use previously established

TABLE IV
THRESHOLD VALUES

𝑏𝑚−𝑝+1 𝑏𝑚−𝑝 A
0 0 𝐺𝑚−𝑝−1,𝑑−𝑑𝑝

0 1 𝐺0
𝑚−𝑝−1,𝑑−𝑑𝑝

+𝐺1
𝑚−𝑝−1,𝑑−𝑑𝑝−1

1 0 𝐺𝑚−𝑝−1,𝑑−𝑑𝑝

1 1 𝐺0
𝑚−𝑝−1,𝑑−𝑑𝑝

+𝐺1
𝑚−𝑝−1,𝑑−𝑑𝑝−1

TABLE V
THRESHOLD VALUES FOR ENCODING/DECODING ALGORITHM

𝑏𝑚−𝑝+1 𝑏𝑚−𝑝 A
0 0 𝐺𝑚−𝑝−1,𝑑−𝑑𝑝 = A0(𝑚 − 𝑝, 𝑑− 𝑑𝑝)
0 1 𝐺𝑚−𝑝−1,𝑑−𝑑𝑝−1 +𝐺𝑚−𝑝−2,𝑑−𝑑𝑝−

𝐺𝑚−𝑝−2,𝑑−𝑑𝑝−1 = A1(𝑚 − 𝑝, 𝑑− 𝑑𝑝)
1 0 𝐺𝑚−𝑝−1,𝑑−𝑑𝑝 = A0(𝑚 − 𝑝, 𝑑− 𝑑𝑝)
1 1 𝐺𝑚−𝑝−1,𝑑−𝑑𝑝−1 +𝐺𝑚−𝑝−2,𝑑−𝑑𝑝−

𝐺𝑚−𝑝−2,𝑑−𝑑𝑝−1 = A1(𝑚 − 𝑝, 𝑑− 𝑑𝑝)

identities, we can eliminate the upper indices. Threshold
values expressed in terms of 𝐺𝑚,𝑘 are given in Table V.

For any possible 𝑚−𝑝 and 𝑑−𝑑𝑝 combination, the values of
A{0,1} can be obtained from a table prepared once beforehand,
bearing in mind the obvious boundary values 𝐺𝑚,0 = 1 for
𝑚 < 0, 𝐺𝑚,0 = 2𝑚 for 0 ≤ 𝑚 < 3, 𝐺𝑚,𝑘 = 0 for 𝑘 < 0,
and 𝐺𝑚,𝑘 = 0 whenever 𝑘 > 0 and 𝑚 < 3.

F. Encoding/decoding algorithms

The encoding/decoding algorithms are presented in the
Table VI. The critical path for processing one bit through the
encoding algoritm contains one left shift (𝑡𝑠), four assignments
(𝑡𝑎), two bitwise comparisons (𝑡𝑏𝑐), one comparison (𝑡𝑐) and
one subtraction (𝑡𝑠). Denoting the register transfer cost as 𝑇 ,
we get the total time per loop cycle: 9𝑇+𝑡𝑠+4𝑡𝑎+2𝑡𝑏𝑐+𝑡𝑐+𝑡𝑠.
In reality the cost of comparisons and subtractions is generally
dependent on 𝑚, due to the carry propagation delay in sub-
tractions and the result propagation towards the lower digits in
comparisons. However, various solutions are available which
accelerate the propagation, making the overall complexity
estimate logarithmic in 𝑚. The assignment cost, too, can be
reduced: by speculatively executing both alternatives of the if
while unrolling the loop to increase its pipelined concurrency.
A microelectronic implementation of those measures can
easily be obtained, but any technical details would go beyond
the scope of the present paper. We only wish to note that the
cost is generally 𝑂(𝑚 log𝑚) and that the constant in it can
be made quite small by employing modern design principles
in microelectronics.

Similarly, the critical path for the decoding algorithm in-
cludes one left shift (𝑡𝑠), three assignments (𝑡𝑎), two bitwise
comparisons (𝑡𝑐), one addition (𝑡𝑎𝑑𝑑) and one subtraction (𝑡𝑠).
The total time per loops cycle is thus 7𝑇+𝑡𝑠+3𝑡𝑎+2𝑡𝑐+𝑡𝑎𝑑𝑑,
which is similar to that for the encoding algorithm and the
same considerations regarding implementation apply.

G. Memory requirement

Let us estimate the read-only storage size, which is required
for 𝑚-bit block-coding, for any 0 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥. For this one
needs to tabulate A0(𝑖, 𝑗) and A1(𝑖, 𝑗), where A0(𝑖, 𝑗) =

SHAFARENKO et al.: WEAKLY-CONSTRAINED CODES FOR SUPPRESSION OF PATTERNING EFFECTS IN DIGITAL COMMUNICATIONS 2853

TABLE VI
ENCODING/DECODING ALGORITHMS

Encoding algorithm:
Input: a code word index 𝑁 . Output: The length-𝑚 code

word (denote it as 𝐵)
that corresponds to index 𝑁 .

bit[0 : 𝑚− 1] 𝐵 = 0; code word
bit[0:2] 𝑠 = 0; its most recently computed

three bits
int c; loop counter
int 𝑑; the number of 101-triplets
𝑑 = max{𝑝 ∣ 𝑁 ≥∑𝑝−1

𝑗=0 𝐺𝑚,𝑗} in the codeword
bit[0 : 𝑚− 1] 𝑀 = 𝑁 − 𝐿𝑚,𝑑−1; sequence number in subset

of sequences which has
exactly 𝑑 101-triplets
(0 ≤ 𝑀 < 𝐺𝑚,𝑑)

for 𝑐← (𝑚− 1) downto 0
ShiftLeft 𝑠;
if 𝑀 ≥ As[1][𝑐 + 1, 𝑑] then
𝑀 ← 𝑀 −As[1][𝑐+ 1, 𝑑];
𝐵[𝑐]← 1;
𝑠[0]← 1;

if 𝑠 = 101 then 𝑑← 𝑑− 1.
if 𝑀 = 0 and 𝑑 = 0 then
break.

Decoding algorithm:
Input: A length-𝑚 code word (𝐵). Output: The code word index

𝑁 that corresponds to 𝐵.
int 𝑑 = triplets(𝐵) the number of 101-triplets

in the codeword 𝐵

int 𝑁 =
∑𝑑−1

𝑗=0 A0[𝑚+ 1, 𝑗]; index 𝑁

bit[0:2] 𝑠 = 0; its most recently computed
three bits

int c; loop counter
for 𝑐← (𝑚− 1) downto 0

ShiftLeft 𝑠;
𝑠[0]← 𝐵[𝑐];
if 𝑠[0] = 1 then
𝑁 ← 𝑁 + As[1][𝑐 + 1, 𝑑];
if 𝑠 = 101 then 𝑑← 𝑑− 1.

𝐺𝑖−1,𝑗 , A1(𝑖, 𝑗) = 𝐺𝑖−1,𝑗−1+𝐺𝑖−2,𝑗−𝐺𝑖−2,𝑗−1, 0 ≤ 𝑖 ≤ 𝑚
and 0 ≤ 𝑗 ≤ 𝑘𝑚𝑎𝑥. Since A0(𝑖, 𝑗) = 𝐺𝑖−1,𝑗 < 2𝑚,
𝐺𝑖−1,𝑗−1 < 2𝑚−1 and 𝐺𝑖−2,𝑗 < 2𝑚−2, A1(𝑖, 𝑗) < 2𝑚−1 +
2𝑚−2 < 2𝑚. We get two (𝑚+1)× (𝑘𝑚𝑎𝑥+1) tables, one for
A0 and one for A1. Each table requires (𝑚+1)⋅(𝑘𝑚𝑎𝑥+1)⋅𝑚
bits.

The total storage read-only capacity is 𝑆 ≤ 2𝑚(𝑚 +
1)(𝑘𝑚𝑎𝑥+1) bits. In particular, block coding requires no more
than 262 Kbytes of memory, if the block size is 128 bits, for
any 𝑘.

To summarise the results of this section, the time complexity
of the encoder/decoder is log-linear in 𝑚, 𝑇 = 𝑂(𝑚 log𝑚),
and the read-only storage requirement is quadratic in 𝑚 and
linear in 𝑘, 𝑆 = 𝑂(𝑚2𝑘).

VII. WEAKLY-CONSTRAINED BLOCK CODE FOR OTHER

TRIPLETS

Since nonlinear effects in optical fibre communications
can lead to intricate error statistics, not necessarily resulting
from the "ghost" pulse phenomena alone, suppression of other
triplets may be desirable in data transmission systems.

In this section we will denote as 𝐺𝑎
𝑚,𝑘 the number of length-

𝑚 sequences which contain no more than 𝑘 occurrences of
the triplet 𝑎. For each triplet we have established recurrence
relations similar to Eqs. 1. They are listed in Table VII and
can be employed in an encoding/decoding algorithm. For
calculation of 𝐺𝑎

𝑚,𝑘 the following initial data must be used:

TABLE VII
𝐺𝑎

𝑚,𝑘 RECURRENCE RELATIONS FOR ANY TRIPLETS

Triplets, 𝑎 Recurrence relation 𝐺𝑎
𝑚,𝑘 (𝑚 ≥ 3, 𝑘 ≥ 0)

000 111 𝐺𝑎
𝑚,𝑘 = 𝐺𝑎

𝑚−1,𝑘 +𝐺𝑎
𝑚−2,𝑘 +𝐺𝑎

𝑚−3,𝑘+

𝐺𝑎
𝑚−1,𝑘−1 −𝐺𝑎

𝑚−2,𝑘−1 −𝐺𝑎
𝑚−3,𝑘−1

101 010 𝐺𝑎
𝑚,𝑘 = 2𝐺𝑎

𝑚−1,𝑘 −𝐺𝑎
𝑚−2,𝑘 +𝐺𝑎

𝑚−3,𝑘+

𝐺𝑎
𝑚−2,𝑘−1 −𝐺𝑎

𝑚−3,𝑘−1

100 001 𝐺𝑎
𝑚,𝑘 = 2𝐺𝑎

𝑚−1,𝑘 −𝐺𝑎
𝑚−3,𝑘 +𝐺𝑎

𝑚−3,𝑘−1
110 011

TABLE VIII
SKEW-PARAMETER TABLE FOR SOME TRIPLETS

Triplet Skew-parameter vector

000
→
𝜀 (𝑡) = 𝑡

(
− 𝑡2+4𝑡+7

𝑡2+4𝑡−1
, 1, 𝑡+3

1−𝑡
, 1,− 𝑡2+4𝑡+7

𝑡2+4𝑡−1
, 1, 𝑡+3

1−𝑡
, 1

)

𝑡 = 𝜀3

101
→
𝜀 (𝑡) = 𝑡

(
1,−1, 𝑡2−2𝑡+5

(1+𝑡)2
,−1, 1,−1, 𝑡2−2𝑡+5

(1+𝑡0)2
,−1

)

𝑡 = 𝜀0

100
→
𝜀 (𝑡) = 𝑡

(
1,−1, 𝑡−3

𝑡+1
,−1, 1,−1, 𝑡−3

𝑡+1
,−1

)

𝑡 = 𝜀0

𝐺𝑎
𝑚,0 = 2𝑚, 𝐺𝑎

𝑚,𝑘 = 0 for 𝑘 > 0 and 0 ≤ 𝑚 < 3, 𝐺𝑎
𝑚,𝑘 = 0

for 𝑘 < 0.
Table VII shows that some triplets have the same value of

𝐺𝑎
𝑚,𝑘. Let us dwell on this a little. Denote as 𝑎 the inversion

of the triplet 𝑎 (e.g. 100 = 011) and denote as
←
𝑎 the triplet 𝑎

placed in the reverse order (e.g.
←
100 = 001).

Proposition 7.1: 𝐺𝑎
𝑚,𝑘 = 𝐺𝑎

𝑚,𝑘 𝐺𝑎
𝑚,𝑘 = 𝐺

←
𝑎
𝑚,𝑘.

Proof: Denote as 𝑆𝑎(𝑚, 𝑘) the set of length-𝑚 sequences
where each sequence has exactly 𝑘 occurrences of the triplet
𝑎. If sequence 𝑄 ∈ 𝑆𝑎(𝑚, 𝑘), then obviously 𝑄 ∈ 𝑆𝑎(𝑚, 𝑘),
and vice-versa. Therefore 𝐺𝑎

𝑚,𝑘 = ∣𝑆𝑎(𝑚, 𝑘)∣ = ∣𝑆𝑎(𝑚, 𝑘)∣ =
𝐺𝑎

𝑚,𝑘.

Similarly, when sequence 𝑄 ∈ 𝑆𝑎(𝑚, 𝑘) is replaced by
←
𝑄,

each occurrence of the triplet 𝑎 is replaced by
←
𝑎 . Hence the

sequence
←
𝑄 will contain exactly 𝑘 occurrences of the triplet

←
𝑎 , and so

←
𝑄 ∈ 𝑆

←
𝑎 (𝑚, 𝑘). Therefore 𝐺

←
𝑎
𝑚,𝑘 = ∣𝑆←𝑎 (𝑚, 𝑘)∣ =

∣𝑆𝑎(𝑚, 𝑘)∣ = 𝐺𝑎
𝑚,𝑘.

As a corollary, 𝐺000
𝑚,𝑘 = 𝐺111

𝑚,𝑘, 𝐺010
𝑚,𝑘 = 𝐺101

𝑚,𝑘, 𝐺001
𝑚,𝑘 =

𝐺100
𝑚,𝑘 and 𝐺100

𝑚,𝑘 = 𝐺011
𝑚,𝑘 = 𝐺110

𝑚,𝑘.
Using the block code properties we can find the skew-

parameter vector and plot the minimum-redundancy graph for
each triplet as proposed above for 101. We have found the
skew-parameter vector for triplets 000 and 100 in addition to
101. The results are summarized in Table VIII. Using these
vectors the minimum-redundancy curves for 000, 101 and 100
triplets can be built. Redunancy curves versus 𝜀 for limiting
block codes are shown in Fig. 4. Here 𝜀 is the “degree of
weakeness” for our weakly-constrained code and 𝑃𝑖 =

1−𝜀
8 ,

where 𝑃𝑖 is the rate of eliminating triplet 𝑖: when 𝜀 = 1, the
code eliminates all triplets 𝑖; and when 𝜀 = 0 the code does
not eliminate any triplets.

VIII. CONCLUSIONS

A detailed analysis of block and stream versions of weakly-
constrained codes generalizing the first theoretical results in

2854 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 10, OCTOBER 2010

Fig. 4. Limiting block code redundancy for various triplets.

[8] has been presented. A redundancy measure is obtained
against the effective skewing factor 𝜀 for specific stream and
block codes, and it turns out to be somewhat better than
the theoretical model published previously. The effective code
gain for practical block codes has been obtained and plotted
against a range of bit error rates at various magnitudes of
the patterning effect. It is shown that using these simple
codes in a hard-decision situation provides an effective gain
of about 0.5dB. For large blocks, which correspond to the
lowest redundancy for a given “degree of weakness”, effi-
cient encoder/decoder algorithms are proposed, whose time-
complexity grows no faster than log-linearly in the block size,
and whose storage requirements are very small. Due to their
simplicity they should permit a simple microelectronic (and
potentially optical) implementation. The analysis presented
here can be used in code design for channels with a variety
of pattern-dependent statistics. Note also that the proposed
approach can potentially be used in areas such as magnetic
recording, where pre-encoding is routinely used for the avoid-
ance of undesirable bit patterns.

Future work will include investigating the decoder’s ability
to participate in soft-decision schemes, such as the product of
an LDPC code and a weakly-constrained block code of the
kind discussed in the present paper.

REFERENCES

[1] F. Matera, A. Mecozzi, M. Settembre, I. Gabitov, H. Haunstein, and S.
K. Turitsyn, “Theoretical evaluation of the noise growth and the system
performance for a link constitued by a chain of N optical amplifiers
with in-line filters," OFC’98 Tech. Dig., WM23, p. 202, 1998.

[2] R. J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel cross-
phase modulation and four-wave mixing in high-speed TDM systems,"
Electron. Lett., vol. 35, pp. 1576-1578, 1999.

[3] P. V. Mamyshev and N. A. Mamysheva, “Pulse-overlapped dispersion-
managed data transmission and intrachannel four-wave mixing," Opt.
Lett., vol. 24, pp. 1454-1456, 1999.

[4] B. Vasic, V. S. Rao, I. B. Djordjevic, R. K. Kostuk, and I. Gabitov,
“Ghost-pulse reduction in 40-Gb/s systems using line coding," IEEE
Photon. Technol. Lett., vol. 16, pp. 1784-1786, July 2004.

[5] A. H. Gnauck, A. Mecozzi, M. Shtaif, and J. Wiesenfeld, “Modulation
scheme for tedons," U.S. patent application, #20020126359, 2001.

[6] E. G. Shapiro, M. P. Fedoruk, S. K. Turitsyn, and A. Shafarenko,
“Reduction of nonlinear intrachannel effects by channel asymmetry in
transmission lines with strong bit overlapping," IEEE Photon. Technol.
Lett., vol. 15, pp. 1473-1475, Oct. 2003.

