Analysis of G-Quadruplex Formation in mRNA Transcripts of Phospholemman/FXYD1

Dhayan, Hansraj (2014) Analysis of G-Quadruplex Formation in mRNA Transcripts of Phospholemman/FXYD1. Masters thesis, UNSPECIFIED.
Copy

G-quadruplexes are higher-order nucleic acid structures formed by tetrads of guanine bases (G-tetrads) through non-canonical base interactions. Two G-tetrads are stabilised by a potassium-ion sandwiched between the tetrads. It has emerged from recent studies that G-quadruplexes occur widely throughout the human genome and have significant biological roles. In this study the FXYD1 pre-mRNA encoding the protein Phospholemman (PLM) is investigated. PLM is highly expressed in cardiomyocytes and forms a third subunit of the Na+/K+ pump (NKA). PLM is a major phosphorylation target and thus regulates NKA activity. FXYD1 pre-mRNA was investigated for its ability to form G-quadruplexes. By computational analysis, it was found that FXYD1 can fold into G-quadruplex and multiple sequence alignment of ortholog FXYD1 sequences indicated that G-quadruplex-forming potential is conserved in evolution, hinting at a potential regulatory mechanism of FXYD1 expression. Comparative analysis confirmed that FXYD1-009, a variant of FXYD1, is a product of alternative splicing of FXYD1’s pre-mRNA. G-quadruplex formation in human and bovine FXYD1-derived oligonucleotides was detected experimentally by non-denaturing poly acrylamide gel electrophoresis that showed an increased mobility rate of G-quadruplexes in contrast to controls. Further analysis by fluorescence emission spectroscopy confirmed G-quadruplex formation in the human and bovine FXYD1-oligonucleotides that was triggered by the presence of K+ ions. The results provided clear evidence of G-quadruplex formation in vitro and together with evolutionary conservation point to potential role in regulating expression of FXYD1 possibly through alternative splicing and thus regulate indirectly the activity of Na+/K+-ATPase. Further in-vivo works should address whether alternative splicing of FXYD1 to FXYD1-009 is associated with G-quadruplex formation.

picture_as_pdf

picture_as_pdf
09198173 - Dhayan Hansraj - final MSc by Research submission.pdf

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads