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ABSTRACT

A primitive product is a composition of a finite sequence of finite automata such that
feedback is limited to no further than the previous factor. Furthermore, the input to
each factor depends only on the global input to the system and the states of at most
three factors (including the factor itself). Conversely, the state of a factor may directly
influence only at most three factors (including the factor itself). Additional conditions
guarantee a strong planarity property known as outerplanarity.

Any primitive product of automata can be realized in an outerplanar layout. This
is desirable from the engineering point of view of simple circuit wiring as a circuit
whose components and wires comprise the nodes and edges of an outerplanar graph
may be realized on a two-dimensional surface, and moreover, new wires can be run
from a point outside the circuit to any or all nodes of the circuit without crossing each
other or any existing wires.

We constructively show that if A is a finite automaton satisfying Letichevsky’s
criterion, then any finite automaton can be homomorphically represented by (i.e. is a
homomorphic image of a subautomaton of, or equivalently, is a letter-to-letter [length-
preserving] divisor of) a primitive product of copies of A.

A class I of finite automata is homomorphically complete under a given product
m, by definition, if every finite automaton can be homomorphically represented as a
m-product of automata from K. By Letichevsky’s characterization of homomorphically
complete classes under the general product (unrestricted finite composition), our results
imply that a class of finite automata is homomorphically complete under the general
product if and only if it is homomorphically complete under the primitive product.
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1. Introduction

An important area of automata theory has been to investigate how automata can
be realized with compositions of certain basic automata. One of the most celebrated
results in the field of compositions of automata is the Letichevsky Decomposition The-
orem. In this study, we give an extension of this result. While the Krohn - Rhodes
Decomposition Theorem [15, 16, 1, 19] is a basis for studying the cascade product of
automata, the fundamental information concerning homomorphically complete classes
of finite automata under the Gluskov product [13] is concentrated in the well-known
classical criterion of A. A. Letichevsky [18] (see Section 3 below). In order to de-
crease the complexity of the general product, F. Gécseg [8] introduced a family of
semi-cascade products named «;-products, where the index ¢ is a nonnegative inte-
ger, which denotes the maximal admissible length of feedbacks.! Z. Esik [6] proved
that Letichevsky’s criterion can be used to describe those classes which are homo-
morphically complete under the as-product. On the basis of this result, Z. Esik and
Gy. Horvéth [7] showed that for every i > 2, the a;-product is homomorphically as
general as the Gluskov product.

P. Démosi and B. Imreh [5] introduced another product hierarchy, the v;-hierarchy,
where ¢ is a positive integer. In a v;-product of automata, the working of each factor
can be directly influenced by at most i of the factors. P. Démési and Z. Esik [4]
have proved that the v;-hierarchy is proper from the point of view of homomorphic
representation. A comparison of the «;-products and v;-products can be found in
[10].

An «o; — vj-product is an a;-product that is also a vj-product. Thus, e.g., an
ap — vi-product is a loop-free product with the additional property that each factor
depends only on the general input and the state of at most one other factor. F. Gécseg
and H. Jiirgensen [11] proved that the g — v4-product is homomorphically as general
as the general product if infinite product is permitted. Since the v;-hierarchy is strict
with respect to homomorphic representation, we cannot get similar general results for
the o; — v;j-products provided that infinite products are not permitted.

In this paper, we introduce a new product of special type, called the primitive
product, and we show that Letichevsky’s criterion characterizes exactly those classes
of automata which are homomorphically complete under this kind of product. Since
the primitive product can be considered as a special form of the ay — v3-product, we
have the rather surprising result that, contrary the fact that the v;-hierarchy is strict
with respect to the homomorphic representation, the ; — v;-hierarchy (and the v;-
hierarchy) collapses at i = 2 and j = 3 whenever we are confined to homomorphically
complete classes under these kinds of products (i.e. (o; — v;)- resp. v;-).

Thus, when a class of finite automata satisfies Letichevsky’s criterion, one can

LA feedback from a factor to itself is considered to be of length 1. Thus, in a sequence of automata,
a feedback of length 2 is understood to be to the preceding factor.



build any finite automaton as a homomorphic image of a subautomaton? of a product
of automata from that class, and conversely. But more strongly, one can guarantee
that the working of each factor depends on at most three other factors such that
one of these three factors is the factor itself and that feedback length is not more
than two. Thus, the “wiring” of the representing automaton is quite restricted, and,
furthermore, its factors and wires may be arranged on the nodes and edges of a highly
restricted type of planar graph demanded by the definition of primitive product.
For all notions and notation not defined here, we refer to the books [14], [12] and

[9].
2. Notation and Basic Notions

An alphabet is a finite nonvoid set X, the elements of X are called letters. For any
alphabet X let X* denote the free monoid of all words over X (including the empty
word \). Moreover, denote by X (= X*\ {\}) the free semigroup of all non-empty
words over X. The length of a word p = zy...2, € Xt (21,...,2, € X) is denoted
by |p|(=n). The length of the empty word A is zero by definition. The reverse of p is
p = Z,...v1. For any alphabet X and nonnegative integer n, X" denotes the set of
n-length words of X*. Moreover, we put p® = \,p" =p" 1p (p e X*,n > 0). If p=gqr
for some ¢, r € X*, then ¢ is said to be a prefiz and r a suffiz of p. If there is no danger
of confusion, we shall sometimes denote an n-tuple (aq,...,a,) with each a; € X by
the word a; . ..a,. Throughout this paper, for integers k,n (n > 2), k (mod n) denotes
the least positive integer &' such that n divides £ —£’. (In particular, 0 (modn) = n.)

By a (finite) automaton we mean a system A = (A, X,0), where A is a finite
nonvoid set of states, X is the input alphabet, and the mapping § : A x X — A is the
transition function of A. We extend 0 to a mapping 0 : A x X* — A in the following
way: for arbitrary a € A,d(a,\) = a and d(a,pz) = 6(d(a,p),z) (p € X",z € X).
Then every p € X* induces (under §) a transformation v, : A — A of the state set A
with 7,(a) = 0(a, p) for each a € A.

Let A = (A, X,0),B = (B,Y,d) be automata. B is a subautomaton of A if
BCAY CX, and d'(b,y) =d(b,y) (b€ B,y €Y). b = (¢1,12) with the surjective
mappings ¢; : A — B,¢y : X — Y is a homomorphism of A onto B if ¢, ((a,x))
=0'(¢Y1(a), Ya(x)) (a € A,z € X). If there exists a homomorphism of A onto B, then
we also say that A can be mapped homomorphically onto B. The automaton B can
be represented homomorphically by the automaton A if A has a subautomaton which
can be mapped homomorphically onto B. If the component mappings are bijective,
then we speak of isomorphism. We also say that the automaton B can be embedded
isomorphically into the automaton A if B is isomorphic to a subautomaton of A. In
addition, if X =Y and v : X — Y is the identity mapping, then we also refer to v,

2In the terminology of the Krohn-Rhodes school, “homomorphic image of a subautomaton” is
equivalent to “length preserving divisor”, and to “cover with letter-to-letter lifting”, where the input
symbols (letters) are considered as generators of (possibly non-faithful) transformation semigroups.



as a homomorphism (or an isomorphism).

Let f: X; x...x X, = X be a mapping having n variables for some positive
integer n, moreover, let ¢t € {1,...,n}. f is said to really depend on its t"* variable
if there exist ©1 € Xq,..., 2, 1 € Xy 1, 2,0 € Xy, 2001 € Xiy1, ..., 2, € X, having
f(z1, o xn) # flay, .oy 2e 1,2, Tsq, - .o, @) If f does not have this property, then
we also say that f is really independent of its t'* variable. Moreover, if there is no
danger of confusion then sometimes we leave the attribute “really”.

Let A, = (A, X3,6) (t = 1,...,n,n > 1) be automata. Take an alphabet X
and a system of feedback functions ¢y : A; X ... x Ay x X = X; (t=1,...,n). Let
A=(AX,0)=A;x..xA,(X,¢1,...,p,) be the automaton with A = A;x...x A,
(a1, ... an),x) = (01(ar, p1(a1,. .y anyx))y ooy On(any pnlar, ..., an,x)) (a1, ..., an)
€ A,z € X). The automaton A is called the (general) product ( or Gluskov product)
of Ay, ..., A, (with respect to X and ¢y,...,¢,). If Ay =...= A, =B, then Ais a
(general) power of B.

Proposition 2.1. Let A = A; x ... x A,(X,1,...,0n) be a product of automata
Ay = (A, Xy, 8), t = 1,...,n and consider a permutation P over {1,...,n}. De-
fine the product A" = A’y x ... x An(X, ¢y, ..., ¢",) such that A’y = Apgy, more-

over, for any state (apq)y,...,apm)) € Apay X ... X Apwy and input letter x € X,
¢ (apay, - apmy, ) = ppuy(ar, ... an,x), t =1,...,n. Then A is isomorphic to
A’ O

Let us consider a class IC of automata. We say K is homomorphically complete
under the Gluskov product if every finite automaton can be homomorphically repre-
sented by a Gluskov product of automata from . Homomorphic completeness under
any of various other products is defined analogously. We define the underlying graph
D=WV,E)(V =AL1,...,n},E CV xV) of Asuch that (7,j) € E if and only if
the feedback function ¢; really depends on its i'" state variable. Thus, an underlying
graph is a directed graph (or, in short, a digraph) which may contain loop edges.
Moreover, if (i,7) € E then it is said that (i,7) is an outgoing edge of i, and simul-
taneously, (i, 7) is an incoming edge for j. (In this way, a loop edge (7,7) has both of
these properties concerning the vertex i.) We shall use the following statement.

