Using a SOFM to learn Object Affordances

Cos-Aguilera, I., Hayes, G. and Cañamero, Lola (2004) Using a SOFM to learn Object Affordances. University of Edinburgh.
Copy

Learning affordances can be defined as learning action potentials, i.e., learning that an object exhibiting certain regularities offers the possibility of performing a particular action. We propose a method to endow an agent with the capability of acquiring this knowledge by relating the object invariants with the potentiality of performing an action via interaction episodes with each object. We introduce a biologically inspired model to test this learning hypothesis and a set of experiments to check its validity in a Webots simulator with a Khepera robot in a simple environment. The experiment set aims to show the use of a GWR network to cluster the sensory input of the agent; furthermore, that the aforementioned algorithm for neural clustering can be used as a--starting point to build agents that learn the relevant functional bindings between the cues in the environment and the internal needs of an agent.

picture_as_pdf

picture_as_pdf
902209.pdf

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads