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Abstract— Over the past few years, the importance of axonal
conduction delays has been emphasized by a number of authors.
Different models are proposed for the approximation of signal
delays, where some of them have been evaluated in the context
of the optimal neuronal layout problem. Our paper presents
computational experiments on the impact of two wiring cost
functions, proposed by D. Chklovskii and O. Shefi et al., when
applied to interneuronal connections in small ML neuronal
networks.

I. INTRODUCTION

THE simulation of networks of spiking neurons is a
central issue in neuroscience. A recent overview and

rigorous evaluation of different models of spiking neurons
can be found in [7]. E.M. Izhikevich discusses twenty of the
most prominent features of biological spiking neurons (tonic
spiking, phasic spiking, threshold variability, etc.) against the
expressiveness of eleven models of spiking neurons, includ-
ing an assessment of the “biological plausibility” of neuron
models. The author highlights three models as particularly
suited for simulations of networks of spiking neurons, where
the high degree of approximation of biophysical properties
plays an important role. The three models are the Hodgkin-
Huxley model, the Morris-Lecar model, and a new model
developed by the author himself. Due to the high accuracy
of the Hodgkin-Huxley model (four defining equations with
tens of parameters), the model is computationally expensive
and allows the simulation of small networks only with
currently available hardware. This is why, at the moment, the
Morris-Lecar model (two defining equations and a moderate
number of parameters) is very popular in the computational
neuroscience community.

As pointed out in [8], in most of the research on networks
of spiking neurons synchrony of firing is emphasized, i.e. if
two or more neurons have a common post-synaptic target
and fire synchronously, then their spikes arrive at the target
at the same time, thereby evoking potent post-synaptic re-
sponses. This implies an implicit assumption that the axonal
conduction delays are negligible or equal. E.M. Izhikevich
[8] (see also [9]) investigates the effect of signal delays
and pre-synaptic (asynchronous) firing sequences on post-
synaptic responses, i.e. different (initial) pre-synaptic firing
sequences result in the activation of different subsets of
neurons. The underlying approximation of neuronal activity
is the model introduced in [7], which comprises of three
variables and four parameters. To distinguish the effect from
random asynchronous firing, the notion of “polychroniza-
tion” is introduced, and subsets of activated neurons are
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called “polychronous groups.” For constant, randomly chosen
conduction delays, results from simulations of a 103 neuronal
network are presented and discussed in [8]. Polychronous
groups are identified from their topological relation and firing
activity in simulations after convergence of the network. The
author identifies 5,269 different polychronous groups in the
network of 103 neurons, which suggests an unprecedented
memory capacity of such systems. A natural extension of
this work is to investigate specific cost functions assiciated
with conduction delays, instead of constant, randomly chosen
values. The present paper presents preliminary research into
this direction. A future goal is to optimize the 2D and 3D
placement of neurons in such a way that the number of
polychronous groups is maximized.

II. MODELLING CONDUCTION DELAYS

Various models have been proposed recently for numeric
simulations of axonal conduction delays; see [1], [2], [3],
[4], [13] and the literature therein. We intend to employ the
connection cost function as proposed in [2], [3], [4] and in
[13], since the authors provide a justification of their model
that is based on experimental evidence in the context of the
Optimal Neuronal Layout Problem.

A. The Chklovskii Delay Function

A common assumption is that wiring costs are related to
the wiring volume. However, in his paper [4], D. Chklovskii
attempts to tackle the problem of wiring costs in neuronal
networks by proposing a cost function that is determined
by the square of the wire length. A volume cost function
would result in axons tending to be extremely thin. Although
this may decrease energy and other requirements, it would
certainly hinder the propagation of signals. These conflicting
requirements tend to suggest some optimum combination that
must be factored in any plausible solution.

The Chklovskii model is motivated by a comparison of
results from neuronal layout calculations to the arrangements
in the macaque pre-frontal cortex and the Caenorhabditis
elegans, in the latter case for 279 neurons [2], [3]. The
experimental analysis suggests that wiring costs are indieed
proportional to the “wire volume” for a fixed diameter, and
the costs grow linearly with the wire length. Furthermore, the
wiring cost is a function of the propagation delay T = L/k·d,
where L is the length of the connection and k · d is the
signal speed for the diameter d; k = const. This implies the
approximation

Cost = α · π

4
· d2 · L + β ·

( L

k · d
)γ

, (1)

where α, β, γ = const. If the cost function is minimized
with respect to the diameter, i.e. ∂Cost/∂d = 0, one obtains
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Cost � L3·γ/(γ+2), which means Cost � L for γ = 1 and
Cost � L3 as γ → ∞. As a compromise, Cost � L2 is
assumed in [4]. One of the main objectives of the present
paper is to analyse whether this assumption is justified, where
the basic parameter is the intensity of spiking activities of
neurons in the Morris-Lecar model.

