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Abstract 

Imitation is a powerful mechanism whereby knowledge may be transferred between agents (both 
biological and artificial). A crucial problem in imitation is the correspondence problem, mapping 
action sequences of the model and the imitator agent. This problem becomes particularly obvious when 
the two agents do not share the same embodiment and affordances. This paper describes work with our 
general imitation mechanism called ALICE (Action Learning for Imitation via Correspondence 
between Embodiments) that specifically addresses the correspondence problem. The mechanism has 
been implemented in two different software test-beds. The previous implementation, chessworld, is 
briefly summarised and the current robotic arm manipulator implementation is presented in this paper. 

Using the robotic arm test-bed we present proof of concept for the social transmission of behavioural 
patterns through groups of heterogeneous agents. We also present experiments that il lustrate the impact 
of synchronization, loose perceptual matching and proprioception on the imitative performance. The 
robustness and adaptive nature of the ALICE mechanism is further il lustrated with examples where the 
imitator agent embodiment is changing during the initial and later stages of the learning process. 
 

 
1  Agent-based perspective 

Imitation is a powerful learning mechanism and a 
general agent-based approach must be used in order to 
identify the most interesting and significant problems, 
rather than the prominent ad hoc approaches in 
imitation robotics research so far. The traditional 
approach concentrates in finding an appropriate 
mechanism for imitation and developing a robot control 
architecture that identifies salient features in the 
movements of an (often visually observed) model, and 
maps them appropriately (via a built -in and usually 
static method) to motor outputs of the imitator 
(Kuniyoshi et al. 1990, 1994). Model and imitator are 
usually not interacting with each other, neither do they 
share and perceive a common context. Effectively this 
kind of approach limits itself to answering the question 
of how to imitate for a particular robotic system and its 
particular imitation task. This has led to many diverse 
approaches to robot controllers for imitative learning 
that are difficult to generalize across different contexts 
and to different robot platforms. 

In contrast to the above, the agent-based approach for 
imitation considers the behaviour of an autonomous 
agent in relation to its environment, including other 
autonomous agents. The mechanisms underlying 
imitation are not divorced from the behaviour-in-
context, including the social and non-social 
environments, motivations, relationships among the 

agents, the agent’s individual and learning history etc. 
(Dautenhahn and Nehaniv, 2002). 

Such a perspective helps unfold the full potential of 
research on imitation and helps in identifying 
challenging and important research issues. The agent-
based perspective has a broader view and includes five 
central questions in designing experiments on research 
on imitation: who to imitate, when to imitate, what to 
imitate, how to imitate and how to evaluate a successful 
imitation. A systematic investigation of these research 
questions can show the full potential of imitation from 
an agent-based perspective. 

In addition to deciding who, when and what to 
imitate, an agent must employ the appropriate 
mechanisms to learn and carry out the necessary 
imitative actions. The embodiment of the agent and its 
affordances will play a crucial role, as stated in the 
correspondence problem (Nehaniv and Dautenhahn, 
2002): 

Given an observed behaviour of the model, which 
from a given starting state leads the model through a 
sequence (or hierarchy) of sub-goals in states, action 
and/or effects, one must find and execute a sequence of 
actions using one’s own (possibly dissimilar) 
embodiment, which from a corresponding starting 
state, leads through corresponding sub-goals - in 
corresponding states, actions, and/or effects, while 
possibly responding to corresponding events. 



This informal statement1 of the correspondence 
problem draws attention to the fact that the agents may 
not necessarily share the same morphology or may not 
share access to the same affordances even among 
members of the same “species” . This is true for both 
biological agents (e.g. differences in height among 
humans) and artificial agents (e.g. differences in motor 
and actuator properties). Having similar embodiments 
and/or affordances is just a special case of the more 
general problem. 

In order to study the correspondence problem we 
developed the ALICE (Action Learning via Imitation 
between Corresponding Embodiments) generic 
imitation mechanism, and implemented it in different 
simple test-beds. These test-beds were implemented 
using the Swarm agent simulation system 
(www.swarm.org). 
 

2  ALICE overview 
The imitative performance of an agent with a dissimilar 
embodiment to the model will not be successful unless 
the correspondence problem between the model and the 
imitator actions is (at least partially) solved. 