Proposition 2.2. Let A= (A; X ... x A, X,04) = A1 X ... X A (X, 01, .., 05) be
a product of automata having an underlying graph D = ({1,...,n}, E), vertices i, j, k
with i < j, k such that, (i,7), (i,k) € E. Suppose that for every pair {,m, { < i <m
implies (m,0) ¢ E. Then there exists a product A" = (A; X ... x A; X Ay X ... X
An, X, 04)

= A X o xAix A x o x AR (XL @ - iy ,) having the underlying graph with nodes
{1,...,i+n} and edges ({(i+u,i+v) | (u,v) € E}\{(24,i+5)})U{(,i+75)}U{(u,v) |
(u,v) € E,u,v <i}) such that, for any a; € Ayq,...,a, € Ap,x € X,

oa(ay, ... apa1,. .. a,),x) = (d},...,a,,ady, ... a),



whenever
dal(ar,...,an),z) = (ai,...,a).

Proof: By the condition on edges, ¢, ..., y; do not depend on their (i + 1), ... nt
state components.

Fix any arbitrary a;,, € A;41,...,a, € A,. We construct the following feedback
functions:
Spt(ala"'7aiaa’;ﬁ+17"'aln7x) lftgla
_ilaigr, ..., 04 ift>iandt#i+j
o, ..., ain, ) = Ot—i(@it1, -+, Qign, T) ift>sandt#1+7,
Soj(ai-i-la ey (251, Gy,
A2i41, - -+ Qign, T) ift=i+j

(where t =1,...,04+n,(a1,...,04,) € Ay X ... X A; x Ay X ... x A,z € X).

It is easy to check that the product A" having the above feedback function components
satisfies the required conditions. O

Corollary 2.3. Fvery cascade of automata can be homomorphically represented by a
cascade of (copies of the same) automata such that: For each i, at most one feedback
function ¢; really depends on the state of A;. (Also, the analogous statement holds
for the aq-product). O

Several families of products can be derived from the general product by imposing
restrictions on the feedback dependency. A is an «;-product (i = 0,1,...) if each
¢y (t = 1,...,n) is really independent of its j* state component (j = 1,...,n)
whenever j > t + i. Especially, if A is an ag-product, then we often give the system
of feedback functions in the form ¢; : X — Xy, 09 : A} x X — Xo, ..., 0, : A1 X
o X A1 x X — X,,. If i is a positive integer for which every ¢, (t = 1,...,n) really
depends on not more than 7 state variables, then A is a v;-product. In addition, an
a; — vj-product (i =0,1,...,5 =1,2,...) is an a;-product that is also a v;-product.

Our fundamental concept is that of the primitive product. Take the above con-
sidered general product A = A; x ... x A,(X, p1,...,¢,) and its underlying graph
D = (V,E). For any t € V, denote by i(t) and o(t) the sets of incoming and outgoing
edges of ¢, respectively, and assume that
(i) for any ¢t € V there exist j,k € {1,...,t—1,t+1}and r € {t —1,t+1,...,n}
such that one of the following conditions is satisfied.

(i) o(t) € {(4, 1), (£,1)} and o(t) € {(t,t — 1), (t,1), (£,7)},

or

(i2) o(t) € {(4,1), (k, 1), (£,1)} and o(t) € {(t, 1), (¢, 7)};

(i) if (a,b), (¢,d) € E and {a,b} N {c,d} = 0, then min{c,d} < a < max{c,d} if and
only if min{c,d} < b < max{c,d}.



Then we say that A is a primitive product. For any class K of automata, let us
consider the class P(K) of primitive products having factors from K. It is easy to see
that P(P(K)) C P(K) does not hold in general. But, we have the following.

Proposition 2.4. Let M = My X... X My 1(X,¢1,...,%n41),n > 1 be a product of
primitive products M; = My x ... x My (Xi i, .. 0i5),7i > 2,0=1,...,n+1
having the following properties. i, ...,Y, may really depend only on their input
variables. Moreover, V;1,...,%; 1,1 = 1,...,n really do not depend on their last
(i.e. ji*) state variables, and, if some yi1p (kK = 1,...,jn1) really depends on
its input variable, then it may additionally depend only on its k' state variable
and at most one other state variable, and simultaneously, there exists at most one
Unyrp (K = 1, jns1) with k # k' depending on its k'™ state variable. Fur-

thermore, the input set of M,y is Xyp1 = My, X My, X ... x M, , where
M, ;.,i = 1,...,n denotes the state set of the last factor of the product M,;, and
each Yo (K =1,...,jns1) may depend at most on one component of Xpy1; and

moreover Ypy1 and Ypi1gp do not depend on the same component of X1 for
k#£E (kk =1,...,jns1).

If Yni1 has the form piq(ma, ..., My, Mpi1,2) = (M1, Mnj,) € Xpit,
where m; is the state of M; and m;;, the state of M;’s last factor, then M is iso-

morphic to a primitive product of the M, ;,i=1,...,n+1,7=1,...,j.

Proof: Let P be an arbitrary permutation over {1,...,n}. Considering the short
notation Ny = My X ... x My, (¢ = 1,...,n+1), by Proposition 2.1, we can
construct the product

M = Npay x ... X Npiy X Nop1 (X, 97, ..., ¢))

with v = j1 +. ..+ jn41 such that M’ is isomorphic to M. Denote y,11.6,, .. Yni1,s,
with s; < ... < s, all feedback functions of the product M,,.; depending at least one
component of the input set X, 11 = M, ;, X My j, X ... x M, ;,. From our assumptions
it follows that » < n. Suppose that for every ¢ € {1,...,r}, P(n—{+1) = t, whenever
Yny1.s, depends on the ¢ component of X, ;. Clearly, then M’ forms a primitive
product of the M, ;,i=1,...,n+1,7=1,...,7. O

The following statement is obvious.

Proposition 2.5. Every primitive product is an ao — v3-product. O

For any directed graph D = (V, E), we consider the associated undirected graph
U(D) = (V, E') such that,

E'={{i,j} | (i,5) € E}.

Following Harary [14], we define a walk in an (undirected) graph (V, E’) to be a
sequence of vertices vy, ..., v,, such that {v;,v;,1} € E'. A path is a walk with all



n+ 1 vertices distinct. A walk is closed if vy = v,. A cycle in a graph is a closed walk
such that its n points are distinct and n > 3. A face of a graph [' embedded in the
Euclidean plane E? is the closure of a connected component of E? \ T,

We say that a graph I' = (V, E) has the ordered cycle property if its nodes
can be labelled with distinct positive integers such that if we identify each ver-
tex with its label, then every cycle, considered as an undirected path, can be ar-
ranged in the form ¢; < ... < ¢, (¢ € V, i = 1,...,k) with (¢, cit1(modk))
€ E or (Citi(modr), Ci) € £ edges.

Lemma 2.6. Let D = (V, E) be the underlying graph of a primitive product of au-
tomata. Then D has the ordered cycle property.

The nodes of D are already integers, so we consider D under its natural labelling.

Claim: Take any pair of undirected paths 4y ...y, J1 ... J, consisting of nodes in
D, with j; < 1; < j, and suppose either 7, < j; or j, < i,,. Then the paths contain
a common point.

Proof of Claim: Assume that the claim is false, then there is a minimal counterex-
ample, with all nodes distinct and n + m least.

Consider 4, _1: if i,,_1 < j; or j, < %m_1, then the path ¢;...7,_1 would yield
smaller counterexample unless m = 2. If on the other hand, j; < i,,_1 < j, then
Im—1tm yields a shorter counterexample unless m = 2. So m = 2 for a minimal
counterexample. Now, consider the path j;...7,. If is < 71, then s < 71 < 41 < Jp.
In this case, by (ii), is < j» < 43 must hold, and thus, j,...7j, yields a shorter
counterexample unless n = 2. If j, < iy, then j; < iy < j, < iy. Then, by (ii),
11 < Jjn_1 < 13 must hold, but in this case, j; ..., 1 yields a shorter counterexample.

We have established that n = m = 2 in any least counterexample. Thus, i,
< J1 <y < jporj; <iyp < jp <iy: now by condition (ii) of the definition of primitive
pI'OdllCt, since jl = min{jl,jg} <1 < max{jl,jg} = jz, we have jl < g < jz, a
contradiction. Therefore, no least counterexample can exist. This establishes the
claim.

Now let ¢; denote the least node in the cycle. It is connected by edges in the cycle
to two other nodes. Now these two nodes and ¢; are pairwise distinct. Let ¢y denote
the lesser of the two and let ¢, denote the greater. We have ¢; < ¢ < ¢,. Proceeding
around the cycle in the direction from ¢; to co denote the nodes cs3, ¢4, et cetera until
we reach c¢,. We assert that ¢ is the greatest node in the cycle: if not, let ¢; be the
node with least ¢ such that ¢; > ¢,. Note that ¢ > 3. By leastness of 7, ¢;_1 < ¢
and so it must be that ¢; > ¢ > ¢;_1 > ¢, but then the path c¢,c; and the path
c;c;i—1 would comprise a counterexample to the claim. Hence, ¢, must indeed be the
greatest node.

Furthermore, it must be true for each ¢ = 1,...,k — 1, that ¢;;1 > ¢;: if not, take
an 7 such that ¢;11 < ¢;, then we have i € {1,k — 1}, and so ¢; < ¢;41 < ¢ < ¢.
But then, c;y1...ct is a path disjoint from the path ¢;...¢;, and we would have
contradiction to the claim.



We have established that ¢; < ¢o < ... < ¢ for the nodes ¢q,cs,..., ¢, met in
sequence traced as we go around the cycle starting in the direction from ¢; to ¢p. O

A graph is called outerplanar if it has a planar embedding so that all its vertices
lie on the same face. In this case, face may be taken to be the unbounded face.
Outerplanarity is a strengthening of the notion of planarity, which has an analogous
characterization in terms of forbidden subgraphs [17, 3, 14].

Corollary 2.7. The underlying graph of any primitive product is an outerplanar
graph.

Proof: A graph is outerplanar if and only if it contains no subdivision of Kj, the
complete graph on four nodes, and no subdivision of the complete bipartite graph
Ky 3 [2], [14, p. 106]. But such a subdivision cannot have the ordered cycle property
established in the lemma, since if it did, then by restriction the property would hold
also for K4 or Ky 3. But it is easy to check that K4 and K 3 do not have this property.
(I

Remark: As we see from the proofs of the Lemma 2.6 and Corollary 2.7, every
product of automata whose underlying graph satisfies condition (ii) in the definition
of primitive product has the ordered cycle property and an outerplanar underlying
graph.

From the engineering point of view of circuit wiring, outerplanarity is an extremely
desirable property, since a circuit whose components and wires comprise the nodes
and edges of an outerplanar graph may be realized on a flat surface. Moreover, new
wires can be run from a point outside the circuit to any or all nodes of the circuit
without crossing each other or any of the existing wires.

3. Control Words

An automaton A satisfies Letichevsky’s criterion if there are a state ag € A, two
input letters z,y € X and two input words p,q € X* under which d(ag, x) # d(ag, y)
and d(ag, xp) = 0(ag, yq) = ap. If a class K of automata contains an automaton satis-
fying Letichevsky’s criterion, then we also say that IC satisfies Letichevsky’s criterion.
Otherwise, we say that K does not satisfy it.

Letichevsky Decomposition Theorem ([18]). A class K of finite automata is
homomorphically complete under the general product if and only if IC satisfies Leti-
chevsky’s criterion.

We will create “control words” for any automaton that satisfies Letichevsky’s crite-
rion. These will serve as logical signals in nearly all our further constructions.



Let a=ag...a, and b = byb; ...b, denote non-empty words over an alphabet A
having the following properties.

(i) ag = by, the letters of a are pairwise distinct, the letters of b are pairwise
distinct, and b; does not occur in a.

(ii) if a = wzy and b = w'zy’ for any factorizations with z a letter and w,w’
non-empty, then y =y’ (w,w’' € AT, x € A, y € A%).

(iii)) m < n (and n > 0). Equivalently, |a] < |b| (and |b| > 2).

Given a and b as above, define control words, w = uy ...us and v =1y ...v;:

ap" ! if m =0,

(iv) w...us =% (ai...apmay)* ifm+1|n+1l,m#0,n+1=4km+1),
ai...amaoby ... bpag ifm+1 fn+1,

(v) v V. — {bl---bnao if m+1]|n+1 (including the case m = 0),
1...VUg =

bl...bnaoal...amag 1fm+1)(n+1

The following lemma is obvious from (i) and (ii).

Lemma 3.1. Given control words u, v, for all 1 <i,5 < s— 1 we have:

(1) w; = u; # ap implies u; 1 = uj41,

(ii1) v; = vj # ap implies viy1 = vji1,

(ilil) u; = v; # ap implies ui = vVji1. O

We next show

Lemma 3.2. Let A = (A, X,0) be an automaton satisfying Letichevsky’s criterion.
There are states uy,...,us,v1,...,vs (€ A) and input letters =,... ... 2

(€ X) such that §(uy, ) = uprr,0(vpx)) = v (B = 1,...,8 — 1),0(us, 2)
= uy,0(vs, ) = v1. Moreover, u =wuy...us and v ="vy...vs are control words.

Proof: Consider an automaton A = (A, X, §) satisfying Letichevsky’s criterion, i.e.,
there are a state ay € A, two input letters x1,y; € X and two input words p
=Ty . Tmi1,q = Y2 -Yny1 € X* (To,.. o, Tmy1,Y2y - -, Ynt1 € X) under which
d(ap, z1) # d(ap,y1) and d(ag, x1p) = d(ag,y1q) = ap. Suppose that p and ¢ have
minimal length, i.e., §(ag, v1p1) = (a0, y1q1) = ao (p1,q1 € X*) implies |p| < [pi]

and |¢| < |g1]. Introduce the notations a, = d(ap,21...2y) (v = 1,...,m) and
by, = d(ag,y1.--y) (v = 1,...,n). Moreover, we set by = ag, a = ag...ay,, and

Without loss of generality, we may assume |p| = m < n = |q|. If p is the empty
word (m = 0), then 6(ag, z1) = ap and ¢ cannot be empty lest §(ag, y1) = d(ag, z1).
In any case, n > 0. This yields condition (iii).



If for every pair i (= 1,...,m),k (= 1,...,n) we have a; # by, then we get
condition (ii). (And, of course, b; does not occur in a). By minimality, each of the
state words a = ag...a,, and b = by...b, has then no repeated states letters. In
other words, a; # a; if i #j (i,j =0,...,m), and by # b, if k # ¢ (k,{=0,...,n).

Otherwise, a; = by for some i (=1,...,m), and k (= 1,...,n). We will take i to
be the least such i, and k to be least such k& for this i. (Observe k = 1 is not possible,
for otherwise |bob1a;t1 ... ap| = n + 1 (by minimality); and then n+ 1 =m —i + 2,
whence m — 7+ 1 > m implying + < 1, but then we would have a; = by, which
is not the case.) So none of the states aj,...,a; 1 is the same as any of the states
bi,...,bg_1. By minimality, |2;11 ... Tmi1]| = |Uks1 - - - Ynt1] since either of these words
result in transition from a; = b back to ag. Thus, we may replace ygi1...Ynr1 by
Tit1 .. Tme1 (Or vice versa) to obtain condition (ii). Under this replacement, a and
b are of unchanged minimal length, and so of course cannot contain repeated letters.
We know by & {ag,...a; 1} and by & {bg,...b,} = {ai,...,an}. Thus, b; does not
occur in a. Thus, conditions (i) and (ii) are established in every case.

Finally, we can define u = u; ...u; and v =v; ... vz as in (iv) and (v). The proof
is complete. O

Using Lemma 3.1, we now prove the following technical lemma useful in estab-
lishing well-definedness of and performance of ‘logical operations’ with control words
and inputs®:

Lemma 3.3. For any alphabet X, control words u,v over an alphabet A and any
mapping f : {ur,v1}?> x X — {ug, v} with f(u,u,2) = wy and f(vi,v1,7) = v (2
€ X) there exists a mapping g : A> x X — A satisfying:

f('LUl,U]Q,fL') Zfa‘ S {'LLS,'US} (: {GO})awlan S {ulavl}a
gla, wy, wy, ) = < wjtq if a =uj, wy,we € {ujp1,v41},7=1,...,8 =1,
Uj+1 if a = vj, wi, wy € {ujyr, v}, =1,...,5 =1

((a, wy,wy, x) € A® x X).

Proof: Let g(a,w;,wq, x) be any fixed element of A whenever a € {u;, v;} \ {ao} with
{wy,wo} € {ujy1,vi1} (i=1,...,8—1)ora¢ {uy,...,us,v1,...,0s}. Furthermore,
in the case that wy, wy € {u;41,vj41} and a # ag, set g(a, wy, wq, r) = ujiq if a = uy;,
and g(a,wy,wq,x) = vj4y if @ = v;. Taking into consideration Lemma 3.1, g is
unambiguously determined on (A \ {ap}) X A% x X and has the values given in the
statement of this lemma.

We still must extend g in a well-defined way to {ag} x A? x X. That is, ag
€ {ug, v} N {ug, v}, {wi,we} € {iti(mods)s Vidi(mods)}s {Wh, wh} € {Ujti(mods),
Vjti(mods)} and (wy,wq) = (w),wy) imply g(ag, wi,we,x) = g(ag, wi, wh, z) (4,7
=1,...5,z € X).

3In the sequel k(mod m) denotes the least positive integer ¢ for which m|k — £.
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We distinguish the following three cases.
Case 1. m = 0. We put

g(ao, wy, ws, ) = {bl if {wla?UZ} C {ur,v1}(= {ao,b1}) and f(wy, wa, ) = by,

ap otherwise
(w,we € A,z € X).

Then we obtain ap = u; = ... = us; and ag ¢ {vy,...,vs_1}. On the other
hand, f(uy,u1,z) = ui(= ap) and f(vy,v1,2) = vi(= by) are supposed. Hence,
our assertions hold, whenever a = ag and {wy,we} # {u1,vi}(= {ao,b1}). Now
we  suppose  {wi, w2} = {ur, v1}(= {ao,b1}).  Then  g(ao, wi, ws,x)
= f(wy, ws, x), moreover, for every j = 2,...,s we have {wy,ws} Z {u;,v;}. There-
fore, we have our conditions. This ends the proof of Case 1.

Case 2. m#0,m+1|n+1,ie,n+1=k(m+ 1) for some positive integer k. We
set
b1 if {wl,wg} g {ul,vl} and f(wl,wg,x) = bl,
a; otherwise
(w1, wy € A,z € X). Then v; # ao ifi € {1,...,s — 1}. Moreover, u; = ay implies
ui1 = ag for any ¢ € {1,...,s — 1}. Therefore, similarly to Case 1, we have our
assertion if 4,5 € {1,...,s — 1}. If {wy, wo} C {uy,v1} with (wy, ws) # (uy,uy), then
by € {wy,we}. Hence, in this case, {wy,ws} € {u,,v,} if z > 1. It is remained to
study the case of (wy,ws) = (u1,u;). Then we supposed f(wy,wq,x) = u; (= ay)
corresponding to g(ag,ai,a;,z) = a; (x € X) . On the other hand, by {w], w}}
C {u,,v,},2 > 1 and ((a1,a1) =) (w1, wz) = (wi,wh), we have g(ag, wi, wh, ) = u,
(x € X) with u, = ay, whenever ay € {u,_1,v,_1} (or more precisely, whenever
ag = u,_1). This completes the proof of Case 2.
Case 3. m+1 fn+ 1. Define

a if {wy, w2} C {uny2, vnial,

g(ap, wi, we, ) = ¢ by if {w1, w2} C {Umy2, Um2},

flwi,we, ) if {wy, we} C {ug, v}
(’U)l,wg € A,l‘ € X) Then Uy = ap, vy = bl,un+2 == bn—m—l—lavn-l—? = a1, Um42 = bl,
furthermore, v,,1 0 = ag or vy 19 = by 2 depending on whether m+1 = norm+1 < n.

By the property (i) of aga; ...a, and byb; ...b, (see their definition), we have,
in order, ag ¢ {a1,b1,0, mi1},a1 # by, and, if m + 1 < n, then b; # byi2. On
the other hand, m + 1/ n + 1 implies n # 2m + 1 leading to b2 # a; (pro-
vided m + 1 < n) by the property (ii) of aq...a, and byb;...b, (see their defi-
nitions, again). Furthermore, b; = b, (4,7 = 0,...,n) implies i = j by (i). There-
fore, by m +1 < n, n # 2m + 1 implies b0 # by_myi1, too. Similarly, since
m < n and m+ 1fn + 1, then m < n which, in addition, shows b, 11 # b;. But
then {ala bl}a {ala bnfm+1}7 {Cl(), bl} by m+1=mnor {ala bl}; {ala bn7m+1}7 {bla bm+2}
by m + 1 < n are pairwise different sets. Therefore, if w; # wy and {wy, ws}
€ {{ur,v1}, {ums2, Vmia}, {tnio, Unio}}, then our statement is valid, where the ap-
propriate values of g(ag, wy,ws,z) (x € X) are, in order, f(wy,ws,x),by,a;. (By
the way, a; = b, ;11 is possible. In this case, we may leave the set {u, o, vyi2}

g(aﬂawlaw%x) =
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= {a1,bp_ms1} out of consideration whenever w; # wy is assumed.) Finally, if
wy = wy then f(uy,uy,z) = uy and f(vy,v,2) = vy (x € X) lead to g(ag,ay, ay, )
= g(a0, bn-m+1,bn-m11,7) = a1 (z € X) and g(ag, b1, br,z) = g(ao, ao, ap,r) = by or
g(ag, by, b1, ) = g(ag, byy2, bnyo, ) = by (r € X) depending on whether m+1 =n or
m+1 < n. In other WOI'dS, g(G’Oa Uy, Uy, ZU) = g(G’Oa Un+2; Un+2, aj) = g(aﬂa Un+2) Un+2, ZU)
= Uy = Upy2 and g(a07vlavlax) = g(aﬂaum+27um+27x) = g(a07vm+27vm+27x) = U
= Upto. This completes the proof. O

Considering X as a singleton, we have the following consequence of Lemma 3.3.

Lemma 3.4. For any mapping f : {uy,v1}* — {uy,vi} with f(uy,uy) = uy and
f(vy,v1) = vy there exists a mapping g : A> — A satisfying:

f(wlan) Zfa S {U‘S)Us} (: {a‘O})awlaw2 S {ulavl}a
g(a,wy,wy) = wjqq if a = uj, wi,we € {ujy1,v411,7=1,...,s =1,
Uj+1 if a =vj, wi, wy € {ujy1, 050}, 5 =1,...,5 =1

((a,wy, wy) € A3). O

Lemma 3.4 leads to the following statement.

Lemma 3.5. There exists a mapping g : A*> — A satisfying:
b if a € {us,vs} (= {ao}),b € {uy, v},

g(a,b) = Ujt1 ’ifa:Uj,bE {uj+1,vj+1},j:1,...,s—1,
vipr ifa=wvi,be{uj, vt i=1,...,5—1

((a,b) € A?). 0

We close this section with the following definitions. Let A = (A4, X, J) be an au-
tomaton satisfying Letichevsky’s criterion. Moreover, let u = wuy...u, Vv
= vy...vs (€ A*) be control words as constructed in Lemma 3.2 such that for ap-
propriate input letters =, ...,z ], ..., 2% (€ X) we have &(us, z}) = upy1,0(vg, x})
=wv (t=1,...,5—1),0(us, %) = uy, d(vs,2%) = vy. For any a,d’,a” € A and fixed
pair uy ...us, vy ...vs of control words we shall use the following operations on the
alphabet A:

zla, a']
(an arbitrary fixed z € X with §(a,x) = d if (a,a") € {(us,uy), (us,v1)},
an arbitrary fixed z € X with §(a, ) = u;41  if (a,d") € {(us, wiv1), (us, vig1)},
1=1,...,5—1,
] an arbitrary fixed z € X with 6(a,z) = vy if (a, ) € {(v, qu) (vi, vig1)},
1=1,...,5—1,
\ any fixed element of X, otherwise,
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zla,a'] if (a,d’) = (ug, v1),

! mo__
tla, o’V a’) = {x[a, a"], otherwise,

v ooom | xla,d]if (a,d) = (us, u),
tla, " A"} = {x[a, a"], otherwise.
Using Lemma 3.5, it is clear that z[a, d'], x[a,a’ V a"] and z[a, a’ A a"] are unam-
biguously defined.

4. Auxiliary Results

Take two alphabets X and Y. Let n = ¢s (¢ > 1) be a fixed integer and consider
a mapping 7 : X™ — Y having the property: {r(p) | p € X"} C {w | w €
{u,v}‘} (n = {s) for some fixed words u, v € Y°. We shall denote the reverse of 7(p)
by 7(p).

Set H C {pe X" ||p| =n},H#0. Define Ry yg = (Rr 4, X,0-1,4) be the
automaton, where d is a positive integer, R, g4 = {(k,p,q) € {1,...,n} x X* x Y™ |
k+ gl =n+d, |p| € {0,k}, pis a prefix of a word in H (pp’ € H for some p' € X*),
furthermore, ¢ = ¢'¢", where ¢’ is a suffix of u or v and ¢" € {u,v}*}, and, for
arbitrary (k,p,yq) € Rrma (y € {u,ve [t =1,...,s}) and v € X,

((k+1,pz,q) ifk <n,p#A and prp’ € H for some p' € X*,
(k+1,)Aq) ifk<np=A\

or k <n,p# A, and for all p’ € X* pxp' ¢ H,
7(p)) ifk=mn,p€ H, and xp’ € H for some p' € X*,
7(p)) ifk=n,p€ H, and for any p’ € X* xp' ¢ H,
u’) if k=n,p= A\, and xp’ € H for some p’ € X*,
, A, qut) if k=n,p= A, and for any p' € X*,zp' ¢ H.

5T,H,d((k7p7 yQ)a IL') =

In order to simplify the proof of the next result, we introduce some auxiliary
notions. Let A = (A, X4,04) be an automaton satisfying Letichevsky’s criterion,
and let uy...us,vy...vs be any pair of its control words. For any w;...w, with
wy € {ug, v} (¢ = 1,...,s) we shall use the short notation w. Consider a word
a...a, € AT and an integer k£ (= 1,...,n). We will denote by c(a; ...a,, k) the
(k + 1) cyclic permutation of a; .. .a,. In more details, let

i -Apdy ... 0 ik <n—1,
clay...an, k) =< ay...a, ifk=n-1,
as...0,01 if k = n.
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In addition, for any pair ¢, k¥ with ¢ = +£1,+2,...k = 1,...,n, let ¢(ay ...a,,nt
+k) = ¢(ay...an, k) and for any integer r, denote by ¢(ay ...an,r) the reverse of
clay ...ay,r) .

Let M = (W x Z,Xu,d0m) be an automaton with Y C Z, moreover, let B
= (B, X, 65) be a subautomaton of M having a homomorphism ) : B — R, y 4 onto
R: ma such that ¥((w,2)) = (k,p,yq) ((w,2) € B, (k,p,yq) € R ga, y € Y) implies
z =vy. Then we say that M y-represents R, g4 (with respect to ).

We have the following

Lemma 4.1. Let A= (A, X 4,94) be an automaton satisfying Letichevsky’s criterion
and let uy ... us,vy...vs be any pair of its control words. Consider an alphabet X,
a multiple n of s with n = ¢s, 0 > 1, a word r € X", and a mapping 7 : X" — A"
having the property T(p) € {u,v}* for each p € X™. Then there exists a primitive
power M of A such that R. )1 is y-represented by M. In addition, apart from the
feedback functions for the last factor, the feedback functions of the factors of M really
do not depend on their last state variable.

Proof: First we define the product N = A* (X, py,...,03,41) such that for any
(ay,...,a3,41) € A3 r € X and t € {1,...,3n + 1}, we have

oi(ar, ..., a3p41,)
( x[at, aiyq] ift=1,...,5s—1,
ort=s4+1,...,s4+n—1,
x[ag, aq] if t = s,
xlag, asi1] ift=s+n,
xlay, uq] ift=s+n+1,...,542n,a = us(=vy), (a4_1,

alft(mods)) - (ulaul)a
ort=s+n+1,...,542n, a, = us(= vy), (a1,
@1_t(mods)) = (v1, u1), and z is not the ¢ — (s +n)™

letter of r,

x[ag, v1] ift=s+n+1,...,542n, a, = us(= vs), (a_1,

= @1—t(mods)) = (v1,u1), and x is the ¢ — (s + n)™

letter of r,

xlag, ap_1] ift=s+n+1,...,542n, a; € {ui, v}, @1, G1—g(mod s)
S {ui+1,vi+1},i = ]_, e, S — ]_,

xlay, as) if t =2n+ s+ 1, and the s™ letter of 7(r) is uy,

xlag, asion V as) if t =2n + s+ 1, and the s*® letter of 7(r) is vy,

zlag, a; 1] ift=2n+7js+1,7=2,...,¢ and the js*™®

letter of 7(r) is uy,
ort=2n+js+11,7=1,....,0—1,1=2,...,5s,
zlag, agpon Vag_y] ift=2n+js+1,7=2...,¢ and the js
L letter of 7(r) is v;.
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The first s factors provide a “small clock” in which u = u; ... u, cycles. The next
n factors (s +1,...,s+n) comprise a “big clock” in which vu*~! cycles. The next n
factors (s +n+1,...,s+ 2n) comprise a buffer into which values flow from the big
clock, starting with v;. At the £*® position of the buffer, if the input letter z matches
the k' letter of » when the signal (headed by v;) is about to reach this position,
then the signal is permitted to continue, otherwise instead of switching to state v,
we switch to u; indicating rejection of the input.* Finally, if the word has not been
rejected by the n™ input step, the acceptance signal reaches the end of the buffer,
then the buffer contains n letters which are the reverse of vu‘~! with ag,,, = v; (and
of u’ otherwise with ag,,s = u;).

In the next step, the buffer cycle starts again, while in the last n — s + 1 factors
(2n+s+1,...,3n 4+ 1), the coded word 7(r) begins to take form if the signal has
arrived. Now 7(r) = wy ... wy, where each w; € {u,v}. For each j =1,...,¢ with
Wy_j+1 = Vv in this step v; simultaneously enters factor 2n + js + 1, while for the j
with w,_;;1 = u and u; enters this factor. It is important to observe that 7(r) can be
fully recovered from the states of these ¢ nodes at this time, as follows from u; # v,
and the form of 7(r) € {u,v}’. In the next s — 1 steps, the letters in these factors
shift to the next highest factor and the respective letters of u and v flow in. Thus,
this last part will contain 7(r) except for its first s — 1 letters, as aspysi1,-- -, A3n11
after s steps. Observe that the letters of 7(r) appear as n successive states ag,y; of
As,.1, which is the last factor.

If the signal did not arrive, the above transition rules imply that u’ will be in the
buffer after n input letters, and will then flow through and out of the next part.

We will use the fact that, except for the last 3n + 15 factor, the feedback function
¢, of the t'" does not depend on its last state factor as,i.

As to the mapping onto R, (},4, take a triplet (k,p,yq) € Ry (1 (¥ € {ug, vy | ¢
= 1,...,s}). We represent this triplet (k,p,yq) by an appropriate state b
= c(u, k)e(vu’~ 1 k)e(zu’~t k—1)e; ... ep_sy1 of N. The number k is represented by
the value c(vu‘~', k) and ¢(zu*~!,k— 1),z = 2, ... z, represents p with z; € {u;, v;},i
=1,...,s. Namely, if 2; = uq, then p = X is assumed, and, if z; = vy, then p is
understood as the k-length prefix of r. In other words, z; = v; means r = pp’ for
some p' € X* (with |p| = k). And 2z; = u; means p = \. Setting y; ...y, € {u, v},
assume

“Lemma 3.3 guarantees that, for each factor ¢ of the buffer, (@t—1,01—t(mods)) = (vi,u1) only
when k = ¢ — s — 1(modn). Especially, for the first factor of the buffer, i.e., for t = n + s + 1,
(@stn,as) = (vi,ur) if and only if k = n.
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( Ytk -+ Yst1ls - - - U1k if1<k<s, (=2,

Yn—st+k -+ - Yn—s+1Us - - - Ug41Yn—2s+k - - - Yn—2s+1
Ug oo o Ut1 - Ysik -+ Yst1Us - - - Up 1Yk ifl1<k<s, l>2,
€1 -Cnsi1 =2 Yn---Yk if k=s,
Wjoooug (Us o) T Y Y ifk=is+ 7,k <n,
1<j<s,
(U un) T Y if £ =is < n.

Then k and the mirror image of e; . ..e,_sy1 represents yy ...y,. [f & > s, then this is
obvious considering the structure of ey ...e, ;1. (Recall that us =v,.) f 1 <k < s
and ¢ > 2, then the mirror image of ey ...e,_s11 iS

YrUk41 - - - UsYs+1 - Ystk

c Ukg1 -+ Us Yno2541- - Yn2s0k Uktl---UsYn—st1---Yn—stk TEPresenting yp ...y,.
(Observe that k and yy € {ug, vr} unambiguously determines y . . . ys, moreover, for
any i = 1,..., 0, Yp—isy1 € {u1,v1} unambiguously determines yn_jsi2 .. Yn—(i—1)s-)

We have similar consequences for 1 < k£ < s and ¢ = 2. The motivation for this rep-
resentation should be clear from the explanation of the buffer cycle discussed above.

Now we give the formal definition of B’, and that of a mapping ¢ : B" — R, (11,
under which R, g, is an (y-represented) homomorphic image of B'.

Let B’ consists of all b € A*"*! for which there are (k,p, q) € R, (},1 such that
b = c(u, k)e(vu'=t k)e(zu Yk — Der...ep_si1, 2 = 21...2, with 2; € {u;,v;},0
=1,...,s, where

P if p is the k-length prefix of r,
"7 ) u; otherwise,

€1...€e,_s11 18 defined as above and ¢ is represented by k and e;...e,_sy1 as we
explained. (Recall that by the structure of Rty iy Yn—stb - Yn—st1Us - - - Ukl Yn—25+k
e Yn2s41Us oo Upa] - Ysik -+ Ysi1Us - - - U1y Unambiguously determines ¢ = y
.- Yn, Whenever k < s and £ > 2. Similarly, by the structure of R, )1, Ystk - - - Yst1
Ug ... Ugp11Yr unambiguously determines ¢ = yg ...y,, whenever k£ < s and ¢ = 2.
Moreover, ¢ = €, _gy1 - .. €k_sy1 1s assumed if k > s.) Furthermore, let ¢ (b) = (k, p, q).
It is routine work to show that A has a subautomaton B’ with state set B’ which
can be mapped homomorphically by 1) onto R, y,1. Finally, by 1(b) = (k,p, q), the
last letter of b is the same as the first letter of g. Therefore, N y-represents R, ;},:.
Applying Proposition 2.2 to the product N, it is clear that we will get a product
N, which also y-represents R 1, moreover, similarly to N, apart from the last
factor, the feedback functions of the factors of N’ really do not depend on their
last state variable. Thus it is enough to observe that by an inductive application of
Proposition 2.2, we can derive from the product A a primitive product M.
Especially, every vertex of the underlying graph of A has not more than two
incoming and two outgoing edges in the resulting product. Moreover, if there is a
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vertex with two outgoing edges, then it is an element of a cycle with one edge going
into another element of the same cycle, and all of the other cycle elements have one
outgoing edge connecting them with other elements of the cycle.

In addition, cycle elements have only one incoming edge, coming from another
element of the cycle. > Using Proposition 2.1, we may assume that A is a primitive
product, for otherwise we could relabel its components by an appropriate permutation
of their indices.

This ends the proof of Lemma 4.1. O

We next prove

Lemma 4.2. Let A be an automaton satisfying Letichevsky’s criterion, AF(X, ¢!,
oy 0h), AYX @l @)) be primitive powers of A such that, apart from the last
factors, the feedback functions of the factors really do not depend on their last state
variable. Suppose that they y-represent, in order, R, m a4 and R, m,q for some T :
X" — A" H,Hy C {p e Xt | |p| =n} (Hi, Hy are not necessarily disjoint sets),
and d > 1, where n is a multiple of s as before. There exists a primitive power
M = AFHUX o1, o ki), which y-represents Ry myom,.ar1- Moreover, apart
from the last factor, the feedback functions of the factors of M really do not depend
on their last state variable.

Proof: Define the power A*™1(X ), ... ¢ries1) in the following way.
For any (ai,...,ap4e41) € AAFFF o e Xt =1,... ,n+0+1,

Sog(ala"'aak)ax) lftgka
@i, -y e, ©) = G (Argrs - arge ) iR <t <k + L,
Tlppor1, A V Qg otherwise.

Clearly, this power of A is primitive.
Now we consider, in order, appropriate homomorphisms ¢’ and " such that
AR(X o, .0, @h), y-represents Rz, 4 with respect to ¢', and moreover, A% (X, oY,
.., ¥7), y-represents R, u, 4 with respect to ¢". It is clear that ¢, does not depend
on its last state variable if ¢ # k 4 ¢ + 1. Therefore, it is a routin work to show that
the power M y-represents R, m,um,,d+1 With respect to the homomorphism 1 having
the following properties.

@0(01, cee ak+z+1) = (C,Pa Af4241Y1 - - -yd—c-i-n)a

whenever ¢'(a1,...,ar) = (¢, 0,91 - Yy ein)s V'(Ckt1,- - 0k00) = (¢, 0",y
Y ean), 1P P"Y = {p, A} (with |p| € {0, ¢} including the possibility of p = ),

5The cycles may be “wired” in such a way that their first element is connected to the last one
and all the others are connected to the previous ones. Then the cycles can represent “clocks” so
that, for instance, if d; . ..d,; is a state of a cycle (with ms length) representing the k" state of an
arbitrary “clock” then ds . ..dpsd; will represent its k + 1(mod ms)*" state.
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Yd—c+n (: yZi—c-l-n = yg—c—l—n) = Us (: Us)a

us (=vs) ify;  =yi | =us (=vs) and y; € {ur,v1},
Yi1 = { U if yi y =yjy=wand y; =ujp, i €{1,...,s—1},
v if v € {y;_1, 97 1} and y; = viq, 1 € {1,...,5 =1},

j=2,...,d—c+n, provided

(us (= vy) if c —d+1(mod s) =1,
Ue—d( mod s) if Y1 = Ue—d+1(mod s)»
" B c—d+1(mod s) € {2,...,s — 1},
fra VUe—d( mod s) if Y1 = VUe—d+1( mod s)»
c—d+1(mod s) € {2,...,s — 1},
| arbitrary element of {us 1,vs-1} if ¢ —d+ 1(mod s) = s.

Using the definition of R, i 4, by Lemma 3.5 it is obvious that y; . .. yq_c+n and ¢ are

well defined.
O

We shall use the following concept as well. Define the subautomaton R, 4 of
R xna to have state set R.g = Rrxna \ {(k,\,q) | (k,\,q) € Ry xn4}. This is a
subautomaton since pzx is a prefix of a word of X" for every p € X* with |p| < n,z €
X. For (k,p,q) € R, 4, we have |p| = k always, so we will use the short notation (p, ¢)
for (k,p,q) € R, 4. We have, for (p,yq) € R, q (y € {us, v, |t =1,...,s}) and z € X,

_Jpr,q)  iffp| <n,
6r,a((P,yq),7) = { (z,qr(p)) if |p| = n.

Let M = (W x Z,Xu,d0m) be an automaton with Y C Z, moreover, let B
= (B, X, 05) be a subautomaton of M having a homomorphism ¢ : B — R, 4 onto
R4 such that ¥((w,z)) = (p,yq) ((w,z) € B,(p,yq) € Rrq, y € Y) implies z = y.
Then we also say that M y-represents R, 4 (with respect to ).

The following statement is obvious.

Proposition 4.3. Let 7; : X™ — Y™, ¢ = 1,...,m be a system of mappings, more-
over, let d be a positive integer. For anyi=1,...,m, let M; = (W; x Z;, X, 0;) be an
automaton which y-represents R, 4. Consider an automaton My, 11 = (Mpi1, Xmy1,
Omt1) with X1 =Y, aproduct U =RojaX ... X Rop g X M1 (X, 01, -0, Pmi1)
with

x if t < m,
@t((plaqul)a ERI) (pm,qum),a;x) = { (yl L ym) th =m+ 1
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((puyz%) S RTi,dayi S KZ = ]-7' ., Mmya Mm-l—lax € X)
Define the product M = My X ... X My X M1 (X, 01, ... Umar) with

Yil(w 1), -y (Winy 2m), 0, 7) = {?zl, - gi i Z’WL L.

Then M homomorphically represents U. O

Lemma 4.4. Let A= (A, X,d4) be an automaton satisfying Letichevsky’s criterion
and let w = uy...us, v.= v1...v5 be any pair of its control words. Consider an
alphabet X, a multiple n of s with n = Vls,{ > 1 and a mapping 7 : X" — A" having
the property 7(p) € {u,v}* for each p € X". For any integer d > |X"|, there exists a
primitive power M of A such that R.q is y-represented by M. Moreover, apart from
the last factor, the feedback functions of the factors of M really do not depend on
their last state variable.

Proof: By Lemma 4.1 and by an inductive application of Lemma 4.2, we can prove
that R, yn x»| is y-represented by an appropriate primitive power M’ = A¥(X, ¢},
.., ¢,) of A. Since R: xn is a subautomaton of R; x» xn»|, this primitive power
M'" also y-represents R, xn». If d = |X"|, then M’ has the required conditions.
Otherwise, let M = A" X, p,..., opse) with £ = d — |X™| such that for any
(ar, ... ape) € AFTL x e Xt =1,... k+ 4,

oy(ay, ... ar,x) ift <k,

(pt(m, vy iy, SU) = { x[at, atfl] otherwise.

This power of A is primitive and y-represents R 4. O

Lemma 4.5. Let D = (D, X,0) and B = (B,Y, ) be automata with D C B. More-
over, let 7 : X™ = Y™ (n > 0) be a mapping and assume that for a suitable integer
d > 0 the following two conditions are satisfied:
(i) For alla € B, (p,q) € Rr4, p € X":

8 (a,q) € D implies §(8'(a, q),p) = §'(a,qr(p)) (€ D).
(i) {0(¢"(a,9),p) | @ € D,(p,q) € Rra,0'(a,q) € D} = D.
Then there exists an ap-product R, qx B(X, 1, v2) which homomorphically represents
D such that o2((p,yq), ) ((p,yq) € Rrg,x € X,y € Y) really depends only on y.

Proof: Form the ap-product C = (C, X, ") = R, q % B(X, ¢1, ¢2), where for arbitrary
(p,yq) € Rrg (yeY),be Band z € X, p1(x) =z and pa((p, yq), ) = y. Define the
subautomaton C' of C with states C' = {((p,yq),a) € C | §'(a,yq) € D} and input
set X. We map the state ¢ = ((p,yq), a) of C' to the state 6(d'(a, yq), p) of D.
Assume that C' receives an input letter = in this state c¢. If |p| < n, then §"(c, z)
= ((pz,q),d (a,y)), which maps to the state 6(0'(0"'(a,y), q), pr) = §(5('(a, yq), p), )
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of D, as required.
If on the other hand, |p| = n, then §"(c,z) = ((z,q7(p)),d (a,y)). This maps to
6(6"(6"(a,y), q7(p)), ) in D, that is, to 4(5'("(a, yq), 7(p)), ) = 6(6(6'(a, yq),p), =),
by (i) since ¢'(a,yq) € D. (Observe in the second case, |¢| =d — 1.)

Thus, the mapping ¥(((p,q),a)) = 3(6'(a,0), ) ((p,0),0) € C'ya € D C B) is
a homomorphism of a subautomaton of C into D. By (ii), ¢ is a mapping onto D.
Finally, as v2((p,yq), ) =y ((p,yq) € R, 4,z € X), we obtain that ¢, really depends
only on y. This ends the proof. O

We shall use the following natural extension of this result.

Lemma 4.6. Let D = (D, X,0) be an automaton. Consider a product N' = (B X
X B, Z56") = By x ... X Bu(Z5 01, .., 0m) of automata B;, 1 < t < m
with D C By X ... X By, Let 1, : X" — Z"(n > 0), 1 < i < {, be map-
pings, moreover let 7 : X" — (Z°"™ with 7;(p) = z14... 2040 = 1,..., L whenever
7(p) = (2115 -+ -5210) - - (Zn1y - - -5 2ng) Such that the following two conditions hold:

(i) For every a € By X ... X By, (p,q) € Ry g, p € X":

8 (a,q) € D implies

6(¢"(a, q), p) = 0'(a,q7(p)) (€ D).
(ii) D = {6(0"(a,q),p) |a € By X ... X By, (p,q) € Rr4,0'(a,q) € D}.

Then the product V = Ry g % ... XxRea x N(X, ¢, ..., 00 001) = Rea X
X Reax Byxo o x By (X, @4, ..o @)y ,,) homomorphically represents D, where for
each (1 < i <{+m), we have

w;((phqul)? ) (playf(ﬂ);bla . -,bm,l’)

oz if 1 <i<V,
L wie(bry e by (Y1, -2, ye))  otherwise
((Pir yigi) € Rrya, 1 <i <l € X, (y1,- .o 90) € Z°, and @1y = (D11 -+ Ploym)-
Proof: First we apply Lemma 4.5 taking A in the role of B. Consider the
ap-product U = R, 4x N (X, x1, x2) given by Lemma 4.5, and the product V = R, 4%
X Rpa X By X oo x Bp(X, ¢, ..., ¢p,,) just defined.

For a state (pa Y4, b17 ) bm) of Z/{, where (pa yQ) € RT,d with pE X*a Y=Yi---Ye

€Z qe (ZH be B; (1 <i<m)given ¢ = (T11,---,T14) - (Thiy---,The), We

T1,j
put ¢; = : € Z", (for some h > 0, for each j = 1,...,¢). We write this state
Th,j
as
i Y
T11 .-+ T1y
(p7 7b17 . 7bm)
Thai .. Thy
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Define an injective mapping o : R; g X B1 X... X By, = R 4X ... X R;, 4 X By X By, by

AR (P, 1211 - Th)
1'1,1 1‘1,5 .

e I A : iy b
Tp1 - Thy (p7 YeZ1ye h,t)

Denote by &, resp. dy the transition functions of U resp. V.

If |p| < n, in 0y (((p, yq), b1, - -, bm), x), the only changes are that the row of y’s is lost,
pis replaced by pz, and b; is replaced by b}, which is b; acted on by @;_¢(b1, . .., bm, (Y1,

..yye)) in B; for i = 1,...,m, whereas in p of this state, the ‘column’ of y’s is lost
and p is replaced by px, while the b’s change in the same way.

If |p| = n, then o(6y (((p,yq), b1, ..., bm),x) is
T11 -+ T1pg

(l‘, T11---Th121,1--- Zn,l)
o(z, | M b)) = : V),

211 .- R4 rom
’ ’ (IL‘, L1 -Thez1 - - - Zn’g)
Zpl .- Znyt
21,1 21,0 21,
where 7(p) = oo , Ti(p) = : i=1,...,¢0.
Zpl - Rnt Zni

This shows that for any (p,yq) € R. 4, (b1,...,bn) € By X ... X By,, v € X, we have

0(0u(((p, @), b1, -, ), 7)) = dy(2(((p, q), b1, - - -, b)), ).

