A Note About the Semantics of Delegation

B. Crispo' and B. Christianson?

! University of Cambridge, England {bc201@cl.cam.ac.uk}
2 University of Hertfordshire, England {B.Christianson@herts.ac.uk}

Abstract. In many applications, mobile agents are used by a client to
delegate a task. This task is usually performed by the agent on behalf
of the client, by visiting various service provider’s sites distributed over
a network. This use of mobile agents raises many interesting security
issues concerned with the trust relationships established through dele-
gation mechanisms between client and agent, agent and service provider
and client and service provider. In this paper we will explain why the
traditional semantics of delegation used by existing access control mech-
anisms, either centralised or distributed, are generally not satisfactory
to prevent and detect deception and why these problems are even more
critical when these semantics are used in mobile agent paradigms.

In this paper we will point out the potential problems that may raise
when existing semantics of delegation are used by agents and we will
show that these problems depend on which trust relationships among
the entities of the system are assumed.

1 Access Control Mechanisms

As soon as services and resources are shared among different users, there is
the need for access control policies in order to protect, account and audit the
use of these resources. Access control and the related protection mechanisms
to enforce it, have historically been an important area of research for operating
system designers. One of the basic mechanisms supported by almost all the access
control mechanisms is delegation. Delegation is an essential feature particularly
in distributed systems where the resources needed by a single user are rarely
all local to the machine where the user is logged on, thus the need to remotely
access these resources requires delegation mechanisms. Moreover, the increasing
complexity of tasks and activities performed by each individual user through the
use of computers, makes it practical to have the possibility to delegate some of
these tasks and functions to other entities of the system.

Mobile agents are the most recent and in some respects most sophisticated
technology that can support applications to answer to these needs. Mobile agents
are often used as tools to support users, by carrying out a task on the users
behalf. Usually this task requires navigation through several different sites dis-
tributed over a wide area network and additionally 1t often requires to invoke
some operations on these hosting sites and to eventually store and return the
output of these operations to the user to whom agents belong.

A typical example may be the following: let us suppose we have a cheapest-
flights-finder service that offers the service of finding the cheapest fare and to
book the requested flight on behalf of the customer and offers to pay back the
customer if she succeeds to find, the same flight, at a cheaper fare. The flights-
finder asks for an annual subscription for such a service. Let us suppose we have
a big company that usually needs to arrange a lot of business flights every year.
The company delegates this task to the described cheapest-flights-finder service.
Delegation is necessary because the request is done by the flights-finder on behalf
of the company’s employee to whom the ticket will be 1ssued. The airline, chosen
by the agent, sells the ticket by issuing the voucher and sending the payment
receipt to the company’s account office.

The delegation mechanism used in this example must be able to address sev-
eral security concerns. Because of the pay-back option the actions performed
by the company (grantor) and by the flights-finder (grantee) must be distin-
guishable by an arbitrator in case of a dispute. Furthermore, it must also be
impossible, or at least computationally infeasible, for the grantor(grantee) to
forge without detection operation invocations that use the delegated rights that
belong to the grantee(grantor). In other words must be possible to detect if the
grantor attempts to fraudulently masquerade as the grantee and vice versa. The
grantor should not be able to forge the booking request, otherwise she could
always choose the second cheapest option and then claim her money back from
the flights-finder service. We claim that the existing delegation mechanisms fail
to prevent or detect the frauds just described and in the rest of the paper we
explain in detail, why.

2 Notation

We introduce the notation the we will use through this paper. With the term
principal we denote a generic entity of the system (i.e., program, person, agent,
server, etc.). Grantor denotes the principal that delegate and grantee the prin-
cipal that has been delegated. The end-point denotes the principal that provide
the service that will be requested by using delegation. The end-point is the prin-
cipal that finally will receive a request of service sent by the grantee on behalf
of her grantor.

We will use the letter K to denote a cryptographic key. In this paper, we will
mention only public key cryptography (PK). PK assumes that each principal
possesses a unique cryptographic key pair: a public and a private key, denoted
respectively by Kt and K~. Public keys are public and every principal knows
for each principal which is the correspondent public key. This knowledge is guar-
anteed by certification that here we assume already implemented. The owner of
each key is denoted by a subscript of her name (i.e., K gzice denotes Alice’s key).
K;'{lice denotes Alice’s public key and K7, .. denotes Alice’s private key.