B. The Shefi et al. Delay Function

In [13], Shefi et al. propose an alternative approach to
the optimal layout problem and the laws that dictate the
formation of neural structures, drawing on the earlier works
of C.D. Murray [11], [12]. Murray’s papers originally dealt
with volumes and the relationship between the diameters of
a given pair of sub-branches of a blood vessel or tree. This
relationship basically stated that the optimal diameters of the
bifurcating branches depended on the diameter of the parent
branch or blood vessel and the angle between them, given
by the following equations:

cos(α1) =
d4
0+d4

1−d4
2

2d2
1 ·d2

0

, (2)

cos(α2) =
d4
0+d4

2−d4
1

2d2
2 ·d2

0

, (3)

cos(α1 + α2) =
d4
0+d4

1−d4
2

2d2
1 ·d2

2

, (4)

where d0 is the parent neurite diameter, d1 and d2 are the
child neurite diameters, and α1 and α2 are the angles between
the central axis of the parent neurite and their respective child
neurites.

Complimentary to the diameter and angles relationship,
Shefi et al. [13] considered the balance of tensions be-
tween the main neurite and the sub-neurites. This ensures
the optimal layout and diameters and is mathematically
equivalent to Murray’s equations. However, for the scope
of this paper we shall limit ourselves to (2) until (4). Both
Murray’s and tension approaches were applied to data from
cultured networks of locust ganglia [13]. Although neither
was conclusive, results were overall satisfactory for both
models [13].

For the axon delay experiments described in this paper,
the total wiring cost ϕ for each neurite shall be taken as
the volume of the parent neurite up to the bifurcation point
added to that of the child neurite as suggested in [13]:

ϕ = π · (d2
0 · l0 + d2

1 · l1)
4

, (5)

where d0 and d1 respectively represent the parent and child
neurite diameters and l0 and l1 are the parent and child
“wire” lengths.

III. THE NEURONAL NETWORK

The networks devised for the experiments are based on
the assumption that neurons in nature tend to communicate
largely through spike trains. The network simulation time
is divided into iterations, where during an iteration every
neuron can simulate the impact of the efferent spikes on
its membrane and generate its own action potentials as a

result. These new potentials are propagated at the end of
the current iteration but will only have effect in the next
one. All spikes are stored and processed in order of arrival
at the neuron. This strategy, although artificial, ensures that
all spikes generated in the network will be processed in a
synchronised manner, which does not affect the study of the
axon delays.

A. Network for Chklovskii Simulations

The physical design for the Chklovskii experiment net-
work is shown in Fig. 1. The 24 ML-type neurons are
linked in an arbitrary random manner. Consequently, a spike
generated by one particular neuron is transmitted to a few (1
to 2) other neurons. Although the amplitude for a give spike
will be the same for all, the arrival time will vary depending
on the axon length.

Fig. 1. Layout for Chklovskii simulations.

B. Network for Shefi et al. Simulations

A different approach is taken for the Shefi experiment
where the neural connections, as seen in Fig. 2, follow a
pattern dictated largely by the bifurcations of the axons. In
this case the axon delay is calculated by the total axon-neurite
volume.

Fig. 2. Network diagram for Shefi et al. simulations.
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Depending on the cost function applied, axon length or
volume directly affects the arrival of a pulse transmitted from
one neuron to another.

IV. COMPUTATIONAL EXPERIMENTS

The simulation and integration of the ML equations is
handled by the XPPAUT program package. This freeware,
written by G.B. Ermentrout [5], is a graphical tool that
we utilized for solving the ML’s differential equations, thus
allowing each neuron to change its state in accordance with
the input spikes it receives, see also [6], [10].

A. The Morris-Lecar Model

For each node of the network, XPPAUT [5] must be
presented with a file known as an ODE containing the model
description and all the necessary parameters. Thus, the file
consists of equations, XPPAUT functions and data variables.

The following excerpt, taken from an ODE file for a single
neuron model (number zero), lists the first eight lines. It
shows the ML equations and the the initial values for V and
w which are held in each MLNeuron object of the simulation.

# Morris-Lecar model for N0
dv/dt = (I-gca*minf(V)*(V-Vca)-

- gk*w*(V-VK)-gl*(V-Vl)+s(t))/c
dw/dt = phi*(winf(V)-w)/tauw(V)
v(0)=0.6149267
w(0)=0.004925267
minf(v)=.5*(1+tanh((v-v1)/v2))
winf(v)=.5*(1+tanh((v-v3)/v4))
tauw(v)=1/cosh((v-v3)/(2*v4))

The next part is taken from the same ODE file and consists
entirely of parameters representing the external current, ionic
conductances, voltages and the value for φ. The pair of ‘t‘
values denotes the start and the end time for the spikes. The
‘s‘ values represent the amplitude for each spike.

param i=30.0,vk=-84,vl=-60,vca=120
param gk=8,gl=2,c=20
param v1=-1.2,v2=18
param v3=12,v4=17.4,phi=.23,gca=4
param t01=05.0,t02=15.0,t03=12.0,t04=22.0
param s01=50.23,s02=55.23

The last part of the ODE file shows the heavyside function
used to simulate the spiking action. The lines two and three
define the output file name, the duration of the integration
and the minimum time units both in ms.

s(t)=s01*heav(t-t01)*heav(t02-t)+
+ s02*heav(t-t03)*heav(t04-t)

@ output=N000.out
@ total=400,dt=0.25
done

During the processing of its new state, a neuronal node
of the network prepares an ODE file similar to the one just
described. Parameters such as ionic conductances are left
unchanged and are common to all the neurons in the network.

On the other hand, the neuron’s current values of V and w
and the amplitudes, offsets and durations of any spikes to
be applied are set individually for each neuron. The time
window for a neuron to run is set at 400ms. XPPAUT is
run in quiet mode (non graphical) with the ODE file passed
as a run-time parameter. This creates an output file of the
resulting integration, listing the values of V and w for the
400ms time window.

The following parameters are common to all ML neurons:
vk=-84mV: Potassium conductance potential;
vl=-60mV: Leak conductance potential;
vca=120mV: Calcium conductance potential;
gk=8: Conductance value for Potassium;
gl=2: Conductance value for Leak;
gca=4: Conductance value for Calcium;
c=20μF: Membrane capacitance;
v1=-1.2mV: Potential at which M∞ = 0.5;
v2=18: 1

M∞(V ) ;
v3=12: Potential at which N∞ = 0.5;
v4=17.4: 1

N∞(V ) ;
φ=.23: Temperature constant;
I=30μA: Applied current.

In each experiment, we executed 14 iterations with each
iteration simulating 400ms, i.e. the total simulation time of
a single experiment was 5,600ms. The settings were the
results of preliminary experiments with the XPAUT program
package.

B. Chklovskii Wiring Cost Results

As mentioned in Section II-A, the main concern was to
analyse the impact of the power γ in (1) on the spiking
activity. Six separate experiments were conducted on the
same network of 24 Morris-Lecar neurons for the Chklovskii
wiring cost accoding to Cost � L3·γ/(γ+2) = Lp and
variable p (actually, γ). The settings for p were p = 0.0 (no
wiring cost), 1.0, 1.5, 2.0, 2.5 and 3.0.

Each set of six experiments was conducted with four
different initial spike sets. The sets consist of mixed patterns
of repeated 3, 2, or single spikes.

Below are the results for the four initial spike sets.

Fig. 3a. Number of spikes produced for spike set 1.

2192 2008 International Joint Conference on Neural Networks (IJCNN 2008)

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on December 8, 2008 at 10:24 from IEEE Xplore.  Restrictions apply.



Fig. 3b. Number of spikes produced for spike set 2.

Fig. 3c. Number of spikes produced for spike set 3.

Fig. 3d. Number of spikes produced for spike set 4.

As can be seen from Fig. 3a until Fig. 3d, values p ∈
{1.5, 2.0, 2.5} produce the largest number of spikes, i.e. at
least one of the values, but not necessarily for p = 2.0.
A different picture emerges, if the average spiking activity
is calculated over the four initial spike sets. Fig. 4 clearly
indicates the highest average spiking activity for Cost � L2.

Fig. 4. Average number of spikes for network from Fig. 1.

C. Shefi et al. Wiring Cost Results

Two simulations were conducted to demonstrate the im-
pact of the Shefi et al. cost function: one simulation with
cost function ϕ from (5), and one with conductance delay
equal to zero. The same four sets of initial spikes were used
as in the Chklovskii simulations.

In all four sets of experiments, the spiking activity with
conduction delay was much higher when compared to the
zero-cost case. We present the two experiments with the
largest and the smallest difference in spiking activities only:

Fig. 5a. Number of spikes produced for spike set 3.