Therefore, the product U can be embedded isomorphically into the product V. But
by Lemma 4.5, { homomorphically represents D. Thus, V also has this property. O

5. Main Result

In this section, we will establish that a primitive product of Letichevsky automata

can homomorphically represent any finite automaton £. To avoid trivialities, we note
that it is enough to restrict to cases in which £ has at least three states.
Consider an automaton A satisfying Letichevsky’s criterion and let u = u; ... us, Vv
= vy ...v, denote a pair of control words for A as before. We put uAu=uVu=u,
vAv=vVv=v,vAu=uAv=uand vVvu=uVv=yv,sothat A and V are
logical AND resp. logical OR on the set {u,v}.

First we show the following technical result.
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Lemma 5.1. Define the automata B = ({u,v}°, {u,v}* dz), C = ({u,v}'*", {u,v}*",
dc), n > 3, with

dp((a,...,a9), (X1,X2,X3,X4)) = (a2, a3 A X1, 84,85 A Xo, a6 V a3, a7 A X3, ag, Ag, X4),
de((ar, ..., aisn), (X1,...,Xen)) = (a),...,alg,), where fori=1,...,n,
(a,18(i71)+17 s 7al18(z>1)+9) = 58((318(i71)+17 s 7a18(i71)+9)a

(Xﬁ(i—1)+1, X6(i—1)+25 X6(i—1)+3» alS(i—l)-HO))a

(allg(i,l)ﬂga cee allg(i,l)ﬂg) = 58((318(i—1)+10, . ;aIS(i—1)+18)a
(Xﬁ(i—1)+4a X6(i—1)+55 X6(i—1)+65 A18(i—1)+1 VA18(i—1)+19 (mod 18n)))-

There exist a positive integer m and input words Yy, Y1, Y2, ¥3 of C having the following
properties. Given an appropriate subset {by,...,b,}, of the state set of B, for every
transformation v of {by,..., by}, there exists a word ¥ € {30, %1, Y2, Y3} " inducing
(i.e. op(bi,5) = v(b;),i =1,...,n) such that |§| = m.

Proof: Consider states of C having the form (u*aju'®...u%a,u'?), a;,...,a,
€ {u,v} and use the short notation (d,e) = u'du®eu? ,d,e € {u,v}. We repre-
sent b;, i € {1,...,n} by the state u'¢=Dutvu'*u'®"=9 of C, which, using the short
notation, is (u,u)""!(v,u)(u,u)"*. First we show that we have words qop,q;; €
{u,v}*,i=1,2,3,4,j =1,...,n all having the same length such that

(5@(((11,61, IO dnaen)7Qi,j) - (dllaella .- '7d:7,7€;;,)7

where
(df, e}) = (dg, ) if £ # j, and otherwise

(dj7ej) if (27]) = (070)7
(djadj—l—l(modn)); le:L]:l:ana
(d;,e;): (ej,dj), 1fz:2,]:1,,n,
(u,e) ifi=3,7=1,...,n,
(djVej,ej) le:4,j:1,,7”L

Using the symmetry of the structure of C, to show the existence of the ¢’s, it is

enough to prove the existence of gpp,¢i1 € {u,v}*,i =1,2,3,4. Define the following
input letters (not words!) of C.
1o = (uvu)?", r; = uvuuuuvvu(uvu)
r3 = vvuvvu(uvu)?" 2 z, = uuvuuv(uvu
16 = uvuvvu(uvu)?" 2 z; = uvv(uvu)* 1.

Let us consider the following computations.

2n—3 2n—2
)

2n—1
?

, Ty = uvuuuv(uvu)
)22 x5 = uuu(uvu)

(0) dc(u*djudeuddoudesuddsules. .. utd, ube,u?, z,%)
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c(udd uleuddyulesuddsudes . . udd,ule,u’, 28

c(u?d;ube uddyule,uddsude; . .. utd,ule,ub, 2y’

c(u*d ubeuddyule,uddsudes . .. utd,ule, ut, 2"

c(u?d;ube;uddyule,uddsude; . .. utd,ule, ub, 2ot

4 3

c(u*d;ube;uddyulesuddsudes . . udd,ule, u?, 2

2

3d ube;uddyudesuddsule; . . utd, ule,u’, 2

dc(u )
dc(u )
dc(u )
dc(udd ube;ubdyube,ubdzude; . .. utd, ule,u’, 24°)
dc(u )
dc(u )
dc (u )
dc(u

2d utejutdyude,utdsules . . . utd,ute,u, )

(u'd;ube;utdyube,utdsude; . .. utd, ule,u?).

(1) dc(utdiudejuddsuesuddsules. .. udd,ube,u?, v,°1,%)

Sc(uddiut’druesuddsules . .. udd,ube,u’, 2,110 1)
Sc(u?d;ut’dyuesuddsules . .. udd,ube,ub, z,31,1)
dc(uld;uttdou?doudesuddsules . . . udd,ube,ul, ,21,%)
Sc(udduttdou?doudesudsules . .. udd,ube,u’, i 15%)
Sc(u’d;utdyu’doudesu’dou’dsules . . . utd,ube,ub, 2yt)
dc(u*d;u'dyu’doudesu’dou’dsules . . . utd, ube,ut, z5?%)
dc(uddu''dyu’doudesu’dou’dsules . . . utd, ube,u’, z,?)
dc(udu''dyu’douesuddsule; . . . utd, ube,u’, )
(u*d;ubdyubdyude,ubdsude; . . . utd, ule,u?).

(2) dc(udiudeuddyube,uddsules. .. utd,ue,ut, v352,%)

c(uddjube;ubdyube,ubdsules . .. utd,ule,u’, v3tz,?)

c(u?dube;ubdyube,ubdsules . .. utd,ule, u’, v332,%)

= dc(u
= dc(u
= dc(ud;u’d u’e u’e;udyule,ubdsule; . .. udd, ule,ut, v5%2,%)
= dc(diu?d u’e;u’e;utdyube,ubdsule; . .. utd, ude,u’, r374?)
= 6c(u?d u’e;u’e;u’d udyube,ubdsule; . . . utd, ule,u’d;, 7,4)
= 0c(u
= dc
(

c(u'd;u’e;u’e;u’d,;u’dyube,uldsule; . . . utd,ule,ud;u, z,%)

c(ufejutd u’dyude,uddsude; . . . utd, ule,u’d u?, 24?)

5

dc(u’ejuddu’dyudesuddsude; . . . utd, ude,u’ ;)

(u'e;utd;utdyube,utdsude; . .. utd, ule,u?).
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(3)

Sc(u*dube;ubdyude,ubdsules. ..

u®d,ule,u’, z;°)

dc(u?ejuddoude,utdsules . .. utd, ube,u’, z5°%)
dc(u''ejuddyude,utdsules . .. utd, ube,ub, z57)
dc(uPejuddoude,utdsules . .. utd, ube,u?, z5°)

= dc(u?ejuddyude,uddsules . .. utd, ube,u’, z5°)
dc(u''ejuddyude,utdsules . .. utd, ube,ub, z5*)
dc(uPejuddoude,utdsules . .. utd, ube,ut, z5%)
dc(u?ejuddyude,utdsules . .. utd, ube,u’, z5%)
dc(u'lejuddoude,udsules . .. utd, ute,ub, ;)

= (uP¥e;uldyube,uddsules . .. utd, ue,ut).

(4) dc(utdiudejuddouesuddsules. .. udd, ube,u?, z5°2,:4)

= dc(ud ube;ubdyube,ubdsule; . . . utd,ule,u’, v4tz;?)
= dc(ud ube;ubdyule,ubdsule; . . . utd,ule,u’, v432;)
= dc(u'du’e;u’e;ubdyude,ubdsule; . .. utd,ule, ut, v422:)
= dc(ud u’e;u’e;ubdyubeubdsule; . .. utd, ule,u’, rg2,?)
= dc(u?d u’e;u’e;ubdyude,ubdzude; . .. utd, ule,u’, z;4)
= dc(u*du’e;u’e;ubdyude,ubdzude; . .. utd, ule,ut, 2,3)
= dc(ud u’e;u’e;ubdyube,ubdzule; . .. utd, ule,u’, 2,?)
= dc(u?d u’e;u’e;ubdyube,ubdzule; . .. utd, ule, u’, ;)
4

= (u u®d,ude,u’).

The above elementary computations show that the words qoo = z0?, ¢
= 219w, o1 = 23°14, @31 = @57, qu1 = w6"x7* satisfy our requirements.

Continuing the proof, let us consider the following four computations.

(d1 \Y el)u eu dgu €u d3u €3...

(0’) identity. o¢((dy,u,
(1) n-cycle. dc((dy,u,ds,. ..,
= 6C((d17d27d27"'7
=d0c((u,dy, u,...,

u).

) dna U.), ‘J0,0) =

dn—17 u, dna u, d1)7 q2,1 - -

24

(dla u,

. Q2,n) =

u, dn—la u, dna U.), qi,1 - -
dn—la dn—17 dna dn7 dl)a g3, - -

,dy, u).
-q1,n43,1 - --43nq2,1 - - -Q2,n)
-43.nG2,1 - - -(J2,n)
(d27 u, d37 R b dn7 u, d17



(2’) transposition. d¢((dy, u,...,dy, 1), q11¢21¢12 - Q10031 - - - @3002,1 - - - G2
(11 Qungs- - Gol2 - G20)" ")
= 0c((dy,dy,do, 1, ..., dp, 1), G2,1G12 -+ - QL0031 - - - @BinG2,1 - - - Q2n
(11 Qungs- - Gol2 - G20)" ")
= 0c((d2,dy,do,u,ds, ..., u,dy 1, u,dp, 0), Q12 - - QrnG31 - - - G30G2,1 - - - G2,n
(11 Qungs- - Gol2 - G20)" ")
= 0c((d2,dy,dg,d3,d3, ..., dy1,dp1,dp, Ay d2), G310 -+ - @30G21 - - - Gon
(11 Qungs- - Gol2 - G20)" ")
=0c((u,dy,u,ds,...,d,—1,u,dy,u,ds), g2 - -G
(11 Qngs- - Gol2 - G20)" )
=06((dy,u,ds,u,...,u,d,, u,do,0), (11 -+ - Q1nG31- - Bt ---Gon)” ),
and now applying the n-cycle operation n — 1 times, we obtain
6((dy,u,ds,u,...,u,dy,u,do,0), (G- - Q1 uG31 - - Bl - Gon)™ )
= (dy,u,d;,u,ds,...,d, 1,u,d,,u).