Each key pair is used by its owner to sign and verify messages. Let us suppose
SIG() and VER() to be the signing and the verifying primitives used by the
public key system. Then C=S1G(M,K,,..) is the digital signature of Alice over

the message M generated by using the private key K, .. The signature C can
be verified by calculating:

VER(C’[(Xlice):VER(SIG(M’I(ZHce)’[(Xlice)

by any principal of the system that eventually receives C and knows Alice’s
public key. The underlying cryptographic algorithm guarantees that the digital
signature C is unique and can be generated only by using K., and that is
computationally infeasible to forge without detection the digital signature C for
the message M by knowing only M, C and the public key Kj;lice. Of course the
system also assumes that the private key is never disclosed or shared by the
owner with anybody else. Finally ”/,” denotes concatenation.

3 Delegation of Rights

In this section we will show that most of the existing delegation mechanisms,
such as the ones introduced by Gasser and McDermott [4], Varadharajan et al.
[10], Neuman [8], and by Abadi et al. [1,5] do not consider these possibilities
of deceptions and frauds if perpetrate by the grantor. Delegation of rights is
defined as

the process whereby a principal authorises an agent to act on her behalf,
by transferring a set of her rights to the agent, possibly for a specific
pertod of time.

where the principal 1s used to denote a generic entity of the system. This semantic
for delegation allows the transfer of rights but at the same time it assumes that
the responsibility attached to this rights are always shared or retained by the
grantor. When we say that the principal A is responsible for a particular action
X, we mean that A is the principal that is the most likely to have performed
technically the action X. OQur definition of responsibility is for auditing purposes
and not for legal ones, because legal issues cannot be solved entirely only by
technical means but usually need also the support of other, more conventional,
forms of evidence (e.g., in paper form). By ‘most likely’ we mean that an unbiased
external observer that reviews the history of the system through the audit files
after the fact will infer that A has performed X.

The delegation of rights semantics given above, assumes that the grantor is
trusted not to abuse the capability that she always keeps to exercise the rights
masquerading as the grantee. The rights are not given away by the grantor to the
grantee but rather they are shared between the two. This strong trust assump-
tions on which most of the existing mechanisms rely, can be better understood
by analysing the way in which delegation of rights is implemented.

The delegation of rights from the grantor to the grantee is performed by
handing-off a credential, called a delegation token, whose integrity and possibly
secrecy are assured by cryptographic tools. Digital signatures are used to provide
authenticity and integrity and encryption to provide secrecy if it is required. The
delegation token specifies grantor, delegation key, rights that are delegated to

the grantee and possibly the validity period of the token.
SIG((Grantor, delegation_key™, Rights, Validity Period), K&, nr0r)

The delegation_key™ is the public key of a key pair whose private key must
be used by the grantee to exercise the right specified in the token. Thus when
the flight-finder agent of our toy example, acting as a grantee on behalf of the
company will, for example, visit an airline, it will query the airline’s database by
presenting a request signed by using the delegation private key followed by the
delegation token she possess as proof that the agent is delegated by the company
to do so.

SIG((Grantee, Request), delegation_key™), SIG((Grantor, delegation_key™
Rights, Validity Period), Kz, .,.s0r)

The main problem with delegation of rights is that the key pair used as
delegation key pair is generated by the grantor. Then the public key is passed to
the grantee in the delegation token while the private key is passed by the grantor
to the grantee by mean of a secure channel established somehow between grantor
and grantee. A channel i1s defined as secure if it is secure against passive and
active attacks, thus the information sent through this channel is guaranteed to
be genuine and confidential. This means that the grantor can always generate
the above request and then falsely claim that it was generated by the grantee
instead. Thus in our example the company can forge booking requests to the
most expansive airline as if they were sent by the agent and then claim the
money back to the flight-finder service on the basis of their agreement. Thus the
particular trust assumptions made by delegation of rights make it impossible
to build auditing mechanisms where is possible irrefutably to distinguish if an
action was really performed by the grantee or performed by the grantor but
recorded in the audit file as if it was performed by the grantee.

4 Delegation of Responsibility

Delegation of rights assumes that the grantor never cheats on the grantee. De-
ceptions and frauds are simply not considered in the threat model envisaged by
the existing mechanisms, that all seem to assume that the attacker is outside
the system. Tracing clear boundaries in actual distributed open systems where
agents can cross different domains, is certainly a difficult if not impossible task.

The threat model that applications employing mobile agent technology have
to consider, particularly in commercial or financial environments should not
assume that a particular entity of the system must be trusted a priori, but
rather should start by applying the principle of the least trust that says that
every entity of the system may have a reason to lie or misbehave, thus the
security mechanisms must consider this threat.

For this reason we introduce a new semantic of delegation that prevent the
kind of attacks discussed in the previous section.
We call this new type of delegation, delegation of responsibility defined as:

the process whereby a principal authorises an agent to act on her behalf,
possibly for a specific period of time, during which it is always possible
to distinguish whether a particular action, among those delegated, was
performed by the principal or by the agent acting on her behalf.

With delegation of responsibility it is always possible to distinguish beyond
reasonable doubt if a request was performed by the grantor or by the grantee,
because they have no capability to forge each other requests. We will explain
more in detail this claim showing the protocol that we use to implement this
new semantic of delegation.

We introduce an high level description of the protocol that is used to dele-
gate a task, {2 from the grantor to the grantee. Let us suppose that §2 is the
task of updating the database D, physically stored and maintained at the remote
end-point X.

Grantor — Grantee: |[Grantor, wish to delegate you grantee, task 2.
Please let me know which key will you use to
perform §2 on my behalf.

Grantee — Grantor: [grantee, will use the private key which signatures
can be verified by delegation_keyt

Grantor — Grantee: |A delegation token T, containing

Grantor and Grantee’s names, delegation_key™,

(2 and the validity period, signed by the Grantor
stating that she delegates the Grantee to perform {2
on her behalf

Upon the successful termination of the above protocol, the grantee can per-
form the task of updating D on behalf of the grantor by signing with his
delegation_key~ the requests to do so to the end-point X.

Grantee — X: STG((Grantee, Update D), delegation_key™), T

T serves as a proof to the end-point X, that the grantee was authorised by
the grantor to perform the updating of D. Because the delegation secret key is
chosen by the grantee and its knowledge and/or use is never shared with the
grantor (or anybody else), the above request, for the assumption made by public
key systems, can only be generated by the grantee. Thus the frauds that are
possible with delegation of rights are not possible anymore with delegation of
responsibility.

5 Discussion

In this section we focus on the differences between the way in which delegation is
used in traditional distributed systems (i.e., DSSA described in [3]) and in appli-
cations that employ autonomous agents. These differences emphasise why with
agents is crucial to design delegation mechanisms that minimise the assumptions
of trust.

The are mainly two reasons why people need delegation:

— Because the number of tasks that they need to perform personally is so high
that they find easier to delegate some of these tasks to other people they
choose

— Because they do not have the competence to perform a task by themselves
but nevertheless they need the execution of this task. Thus they delegate
this execution to a person or a service that has the necessary competence

Most of the literature in the security area has focussed on the first reason.
Implicitly in the existing mechanisms that implement delegation of rights, is
assumed that the grantor knows personally, because of an already existing re-
lationship, the grantee. Besides in many cases the grantor is in a position of
power over the grantee (i.e., manager and secretary), this also allows the grantor
to eventually undo an operation if she is not satisfied by the way in which her
grantee executed it. Finally most of the time this relationship is within a well de-
fined organisation. These assumptions are reflected in the threats model adopted
by these delegation mechanisms that consider only attacks that can be posed by
outsiders of the organisation, while they consider the members of the organisa-
tion, grantors and grantees and end-points, indistinguishably all trusted.

With agents and even more with agencies [6,7], people will delegate mo-
tivated by the second reason at least as often as for the first one. Thus both
reasons must be considered in the threat model. When agents are used to sup-
ply the competence that users need but do not have, usually the grantor does not
have previous direct relationships with the grantee besides grantor and grantee
usually do not belong to the same organisation. So the grantee is chosen on the
basis of reputation, brand name, recommendation of a friend, but not because
of direct trust. The grantor is likely to be in a pair relationship with the grantee
and not in a position of power over the grantee, and this make much more dif-
ficult to undo grantee’s action if the grantor is not satisfied. All these reasons
make now unaccettable to trust a prior: all grantors and grantees of the system.
Even defining who is inside and who outside the system becames difficult.

Most of the existing delegation mechanisms have been designed for dis-
tributed systems typically composed by many general-purpose workstations dis-
tributed physically over a local or wide area network and on which users could
login to the system, and by a small number of special servers (i.e., a database),
colour printers, specialised and expensive hardware. Because this second kind
of components of the system were quite expensive they were not available lo-
cally to each node of the system but they were located only in one or few nodes

and accessed by any user remotely. With these architectures, if say a user needs
to search for some information in a database maintained centrally on a remote
server, she can delegate the remote database server to do the search on her be-
half and then receives the result back from the server. In the above systems,
grantors and grantees reside on the same system even if in a distributed fashion.
Furthermore usually the strategy used to perform these services once delegated
is well known to both grantors and grantees (i.e., the scheduling policy of the
printer) and the grantor may restrict the set of nodes the grantee is allowed
to visit, in performing the delegated task, because they are the only ones the
grantors knows and trusts in some way (i.e., they all are in a particular domain).

With agents, especially with intelligent ones [9,2], the conditions are often
very different. Usually grantors(clients) do not know in advance (and possi-
bly neither afterwards) which strategy is adopted by the grantee(agent) to ex-
ecute the task she has delegated to him. When the strategy is unknown to the
grantor(client), grantees(agents) may independently choose through which sites
to “migrate” to achieve their goals on behalf of their grantors, The consequent
lack of transparency that this use of agents causes make it even more crucial
the need of delegation mechanisms that do not assume any pre-existing trust
relationship between grantors and grantee in order to avoid the possible attacks
described in the previous sections.

The environments and the type of applications in which agents are commonly
used, strongly motivate, even more than other paradigms, the necessity of del-
egation mechanisms, as the one we introduced, secure against deceptions and
frauds attempted possibly by any entity of the system.

6 Conclusion

In this paper we have analysed the security of the existing delegation mecha-
nisms, all of which allow to delegate rights but not the responsibility attached
to these rights. We have also described why this mechanisms fail to prevent
some class of frauds, typically the ones attempted by the grantor. We have then
introduced a new semantics of delegation and a protocol to implement it. Our
solution allows to prevent this class of frauds because the cryptographic key used
to exercise the delegated task is generated, known and used only by the grantee
and never by the grantor. We described the principles that are at the basis of
our protocol. Many other details must be considered before actually being able
to implement the protocol. Issues as authentication of principals and protection
against replay attacks or the man-in-the-middle attacks has been voluntarily left
outside the scope of this paper because not essential for the sake of our argu-
ments . We have finally analysed the dependencies that exist between system
architecture and trust relationships and how they influence the threat model
that must be considered by delegation mechanisms. We have also pointed out
that application using agents introduce a new class of security challenges that
must be considered and addressed during the design of new delegation protocols.

References

1.

10.

M. Abadi, M. Burrows, B.W. Lampson, and G. Plotkin. A Calculus for Access
Control in Distibuted Systems. ACM Transaction on Programming Languages and
Systems, (15):706-734, September 1993.

M.A. Boden. Agents and Creativity. Communications of ACM, 37(7):117-121,
1994.

M. Gasser, A. Goldstein, C. Kaufman, and B.W. Lampson. The Digital Distributed
System Security Architecture. In Proc. Of the 1989 National Computer Security
Conference, pages 305-319, October 1989.

M. Gasser and E. McDermott. An Architecture for Practical Delegation in a Dis-
tributed System. In Proceedings of the IEFE Symposium on Security and Privacy,
1990.

. B.W. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in Dis-

tributed System: Theory and Practice. ACM Transaction on Computer Systems,
(10):265-310, November 1992.

M. Minsky. The Society of Mind. New York, NY; Simon and Schuster., 1985.

M. Minsky. A Conversation with Marvin Minsky about Agents. Communications
of ACM, 37(7):23-29, 1994.

B.C. Neuman. Proxy-Based Authorization and Accounting for Distributed System.
In Proceedings of the 13th International Conference on Distributed Systems, May
1993.

. D. Riecken. M: An Architecture of Integrated Agents. Communications of ACM,

37(7):107-116, 1994.

V.Varadharajan, P. Allen, and S. Black. An Analysis of the Proxy Problem in Dis-
tributed System. In Proceedings of the IEFE Symposium on Security and Privacy,
1991.