[7] A. Shafarenko, K. S. Turitsyn, and S. K. Turitsyn, “Skewed coding for
suppression of pattern-dependent errors," in Proc. 31st European Conf.
Optical Commun. (ECOC 2005), vol. 2, pp. 193-194, Glasgow, United
Kingdom, Sep. 2005.

[8] A. Shafarenko, K. S. Turitsyn, and S. K. Turitsyn, “Information-theory
analysis of skewed coding for suppression of pattern-dependent errors
in digital communications," IEEE Trans. Commun., vol. 55, no. 2, pp.
237-241, 2007.

[9] B. Djordjevic and B. Vasic, “Nonlinear BCJR equalizer for suppres-
sion of intrachannel nonlinearities in 40 Gb/s optical communications
systems," Opt. Express, vol. 14, pp. 4625-4635, May 29, 2006.

[10] S. K. Turitsyn, M. P. Fedoruk, O. V. Shtyrina, A. V. Yakasov, A.
Shafarenko, S. R. Desbruslais, K. Reynolds, and R. Webb, “Pattern-
ing effects in a WDM RZ-DBPSK SMF/DCF optical transmission at
40Gbit/s channel rate," Optics Commun., vol. 277, no. 2, pp. 264-268,
2007.

[11] B. Slater, S. Boscolo, A. Shafarenko, and S. K. Turitsyn, “Mitigation
of patterning effects at 40 Gbits/s by skewed channel pre-encoding," J.
Optical Netw., vol. 6, no. 8, pp. 984, 2007.

[12] N. Kashyap, P. H. Siegel, and A. Vardy, “Coding for the optical channel:
the ghost-pulse constraint," IEEE Trans. Inf. Theory, vol. 52, no. 1, pp.
64-77, 2006.

[13] E. G. Shapiro, M. P. Fedoruk, and S. K. Turitsyn, “Direct modelling
of error statistics at 40 Gbit/s rate in SMF/DCF link with strong bit
overlapping," Electron. Lett., vol. 40, no. 22, pp. 1436-1437, 2004.

[14] N. L. Swenson and J. M. Cioffi, “Sliding-block line codes to increase
dispersion-limited distance of optical fiber channels," IEEE J. Sel. Areas
Commun., vol. 13, no. 3, pp. 486-498, 1995.

[15] K. A. S. Immink, “Weakly constrained codes," Electron. Lett., vol. 33,
no. 23, pp. 1943-1944, Nov. 1997.

[16] M. Jin, K. A. S. Immink, and B. Farhang-Boroujeny, “Design techniques
for weakly constrained codes," IEEE Trans. Commun., vol. 51, no. 5,
pp. 709-714, May 2003.

[17] K. A. S. Immink, “A practical method for approaching the channel
capacity of constrained channels," IEEE Trans. Inf. Theory, vol. 43,
no. 5, pp. 1389-1399, 1997.

Alex Shafarenko received his graduate Diploma
in Physics from the Novosibirsk State University
Department of Physics in 1983, and a Ph.D. from
the Siberian Branch of the Russian Academy of
Sciences in 1990. He joined faculty at the Univer-
sity of Surrey, England as Senior Lecturer within
the Department of Electronic and Electrical Engi-
neering and was subsequently made a Reader. He
was appointed to his current position Professor of
Software Engineering in 2000 by the University of
Hertfordshire as he joined the School of Computer

Science. Dr Shafarenko has led several international research projects in the
area of advanced signal processing and parallel computing.

Anton Skidin received his graduate Diploma in
Electronic Engineering from Kurgan State Univer-
sity in 2005. He is currently a Research Fellow of
the Institute of Computational Technologies Russian
Academy of Sciences Siberian Branch.

Sergei K. Turitsyn graduated from the Department
of Physics of the Novosibirsk University, Russia
in 1982 and received the Ph.D. degree in Theo-
retical and Mathematical Physics from the Institute
of Nuclear Physics, Novosibirsk, Russia in 1986.
From 1992 to 1998, he was with the Institute for
Theoretical Physics I, Heinrich-Heine University,
Duesseldorf, Germany, first as a Humboldt Fellow
and later as Leader of the collaborative projects
with Deutsche Telekom. He joined the Photonics
Research Group in the School of Engineering and

Applied Science, Aston University, United Kingdom in 1998 and is now one
of the Photonics Group leaders. Professor Sergei Turitsyn was a recipient of
the Royal Society Wolfson Research Merit Award in 2005.