(3’) collapsing. dc((di,u,dg,u,ds,...,dy, 1), ¢1,103,2G4,192,143,1G2,1)
= dc((dy,dz,dg,u,d3, . .., dp, 1), ¢3204,1G2,1G3,142,1)
= de((

= dc((dy Vda,dy,u,u,ds, ..., dy, 1), ¢2,143,1G2,1)

= dc((da,dy Vdo,u,u,ds, ..., dy,u),¢3162,1)

=dc((u,dy Vdy,u,u,ds,...,d,,u),¢21) = (dy Vdy,u,u,u,ds,...,d,, u).

dla d27 u, u, d37 ey dna U.), Q4,1(I2,1Q3,1‘J2,1)

3n2+1 )3n273n+1
b

Put % = (qo,0) N = Q31 - Q30021 - - - G20 (00 Y2 = q1,1G2,1
Q2 Qi @31 Gnd21 - @alqia - Gadst---G3n G20 ---Q2n)" b Y3 = ¢1,1G3,2G4,1

(21031021 (00,0)*™ ~°, and use the short notation b; = u®*¢ Dulvuu®9 ; = 1,
..., n. By the computations (0),(1"),(2’),(3’), we get that the 4; (j = 0,1, 2, 3), which
all have the same length, induce the following transformations v; of {b1,...,b,}:
by by by ... Dby (b by oo by by
70_(1)1 by by ... bn)’ 71_<b2 by ... by by )
by by by ... Dy by by b3 ... by
72_(1)2 by by ... bn>’ 73_(1)1 by by ... bn>
Using the well-known fact that vy, 72, 73 generate all transformations on the n element
set {b1,...,b,}, and that v, is the identity, we obtain our technical result. a

Now we are ready to prove our main result.
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Theorem 5.2. Let A = (A, X 4,04) be an automaton satisfying Letichevsky’s crite-
rion. For any automaton &£ there exists a primitive power P of A such that € can be
represented homomorphically by P.

Proof: Let u=wuy...uz, v=u0v;...0, denote a pair of control words of A as before.
Consider an integer n > 3 and define the power N = A™¥" (X 01, ..., Pigns),
Xy = A% of A in the following manner. For any state (ai,. .., aigns) € A", input
letter ¢ = (z1,...,26n) € Xy, and ¢t (= 1,...,18ns), we have

(Pt(ala -5 A18ns), C)

[ z[ag, azq] if s does not divide ¢ or
t=(180G—1)+4)si=1,...,n,j=1,3,7,8,9,
10,12, 16,17,
= x[a, a1 A Zo(i-1)+j/2) ift=(18i—1)+j)s,i=1,...,n,j =2,4,6,
wlag, G A Zo(i—1)+(j—3)/2) ift=(18i—1)+j)s,i=1,...,n,5=11,13,15,
zlag, ay—354+1 V gy ift=(183i—1)+j)s,i=1,...,n,j =5,14,
| 2[ay, a—185+1 V Gigi(mod1sns)] it =18is,i=1,...,n.

It is easy to check that A is a primitive power of A, moreover, whenever ¢,
(1 <t < 18ns) really depends on its input variable, then it may additionally depend
only on its ¢ state variable and at most one other state variable. Therefore, A" has
the properties required by Proposition 2.4 for the last component of M.

Denote by d,r the transition function of A" and consider the automaton C given in

Lemma 5.1. Observe that whenever A is in the state having the form (w1, ..., wys,
Wity - - Wisnys), (Win ... wis) € {u,v},i = 1,...,18n, by the effect of words
having the form (z11,...,216n) .- (Zs15- -+, Zson), 21, --- 25 € {u,v},i = 1,...,6n,
(5/\[((1111,1, Ceey wl,s; Ceey wlSn,l; Ceey wlSn,s); (21’1, Ceey Zl,Gn) . (Zs,la Ceey Zs,Gn)) = (U]ll,l,
Wy Wy, Wi, ) i and only if, de((wlb), L wlEm) (g1 g6m))
= (WO w0 W =y w, W' = Wiy wg, 2z = 2. . 2550 = 1,
.,18n,j =1, ..., 6n. Therefore, using the short notation b, = u'¥*k~D+iyy!8n—k)+13
for the state by of A/, by Lemma 5.1 we have that there exists a positive integer m
having the following property. For every transformation v on {b,...,b,}, there ex-

ists a word ¥ = (1 ... Gusy (Ciy -y Gms € X)) such that, o (bg,7) = v(bx), for all
1<k <n.

Every n-state automaton & is isomorphic to a subautomaton of an n-state au-
tomaton D with the following properties:
(i) for each transformation vy of the n states of D, there is an input letter x, inducing
v, and,
(ii) there are at least as many distinct letters of D which induce 7 as there are which
induce 7y in £.
Thus, to complete the proof, it suffices to establish the result for the following n
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state automaton having these properties whose states are a subset of those of N.
Let D = (D, Xp,dp), D = {by,...,b,}, where by, k = 1,...,n are the states of N/
discussed before. For each transformation v of {b1, ..., b,} let there be an input letter
x~ of D having 6p (b, x,) = v(bx), k = 1,...,n. And furthermore, let there be at least
as many letters of D which induce each given transformation 7 as there are which in
E.

We shall show that D can be represented homomorphically by a primitive power
of A. Clearly, {dp(bg,x) | by € D,z € Xp} = D.

To each length ms input word p = x; ... z,,s of D, we associate the transformation
7, induced by this word on the set D = {by,...,b,}. Define, following Lemma 5.1,
7(p) = 9p. The mapping 7 : (Xp)™ — (Xn)™ satisfies dp(bx,p) = In(bk, 7(p))
(bp € D,p € (Xp)™).

For every d > 0, and a a state of N, (p,q) € R, 4, p € (Xp)™, we clearly have
that, whenever dy(a,q) € D, that dp(dn(a,q),p) = da(a,qr(p)) € D. Furthermore,
by taking ¢ to be a letter of Xp inducing the identity under dp (that is, dp(b;,¢) =
b; for all b; € D), and letting ¢ be (7(:™))? with d < msj < ms +d and p =
14=msG=1) implying (p, q) € R4, we derive dp(dpr(bs, q),p) = dp(bi, p) = b;. Therefore,
D = {0p(0x(a,q),p) | a astate of N, (p,q) € R 4,0pn(a,q) € D}. This shows that
conditions (i) and (ii) of Lemma 4.6 hold.

For every i (= 1,...,6n), define 7; : (Xp)™ — A™ as follows: for each 1 <
7 < ms, the j letter of 7;(p) (p € (Xp)™) is equal to the i" component of the ;%
letter (; = (2j,1,. .., 2j6n) Of 7(p). Therefore, as in Lemma 4.6 (taking ¢ and n of the
lemma to be 6n and ms, respectively), we can construct the product ¥V = R, 4x
oo X Rapgd X N(Xp, @, -, Q> Piny1) Which homomorphically represents D.

By Lemma 4.4, given an integer d > |Xp|™*, for each i = 1,...,6n, we obtain a
primitive power M, of A such that apart from its last one, its feedback functions do
not depend on the last state variable, and furthermore, M; y-represents R, 4.

Now set ;(mq, ..., Mgy, Meny1,x) = x for each ¢ = 1,...,6n and g, 1(m,
ey Mgy, Mena1,Z) = (21,...,26n), where x € Xp, z; is the state of the last factor
of M; (which represents R, 4) for 1 < i < 6n, and mg,4; is the state of . By
Proposition 4.3 (considering A/, Xp, 6n to be M, X, m of the proposition), we obtain
M=M;x...x Mgy X N(Xp, 1, ..., %6,:1), which homomorphically represents V,
hence D, hence £. On the other hand, observe that we have the conditions of Propo-
sition 2.4 for the product M (taking N, Xp, 6n to be M, 1, X, n of the proposition).
By Proposition 2.4, M is isomorphic to a primitive power P of A. Therefore, then &
is homomorphically represented by the primitive power P. This completes the proof.
(I

Corollary 5.3. Let IC be a class of finite automata. If K satisfies Letichevsky’s cri-
terion, then KC is homomorphically complete under the primitive product. O
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By Letichevsky’s result [18], a class of finite automata is homomorphically com-
plete under the Gluskov product if and only if it satisfies Letichevsky’s criterion.
Therefore, one obtains the following statement.

Theorem 5.4. Suppose that K is a class of finite automata. Then the following
statements are equivalent:

o [C satisfies Letichevsky’s criterion.

o K is homomorphically complete under the Gluskov product.

K is homomorphically complete under the «;-product for all © > 2.

K is homomorphically complete under the o;-product for some i > 2.
e K is homomorphically complete under the v;-product for all j > 3.

o K is homomorphically complete under the v;-product for some j > 3.

K is homomorphically complete under the o; — vj-product for all i > 2,5 > 3.

e K is homomorphically complete under the o; — vj-product for some © > 2,
j=3.

K is homomorphically complete under the primitive product. O

Remark. There is a class of finite automata satisfying Letichevsky’s criterion which
is homomorphically complete for neither the a;-product nor the vo-product. This
shows that the above result is sharp.
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