To address this in an easy to generalize way, we 
developed ALICE (Action Learning for Imitation via 
Correspondences between Embodiments) as a generic 
mechanism for building up correspondences based on 
any generating method for attempts at imitation. This 
mechanism is related to statistical string parsing models 
of social learning from ethology (Byrne 1999) and also 
associative sequence learning theory from psychology 
(Heyes and Ray 2000). 

The ALICE mechanism creates a correspondence 
library that relates the actions, states and effects of the 
model (that the imitator is being exposed to) to actions 
(or sequences of actions) that the imitator agent is 
capable of, depending on its embodiment and/or 
affordances. 

These corresponding actions are evaluated according 
to a metric and can be looked up in the library as a 
partial solution to the correspondence problem when the 
imitator is next exposed to the same model action, state 
or effect. It is very important to note that the choice of 
metric can have extreme qualitative effects on the 
imitator’s resulting behaviour (Alissandrakis et al, 
2002), and on whether it should be characterized as 
‘ imitation’ , ‘emulation’ , ‘goal emulation’ , etc. (Nehaniv 
and Dautenhahn, 2002). 

The ALICE mechanism is comprised of a generating 
mechanism, a history mechanism and the 
correspondence library. 

                                                 
1 For a formal statement of the correspondence problem 
relating to the use of different error metrics and for other 
applications, see also (Nehaniv and Dautenhahn 1998, 2000, 
2001). 

2.1 The generating mechanism 

The model behaviour that the imitating agent is 
exposed to is segmented as a sequence of actions, states 
and effects. As the imitating agent is sequentially 
exposed to these, it has to perform an appropriate 
action to achieve a behaviour matching that of the 
model. In this respect, the ALICE mechanism functions 
as an action controller in an individual agent for 
achieving imitative behaviour based on its own 
perceptions and experiences. 

The generating mechanism is responsible for 
suggesting candidate actions. Although this component 
can be complex, in both implementations of ALICE we 
choose to use a random generating mechanism instead. 
The idea is to accommodate any generating mechanism 
that returns a valid action from the search space. This 
simple random generating mechanism performs well 
enough for our test-bed purposes, although the rate of 
learning is naturally slower than for more complex 
action generating mechanisms. Sophisticated 
applications of ALICE can benefit by replacing, in a 
modular way, this action generating mechanism with a 
more sophisticated one, appropriate to the given 
application. 

 
2.2 The history mechanism 

Another way of obtaining solutions to the 
correspondence problem is the history mechanism. This 
mechanism looks for appropriate alternative 
corresponding sequences of actions for each of the 
existing correspondence library entries in the history of 
performed actions so far by the imitator agent. This 
approach can be useful to overcome possible 
limitations of the generating mechanism (Alissandrakis 
et al., 2002). 
 
2.3 Building up the correspondence library 

When the imitating agent is exposed to each action, 
state and effect that comprises the model behaviour, the 
generating mechanism produces a candidate 
corresponding action.  

If there is no entry in the correspondence library 
related to the current action, state and effect of the 
model, a new entry is created, using these as entry keys 
with the generated action as the (initial) solution2.  

If instead an entry already exists, the new action is 
compared to the stored action3. If the generated action 
is worse, according to the metric used, then it is 
discarded and the existing action from the 
correspondence library is performed. If on the other 

                                                 
2 More precisely, the contents of the perceptual key depend 
on the metric the agent is using, for example the keys will 
only contain states and actions if a composite state-action 
metric is used. 
3 There is generally more than one stored corresponding 
action (or sequence of actions) for each entry, reflecting 
alternative ways to achieve the same result. 



hand the new action is better, then it is performed by the 
agent and the library entry is updated. This could mean 
that the new action simply replaces the already existing 
one, or is added as an alternative solution.  

Over time as the imitating agent is being exposed to 
the model agent the correspondence library will reflect 
a partial solution to he correspondence problem that can 
be used to achieve a satisfactory imitation performance. 

Effectively ALICE provides a combination of 
learning and memory to help solve the correspondence 
problem. There is generalization in that the learned 
corresponding actions (or sequence of actions) can be 
reused by the imitator in new situations and contexts. 

 

3  The chessworld test-bed 
The creation of chessworld was inspired by the need to 
implement a shared environment for interacting agents 
of different embodiments affording different 
relationships to the world. 

