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Abstract — A computer system is a good computer system if
it correctly performs the task it was intended to perform. This
is not even half of the truth: Non-functional requirements are
abundant in the world of software and system engineering, even
if they are not always stated explicitly. In our work we are con-
cerned with the measurement-based analysis of resource con-
sumption. Examples of resources are time, energy, or memory
space. In the context of our measurement-based approach for
software analysis, we face the problem of breaking the soft-
ware under examination into smaller parts of manageable size,
a process dubbed CFG Segmentation.

I. INTRODUCTION

In our measurement-based approach for resource-

consumption of embedded software, we perform mea-

surements on the real physical computer system, and sub-

sequently integrate the measurement results into a re-

source consumption model that is ready for expert in-

spection or use in a higher level analysis of the system.

In order to obtain an accurate picture of the system be-

havior, we would like to achieve full measurement cov-

erage of all feasible operation sequences of the software

under test. We therefore start from the Control Flow
Graph (CFG) of the software under examination, a fun-

damental program representation where nodes represent

the operations of the software, and where directed edges

represent possible successive execution (see Figure 1 for

an example of a CFG). Thus, each feasible sequence of

operations of the software corresponds to a path in the

CFG.

In theory, it would therefore suffice to examine all

CFG paths, but due to the huge number of paths in the

CFGs of real software, this approach is practically infea-

sible. For example, the CFG of a simple actuator con-

troller that is part of our benchmarks contains about 1044

paths, which is clearly beyond measurement feasibility.

To cope with such huge numbers of paths, we split the

CFG into connected subgraphs of manageable size (“seg-

ments”), deal with these subgraphs individually, and sub-

sequently merge the data that was obtained for each seg-

ment into a global resource consumption model.

A (simple) segment is a connected subgraph of a CFG,

and is characterized by its sets of entry edges (edges lead-
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Figure 1: A CFG with four segments (indicated by thick,

dashed borders). Thin borders, on the other hand, mark

intermediate segments generated by our proposed greedy

segmentation algorithm.

ing into the subgraph), its set of exit edges (edges leading
out of the subgraph), and the number of segment paths
(paths leading through the subgraph).

Our goal is to partition the CFG into as few segments

as possible, such that the segment path total does not ex-

ceed a given feasibility limit.

To illustrate our idea, consider Figure 1, which shows

a tiny CFG that has been partitioned into four segments.

The total number of segment paths to be examined is

3 + 6 + 7 + 8 = 24. Without segmentation we would

have to examine all 99 CFG paths. The number of paths

to be examined is thus lowered by a factor of 4 in this

tiny example, but the effect is much more pronounced

for realistically-sized CFGs, where we use segments in

the magnitude of hundreds or thousands of paths.

II. PROPOSED APPROACH

In [1, 2], Wenzel et al. present an approach for CFG

segmentation that produces segments with a single entry

edge. Such segments are advantageous from a composi-
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Figure 2: A CFG with a lattice-shaped structure.

bility point of view, but yield problems with large proper
interval structures [3]. For example, the lattice-shaped

CFG in Figure 2 allows only the two trivial segmenta-

tions of either putting everything into one single segment,

or putting each node an individual segment.

We therefore abandon the single entry restriction and

allow any number of entry edges. However, for compos-

ability reasons, we do not want the entry/exit interface

to become unjustifiably large. Because we later want to

associate measurement results with all entry/exit combi-

nations of a segment, a reasonable size metric for the in-

terface of a segment is

h(S) = entries(S) · exits(S). (1)

To perform a segmentation of this more general form,

we propose an iterative greedy algorithm that builds seg-

ments bottom-up from smaller segments, starting with

single-node segments. For each iteration, the algorithm

considers all segments that could be created by merging

pairs of adjacent segments and picks the least-cost one.

As costs functions, we currently consider the following

class of functions:

costs(S) = h(S)a · paths(S)b, (2)

We have already mentioned that we would like to keep

the entry/exit interfaces of segments as small as rea-

sonably possible. This explains the h(S) part of the

costs function, which is weighted by the tunable expo-

nent a. On the other hand, the paths(S) part of the costs

function assures that the algorithm will produce roughly

equally-sized segments. Again, this part of the costs

function can be tuned by adjusting an exponent.

The example in Figure 1 indicates both, the final seg-

ments produced by our algorithm (thick, dashed borders),

and the intermediate segments generated during the indi-

vidual iterations (thin borders).

III. PRELIMINARY RESULTS AND FUTURE

WORK

We have implemented the segmentation algorithm pre-

sented above as a component of the timing analysis

framework that is currently being developed within the

FORTAS project. Our implementation is already capable

of handling real industrial application code. A logical

next step would be a detailed evaluation of the produced

segments for a larger number of benchmarks and the us-

age of the obtained insight to tune the costs function pre-

sented above. It is even conceivable that careful exami-

nation of such results point at completely new forms of

costs functions.

Performing segmentation is just one tasks in

measurement-based analysis of resource consump-

tion. Other tasks include the generation of suitable test

data that can trigger the execution of individual paths [1],

performing the actual measurements, construction of the

complete timing model, and others. All these tasks, and

especially their integration, are important future research

issues.

IV. SUMMARY

In this work, we have explained the problem of CFG seg-

mentation, as it arises in the context of measurement-

based resource consumption analysis. We have intro-

duced segmentation as a possible solution to handle the

explosion of CFG paths and have pointed at the short-

comings of previous segmentation approaches. Lastly,

we have sketched a novel segmentation algorithm that

overcomes these shortcoming.
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