Fig. 5b. Number of spikes produced for spike set 4.
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Fig. 6 shows the significant difference between the two
cases for the average values over all four initial spike sets.

Fig. 6. Average number of spikes for network from Fig. 2.

When comparing the Chklovskii delay model and the Shefi
et al. cost function, we note that for different topologies, but
the same number of ML neurons and the same simulation
time, the average number of spikes produced within the 14
iterations of equal length differs only marginally.

Fig. 7a. Spikes produced vs. time for zero wiring costs.

Fig. 7b. Spikes produced vs. time with wiring costs.

In Fig. 7a and Fig. 7b we present the spiking activity

vs. simulation time for the Shefi et al. model and the initial
spike set no. 4. We note that from T=1800ms onwards
the network with the Shefi et al. volume cost function is
spiking with growing frequency, see Fig. 7b. The other
network (without wiring cost, Fig. 7a), increases intensity of
spiking activity largely between T=2400ms and T=2800ms.
Furthermore, most common spike bursts for the wiring cost
network are between 1 and 3.

Curiously, the network with zero wiring cost tends to
produce many even numbered and more scattered bursts of
around 2 to 6 spikes. This might be caused by the bifurcating
layout of the Shefi et al. network (see Fig. 2). When the
wiring cost is applied, the differences in angle and volume
of the dendrites desynchronise the spikes propagated to the
efferent neurons: let us consider a neuron A that is connected
to neurons B and C through a bifurcation in the axon
where volume A→B is greater than A→C. Consequently
a spike from A would be propagated faster to C than to
B, thus affecting the transfer of this potential through the
network. When no costs are applied, the spike is propagated
simultaneously to both and also affects the efferent neuron
at the time. If both efferent neurons are both roughly in
the same excited state, there is a high probability that both
will propagate similar spikes. This dual propagation seems
to produce even numbers of spikes.

REFERENCES

[1] R.E. Burke, “Comparison of alternative designs for reducing complex
neurons to equivalent cables,” Journal of Computational Neuroscience,
vol. 9, pp. 31–47, 2000.

[2] B.L. Chen and D.B. Chklovskii, “Placement and routing optimization
in the brain,“ Proceedings of the International Symposium on Physical
Design, pp. 136–141, 2006.

[3] B.L. Chen, D.H. Hall and D.B. Chklovskii, “Wiring optimization can
relate neuronal structure and function,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 103, no. 12,
pp. 4723–4728, 2006.

[4] D.B. Chklovskii, “Exact solution for the optimal neuronal layout
problem,” Neuronal Computation, vol. 16, pp. 2067–2078, 2004.

[5] G.B. Ermentrout, XPPAUT, http://www.math.pitt.edu/∼bard/xpp/.
[6] B.S. Gutkin and G.B. Ermentrout, “Dynamics of membrane excitabil-

ity determine interspike interval variability: A link between spike
generation mechanisms and cortical spike train statistics,” Neural
Computation, vol. 10, pp. 1047–1065, 1998.

[7] E.M. Izhikevich, “Which model to use for cortical spiking neurons?,”
IEEE Transactions on Neuronal Networks, vol. 15, no. 5, pp. 1063–
1069, 2004.

[8] E.M. Izhikevich, “Polychronization: Computation with spikes,” Neural
Computation, vol. 18, no. 2, pp. 245–282, 2006.

[9] E.M. Izhikevich, Dynamical systems in neuroscience: The geometry of
excitability and bursting, MIT Press, 2007.

[10] C. Morris and H. Lecar, “Voltage oscillations in the barnacle giant
muscle fiber,” Biophysical Journal, vol. 35, pp. 193–213, 1981.

[11] C.D. Murray, “The physiological principle of minimum work. I. The
vascular system and the cost of blood volume,” Proceedings of the
National Academy of Sciences of the United States of America, vol. 12,
no. 3, pp. 207–214, 1926.

[12] C.D. Murray, “A relationship between circumference and weight in
trees and its bearing on branching angles,” The Journal of General
Physiology, vol. 10, pp. 725–729, 1927.

[13] O. Shefi, A. Harela, D.B. Chklovskii, E. Ben-Jacobb and A. Ayali,
“Biophysical constraints on neuronal branching,” Neurocomputing,
vol. 58-60, pp. 487–495, 2004.

2194 2008 International Joint Conference on Neural Networks (IJCNN 2008)

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on December 8, 2008 at 10:24 from IEEE Xplore.  Restrictions apply.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