In the rules of the game of chess each player controls 
an army of chess pieces consisting of a variety of 
different types with different movement rules. We 
borrow the notion of having different types of chess 
pieces able to move according to different movement 
rules, and we treat them as agents with dissimilar 
embodiments moving on the chequered board. Note that 
the actual game of chess is not studied. We simply 
make use of the familiar context of chess in a generic 
way to illustrate the correspondence problem in 
imitation. 

 

 

Figure 1: A chessworld example. The imitator Knight 
agent is attempting to imitate the movements of the 
model Queen agent. 
 

The range of possible behaviours by the chess agents 
is limited to movement-related ones. As a model agent 
performs a random walk on the board, an imitator 
observes the sequence of moves used and the relevant 
displacement achieved and then tries to imitate this, 
starting from the same starting point.  

Considering the moves sequentially the agent will try 
to match them, eventually performing a similar walk on 
the board. This imitative behaviour is performed after 
exposure to a complete model behaviour with no 
obstacles present, neither static (e.g. walls) nor 
dynamic (e.g. other moving chess pieces), besides the 
edges of the board which can obstruct movement. 

An action for a given agent is defined as a move 
from its repertoire, resulting in a relative displacement 
on the board. For example a Knight agent can perform 
move E2N1 (hop two squares east and one square 
north) resulting in a displacement of ( –2,+1)  relative 
to its current square. 

Addressing what to imitate, the model random walk 
is segmented into relative displacements on the board 
by using different granularities. For example end-point 
level granularity ignores all the intermediate squares 
visited and emulates the overall goal (i.e. cumulative 
displacement) of the model agent. In contrast path level 
granularity not only considers all the squares visited by 
the model but also the intermediate ones that the chess 
piece ‘slides across’ on the chessboard while moving. 
Between these two extremes, trajectory level 
granularity considers the sequence of relative 
displacements achieved by the moves of the model 
during the random walk. 

Depending on the embodiment as a particular chess 
piece, the imitator agent must find a sequence of 
actions from its repertoire to sequentially achieve each 
of those displacements. 

The assessment of how successful a sequence is in 
achieving that displacement and moving the agent as 
close as possible to the target square can be evaluated 
using different simple geometric metrics (Hamming 
norm, Euclidean distance and infinity norm) that 
measure the difference between displacements on the 
chessboard.  
 
3.1 ALICE in chessworld 
For the chessworld implementation ALICE corresponds 
model actions (moves that result in a relative 
displacement of the chess piece on the board) to actions 
(or more probably sequences of actions) that can be 
performed by the imitator.  

The generating mechanism is a random one, 
returning possible actions from the chess piece moves 
repertoire of the imitator.  

The list of past moves performed by the imitator is 
defined as the history, from which the agent’s history 
mechanism is looking for sequences of actions that can 
achieve the same relative displacement as model action 
entries in the correspondence library. The history 
mechanism is used in parallel to take advantage of this 
experiential data, compensating for the generating 
mechanism not allowing moves that locally might 
increase the distance, but globally reduce the error, 
within the generated sequences. 

The success and character of the imitation observed 
can be greatly affected by agent embodiment, together 



with the use of different metrics and sub-goal 
granularities.  

For a more detailed description of chessworld and the 
ALICE implementation in this test-bed, see 
(Alissandrakis et al, 2002). 
 

4  The Robotic Arm test-bed 
The robotic arm test-bed was created as a simple, yet 
“ rich enough” environment that would allow for several 
interacting model and imitator agents, having dissimilar 
embodiments to each other. Each agent (see Fig. 2) 
occupies a two-dimensional workspace and is embodied 
as a robotic arm that can have any number of rotary 
joints, each of varying length. The agent embodiment 
can be described as the vector L = [l1 l2 l3 … ln], where 
l i is the length of the i th joint. 

There are no complex physics in the workspace and 
the movement of the arms is simulated using simple 
forward kinematics but without colli sion detection or 
any static restraints (in other words, the arms can bend 
into each other). Our intention is to demonstrate the 
features of the imitative mechanism and not to build a 
faithful simulator. 

An action of a given agent is defined as a vector 
describing the change of angle for each of the joints,  
A ��� � 1

�
2
�

3 ��� n], where n is the number of joints. 
These angles are relative to the previous state of the arm 
and can only have three possible values, +10° (anti-
clockwise), 0° or -10° (clockwise). 

A state of an agent is defined as the absolute angle 
for each of the joints, S �	� 
 1 
 2 
 3 � 
 n], where n is the 
number of joints. We can distinguish between the 
previous state and the current state (the state of the arm 
after the current action was executed). As a result of the 
possible actions, the absolute angle at each joint can be 
anywhere in the range of 0° to 360° (modulo 360º), but 
only in multiples of 10°. 

The end tip of the arm can leave a trail of paint as it 
moves along the workspace. The effect is defined as a 
directed straight line segment connecting the end tip of 
the previous and the current states of the arm 
(approximating the paint trail ).  The effect is 
implemented as a vector of displacement  
E = (xc - xp, yc - yp), where (xp, yp) and (xc, yc) are the 
end tip coordinates for the previous and current state 
respectively. 

The model pattern is broken down as a sequence of 
actions that move the robotic arm of the agent from the 
previous state to the current state, while leaving a 
behind a trail of paint as the effect. 

The nature of the experimental test-bed with the fixed 
base rotary robotic arms favours circular looping effects 
and the model patterns used in the experiments were 
designed as such (see Fig. 3). 

 

 
Figure 2: Example embodiment. A two-joint robotic 
arm with arms of length l1 and l2, moving from state S0 
(arm completely outstretched along the horizontal axis) 
to state S to state S’  to state S” , as it sequentially 
performs actions A, A’ , and A” . Note that the effects are 
not shown in this figure. 

 

 
Figure 3: Four different examples of model 
behaviours. Shown are the effect trails created by the 
end tip of the model agent manipulator arm after a 
complete behavioural pattern. All model agents shown 
have the same embodiment L=[15 15 15]. 
 

Each complete behavioural pattern that returns the 
arm to its initial state observed by the imitator is called 
an exposure, and the imitator is exposed to repeated 
instances of the same behavioural pattern. At the 
beginning of each new exposure it is possible to reset 
the imitating agent to the initial state. This resetting is 
called synchronization in our experiments. 



4.1 Metrics 
The imitating agents can perceive the actions, states and 
effects of the model agents, and also their own actions, 
states and effects, and therefore we define several 
metrics to evaluate the similarity between them. Ideally 
the metric value should be zero, indicating a perfect 
match. 
 
4.1.1 State metric 

The state metric calculates the average distance 
between the various joints of an agent (posed in a 
particular state) and the corresponding joints of another 
agent4 (posed in a different state) as if they were 
occupying the same workspace. Ideally this distance 
should be zero when the arms take corresponding poses, 
but this may not be possible due to embodiment 
differences. Using forward kinematics, the coordinates 
of the ends for each joint are found.  
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If both agents have the same number of joints the 

correspondence between them is straightforward; the 
Euclidean distance for each pair is calculated, the 
distances are then all summed and divided by the 
number of joints to give the metric value. 
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If the agents have a different number of joints, then 

some of the joints of the agent with more are ignored. 
To find which joint corresponds with which, the ratio of 
the larger over the smaller number of joints is 
calculated, and if not integer, is rounded to the nearest 
one. The i th joint of the agent with the smaller number 
of joints, will correspond to the (ratio × i)th joint of the 
agent with the larger number of joints. For example if 
one of the agents has twice the number of joints, only 
every second joint will be considered. 
 
4.1.2 Action metric 

For the action metric, the same algorithm as the one 
described above for the state metric is used, but 
considering the action vectors instead of the state 
vectors. 

                                                 
4 The state metric can be used not only between different 
agents, but also to evaluate the similarity between two states 
of the same agent. This is true for the action and the effect 
metric as well . 

The value in the case of the state metric represents an 
absolute position error; for the action metric, it 
represents the relative error between the changes of the 
state angles, due to the compared actions. 
 
4.1.3 Effect metric 

The effect metric is defined as the Euclidean length 

( ) ( )2
21

2
21 yyxx −+−=µ  of the vector 

difference between two effects (x1, y1) and (x2, y2). 
 
4.2 ALICE implementation 

The robotic-arm test-bed is more complex than 
chessworld, and as a result the implementation of 
ALICE was adapted to reflect this. 

At each time step, the imitator agent may perceive 
the action, previous and current state and also the effect 
of the model agent. The imitator might perceive any of 
those aspects or a combination. 

When created, each entry in the correspondence 
library can contain the action/state/effect of the 
observed model agent and the current state of the 
imitator, as perceptual and proprioceptive components 
respectively, as the key for that entry.  

A random action (a different one is generated every 
time) can be initiall y used as the attempted 
corresponding action. It is possible to replace this part 
of ALICE with a more complex generating mechanism 
(i.e. inverse kinematics), but the idea is to have a 
mechanism that simply returns valid actions from the 
search space. In order to speed up the learning, it is 
possible to generate more than one random action and 
choose a best one. 

If the model’s action triggers a perceptual key, e.g. if 
it has been observed before, then there is also at least 
one corresponding action in that library entry. 
Controlled by a threshold, it is possible not to require 
an exact match for the perceptual and/or the 
proprioceptive components of the trigger key, but a 
loose one that is “close enough” . We call this loose 
perceptual matching and we hypothesized that it should 
support learning and generalization. 

The two actions (the newly generated one and the 
best one found in the correspondence library) are then 
evaluated and compared to each other according to a 
metric. Depending on which action scored better, the 
imitator agent will perform that action and the 
correspondence library entry wil l be updated 
accordingly. If there is no matching entry in the library, 
a new one is created and the new random action is 
performed. In the current implementation, each entry 
can store up to three possible corresponding actions 
that can be seen as possible alternatives.5 

                                                 
5 Note that the history mechanism which also considers 

sequences of past imitative attempts when updating the 
correspondence library entries is not implemented in the 
robotic arm test-bed since simple action to action 
correspondence suff ices here. In contrast, corresponding 



5 Experiments on aspects of imitation 
Using the robotic arm test bed we conducted various 
experiments to study the possibility of social 
transmission of behaviours through heterogeneous 
agents, the affect of proprioception, loose perceptual 
matching and synchronization on the imitation learning 
performance, and also the robustness of the ALICE 
mechanism when the imitator embodiment changes 
during the learning process, and also after achieving a 
successful imitative performance. 
 
5.1 Cultural transmission of behaviours 

Besides being a powerful learning mechanism, 
imitation broadly construed is required for cultural 
transmission (e.g., Dawkins 1976). Transmission of 
behavioural skills by social learning mechanisms like 
imitation may also be fundamental in non-human 
cultures, e.g. in chimpanzees (Whiten et al. 1999), 
whales and dolphins (Rendell and Whitehead, 2001). 

The robotic arm test-bed makes it possible to study 
examples of behavioural transmission via imitation, 
with an imitator agent acting as a model for another 
imitator. If the original model and the final imitator 
have the same embodiment but the intermediate 
imitator a different one, we can look at how the 
different embodiment and the choice of metrics for the 
evaluation of a successful imitation attempt can affect 
the quality of the transmitted behaviour. 

The example shown in Fig. 4 shows such a 
transmission of the original model behaviour via an 
intermediate agent. Although the intermediary has a 
different embodiment, the original model and final 
imitator have the same embodiment, and the model 
behavioural pattern was transmitted perfectly. This was 
partially helped by the use of the action metric for 
evaluation to overcome the dissimilar embodiment of 
the transmitting agent. This example serves as proof of 
the concept that by using social learning and imitation, 
rudimentary cultural transmission with variability is 
possible among robots, even heterogeneous ones. 
 

 

Figure 4: An example of social transmission. The 
original model (L=[20 20 20]) is shown to the left. In 
the middle, an imitator (L=[30 30]) acts also as a 
model for the imitator on the right (L=[20 20 20]). 
Both imitators use the action metric. 
 

                                                                             
sequences of actions are necessary in chessworld as most 
chess pieces are unable to move as far as their model using 
only a single action. 

The choice of metrics and the particular embodiment 
of the agents greatly affect the qualitative aspects of 
imitation, making not every combination suitable for 
passing on model behaviours, besides crucial aspects of 
the model behaviours themselves. Note that in Fig. 4, 
the intermediate agent imitates qualitatively differently, 
due to its dissimilar embodiment. If the particular 
embodiment of the intermediate agent greatly distorts 
the model pattern, then such a transmission might be 
impossible. 

 
5.2 Synchronization 

At the end of each exposure of the imitating agent to 
the model, it is possible to reset the imitator arm to the 
same initial position, as a result synchronizing the 
imitation attempt to the model behaviour. 

We conducted ten experimental runs, each with two 
imitating agents trying to imitate a model agent, one of 
them synchronizing with the model by resetting to the 
initial outstretched initial state after the completion of 
each exposure, and the other starting each attempt from 
the final reached state of the previous attempt (ideally 
the same as the initial state, as all the model patterns 
are designed as closed loops). Both model and imitator 
agents had the same embodiment (L=[20 20 20]) and 
the metric used was a weighted half-half combination 
of the action and state metrics. Both imitating agents 
use proprioception and allow for a 10% margin of 
looseness for matching the trigger keys. The generating 
mechanism was creating five random actions to choose 
from. Each run lasted twenty exposures and the 
maximum metric value for each exposure was logged. 

The ratio of the maximum error of the imitating agent 
that uses synchronization over the maximum error of 
the agent that does not reset back the start position at 
the end of each exposure can be seen in the bottom 
panel of Fig. 5, constantly decreasing and below 1. This 
indicates that the numerator is minimized faster than 
the denominator, indicating that it is very difficult for 
an imitating agent that does not synchronize to reach 
again states relevant to the model pattern if the initial 
imitation attempts are not successful. This reduces the 
chance to update and improve the relevant 
correspondence library entries as the agent wanders 
with no point of reference. If the state space is large 
enough, it is possible for the agent to get completely 
lost. 

 
5.3 Proprioceptive matching 

The correspondence library entry keys can contain both 
perceptive (the action, state and effect of the model 
agent) and proprioceptive (the imitator’s own state at 
the time of the observation) data. It is possible to ignore 
the prioperception and trigger the keys based only on 
the perception.  



 

 

 

Figure 5: Experiments comparing the use of synchronization. The average maximum error metric value of robotic 
agents over 20 exposures using synchronization (top panel) vs. not using synchronization (middle panel). The ratio of the 
maximum error per exposure of the imitating agent using synchronization over the maximum error of the imitating agent 
that does not use synchronization (bottom panel) indicates a comparative many-fold reduction of error with use of 
synchronization. In each panel, the thicker line shows the average values of all the ten experiments, with the bars 
indicating the standard deviation. Both model and imitator agents have the same embodiment L=[20 20 20] and the 
imitator agents use a half-half composite of the action and state metrics. Both imitators use proprioception and allow for 
10% loose perceptual matching. 



 

 

 

Figure 6: Experiments comparing using and not using proprioception. The maximum error metric value of robotic 
agents over 20 exposures not using proprioception (top panel) vs. using proprioception (middle panel) when searching 
through the correspondence library entry keys. The ratio of the maximum error per exposure of the imitating agent not 
employing proprioception over the maximum error of the imitating agent that does (bottom panel) indicates some 
comparative reduction of error when not using proprioception. In each panel, the thicker line shows the average values of 
all the ten experiments, with the bars indicating the standard deviation. Both model and imitator agents have the same 
embodiment L=[20 20 20] and the imitator agents use a half-half composite of the action and state metrics. Both 
imitators synchronize and allow for 10% loose perceptual matching. 
 



 

 

 

Figure 7: Experiments comparing the use of loose perceptual matching. The average maximum error metric value of 
robotic agents over 20 exposures using loose matching (top panel) vs. using exact matching (middle panel). The ratio of 
the maximum error per exposure of the imitating agent using loose matching over the maximum error of the imitating 
agent that uses exact matching (bottom panel) indicates a comparative many-fold reduction of error with use of loose 
matching. In each panel, the thicker line shows the average values of all the ten experiments, with the bars indicating the 
standard deviation. Both model and imitator agents have the same embodiment L=[20 20 20] and the imitator agents 
use a half-half composite of the action and state metrics. Both imitators synchronize and use proprioception. 
 
 



 

 

 

Figure 8: Experiments comparing the use of loose matching without proprioception. The average maximum error 
metric value of robotic agents over 20 exposures using loose matching (top panel) vs. using exact matching (middle 
panel), both without using proprioception. The ratio of the maximum error per exposure of the imitating agent using 
loose matching over the maximum error of the imitating agent that uses exact matching (bottom panel) indicates some 
comparative reduction of error with use of loose matching. In each panel, the thicker line shows the average values of all 
the ten experiments, with the bars indicating the standard deviation. Both model and imitator agents have the same 
embodiment L=[20 20 20] and the imitator agents use a half-half composite of the action and state metrics. Both 
imitators synchronize and do not use proprioception. 
 
 
 



We conducted ten experimental runs, each with two 
imitating agents trying to imitate a model agent, one of 
them using proprioception, the other not. Both model 
and imitator agents had the same embodiment  
(L=[20 20 20]) and the metric used was a weighted 
half-half combination of the action and state metrics. 
Both imitating agents used a loose perceptual matching 
of 10% (see section 5.4 below) and the generating 
mechanism was creating five random actions to choose 
from. Each run lasted twenty exposures and the 
maximum error metric value for each exposure was 
logged. 

The ratio of the maximum error per exposure of the 
imitating agent that does not use proprioceptive 
matching over the maximum error of the imitating agent 
that does can be seen in Fig. 6 (bottom panel), 
constantly decreasing and below 1. This indicates that 
the numerator is minimized faster than the denominator. 
This indicates that ignoring the proprioceptive 
component improves the performance rate. 

Ignoring the proprioceptive component of the entry 
keys will confine the number of entries only to the 
number of different actions, states and effects that 
define each model pattern, resulting in a much smaller 
search space. This reduced number of entries in the 
correspondence library will have the opportunity to 
update and improve more often, and explains the 
performance rate improvement. However given enough 
time, it is expected that proprioception would allow the 
imitator to eventually learn much finer control in 
distinguishing appropriate choices of matching actions 
depending on its own body state.6 
 
5.4 Loose perceptual matching 

When the ALICE mechanism looks in the 
correspondence library to find the relevant entry to the 
currently perceived model actions, states and effects, it 
is possible not to require an exact match of the entry 
keys, but one that is close enough, depending on a 
threshold. 

We conducted ten experimental runs under the same 
conditions. Each run consisted of twenty exposures to 
the model behaviour for two imitating agents, one of 
them accepting a 10% margin of looseness for the 
trigger keys and the other one requiring an exact match, 
both using proprioception. Model and imitator agents 
have the same embodiment (L=[20 20 20]) and the 
metric used was a weighted half-half combination of the 
action and state metrics. The generating mechanism for 
the imitating agents was creating five random actions to 
choose from. The maximum metric value for each 
exposure was logged and is shown in Fig. 7, using loose 
matching (top panel) and exact matching (middle 
panel). 

                                                 
6 In this implementation, using proprioception increases the 
size of the search space by a factor of 36 to the nth power, 
where n is the number of joints in the imitator. 

The ratio of the maximum error of the agent that uses 
loose over the agent that uses exact matching can be 
seen in the bottom panel of Fig. 7, constantly 
decreasing and below 1. This indicates that the 
numerator is minimized faster than the denominator, 
showing a faster improvement of performance for the 
imitator agent using loose matching. 

Examining the middle panel of Fig. 7, there is no 
obvious performance improvement in this early stage of 
learning, although the same amount of time is enough 
to minimize the error for the agent using a loose 
matching in the top panel. This is mostly due to the 
large number of entries created in the correspondence 
library due to the different proprioceptive states that the 
agent visits during the imitation attempts. The exact 
match requirement will create a large number with the 
same perceptive but different proprioceptive part of the 
keys. 

To illustrate the influence of loose matching on the 
imitation performance separately from the influence of 
proprioception, we conducted ten additional 
experimental runs with the same conditions as the ones 
described above, but with both imitator agents not 
using proprioception. The middle panel of Fig. 8 
(showing the maximum error for agents requiring exact 
matching for the perception but ignoring the 
proprioception part of the trigger keys) indicates that 
there is a now faster improvement of performance, but 
still slower compared to the top panel (showing the 
maximum error for imitating agents allowing a 10% 
margin of looseness, and not using proprioception). The 
bottom panel showing the ratio of the maximum errors 
confirms that loose matching improves the rate of the 
imitative performance. 
 
5.5 Changes in the agent embodiment 

For each agent, vector L defines its embodiment, the 
number of arm segments and their lengths. We define a 
growth vector G, of same size as L. By adding (or 
subtracting) these two vectors we get L’, a new 
embodiment with modified joint lengths, simulating the 
development of the agent. The growth vector can either 
increase or reduce the length for each of the joints. The 
number of joints must remain constant because such a 
change makes any existing contents of a 
correspondence library invalid7. 

The growth vector can be used to simulate the body 
development of the imitator agent during the learning 
process. One such example is shown in Fig. 9. 
Although the imitator constantly changes embodiment, 
starting from half the size and finally reaching the same 
size as the model agent, the learning process is not 
affected, resulting in a successful imitation 
performance. 

                                                 
7 A robotic arm with a different number of joints would 
not be able to perform the stored actions, as they 
describe the angle changes for each of the existing arm 
joints when those actions were created. 



 

Figure 9: An example of a growing agent successfully learning to imitate a model pattern. The figure shows twenty 
consecutive exposures (left to right, top to bottom). The imitator agent starts on the top left with an initial embodiment 
L=[10 10 10], and uses a growth vector G=[1 1 1] after each exposure to grow up to the embodiment L=[20 20 
20] of the (unchanging) model agent. The action metric is used, synchronization, proprioception and 10% loose 
perceptual matching. The effects of the previous 4 attempts are also shown. 
 
 

 

Figure 10: An example of embodiment changes after successful learning. The figure shows 20 consecutive exposures 
(left to right, top to bottom) of an imitator agent that starts on the top left already capable to successfully imitate the 
model pattern. Starting from an embodiment L=[20 20 20], a growth vector G=[1 1 1] is used after each exposure to 
initially reduce and then expand the embodiment back to the original size. The imitator uses the action metric, 
synchronization, proprioception and 10% loose perceptual matching. The effects of the previous 4 attempts are also 
shown. 



 

Figure 11: Another example of embodiment changes after successful learning. The figure shows 20 consecutive 
exposures (left to right, top to bottom). The imitator agent that starts on the top left already capable to successfully 
imitate the model pattern. Starting from an embodiment L=[20 20 20], a growth vector G=[1 1 1] is used after each 
exposure to initially reduce and then expand the embodiment back to the original size. The action metric is used, 
synchronization, proprioception and 10% loose perceptual matching. The effects of the previous 4 attempts are also 
shown. 
 
 

Two examples of using a growth vector to alter the 
embodiment of the imitator agent are shown in Figs. 10 
and 11. In both examples the imitator starts already 
been capable to imitate a model pattern. During an 
initial learning stage (not shown in the figures), both 
imitator agents had the same constant embodiment as 
their respective model agents (L=[20 20 20]). While 
still being exposed to the model, the lengths of the 
joints are first reduced and then increased back to their 
original size. Although the embodiment changes, the 
agent is able to continually update the contents of the 
correspondence library to compensate. The imitation 
performance breaks down when the joint lengths are 
reduced beyond a certain point, but the ALICE 
mechanism is robust enough to allow recovery when the 
agent starts to grow again. 

The metric used in both cases is the action metric, 
compensating for the large range of dissimilar 
embodiments, and the difference in what they afford. 
As mentioned in section 5.1 above, the choice of 
metrics greatly affects the character and quality of the 
imitation, especially between dissimilar embodiments. 
For example if the effect metric is used instead of the 
action metric, very poor results are observed, as the 
paint strokes created by the shorter joints cannot 
successfully compensate for the longer strokes achieved 
by the longer arms of the reference model. In contrast, a 
robotic arm can equally well rotate clockwise, 
independent of its length. 

These examples show that the ALICE mechanism 
can be robust enough (with a certain tolerance) to 
compensate for embodiment changes during the 
learning stage and after. 
 

6  Conclusions 

The results of our experiments using ALICE in the two 
test-beds described, and particularly in the robotic arm 
test bed that is presented in greater detail in this paper 
show that: 

1. Cultural transmission is possible in a 
heterogeneous community of robots via 
imitation, 

2. Loose perceptual matching increases the rate 
of solving the correspondence problem 
significantly, 

3. Synchronization dramatically increases the 
rate of solving the correspondence problem, 

4. Proprioceptive matching does not seem, at 
least in the early stages of learning, to aid in 
the solution of this problem in terms of 
learning rate.  

5. The ALICE imitation mechanism is shown in 
examples to be reasonably robust to adapt to 
embodiment changes a) during the early 
learning process and also b) after the imitating 
agent has successfully learned how to imitate 
the model behaviour. 
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