
Reducing the Branch Power Cost In Embedded
Processors Through Static Scheduling, Profiling

and SuperBlock Formation

Michael Hicks, Colin Egan, Bruce Christianson, Patrick Quick

Compiler Technology and Computer Architecture Group (CTCA)
University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK

m.hicks@herts.ac.uk

Abstract. Dynamic branch predictor logic alone accounts for approx-
imately 10% of total processor power dissipation. Recent research indi-
cates that the power cost of a large dynamic branch predictor is offset
by the power savings created by its increased accuracy. We describe a
method of reducing dynamic predictor power dissipation without de-
grading prediction accuracy by using a combination of local delay region
scheduling and run time profiling of branches. Feedback into the static
code is achieved with hint bits and avoids the need for dynamic predic-
tion for some individual branches. This method requires only minimal
hardware modifications and coexists with a dynamic predictor.

1 Introduction

Accurate branch prediction is extremely important in modern pipelined and MII
microprocessors [10] [2]. Branch prediction reduces the amount of time spent
executing a program by forecasting the likely direction of branch assembly in-
structions. Mispredicting a branch direction wastes both time and power, by ex-
ecuting instructions in the pipeline which will not be committed. Research [8] [3]
has shown that, even with their increased power cost, modern larger predictors
actually save global power by the effects of their increased accuracy. This means
that any attempt to reduce the power consumption of a dynamic predictor must
not come at the cost of decreased accuracy; a holistic attitude to processor power
consumption must be employed [7][9].

In this paper we explore the use of delay region scheduling, branch profiling
and hint bits (in conjunction with a dynamic predictor) in order to reduce the
branch power cost for mobile devices, without reducing accuracy.

2 Branch Delay Region Scheduling

The branch delay region is the period of processor cycles proceeding a branch
instruction in the processor pipeline before branch resolution occurs. Instructions
can fill this gap either speculatively, using branch prediction, or by the use of
scheduling. The examples in this section use a 5 stage MIPS pipeline with 2
delay slots.



2.1 Local Delayed Branch

In contrast to scheduling into the delay region from a target/fallthrough path of
a branch, a locally scheduled delay region consists of branch independent instruc-
tions that precede the branch (see Figure 1). A branch independent instruction
is any instruction whose result is not directly or indirectly depended upon by
the branch to calculate its own behaviour.

Fig. 1. An example of local delayed branch scheduling.

Deciding which instructions can be moved into the delay region locally is
straightforward. Starting with the instruction from the bottom of the given basic
block in the static stream, above the branch, examine the target register operand.
If this target register is NOT used as an operand in the computation of the
branch instruction then it can be safely moved into the delay region. This process
continues with the next instruction up from the branch in the static stream, with
the difference that this time the scheduler must decide whether the target of the
instruction is used by any of the other instructions below it (which are in turn
used to compute the branch).

Local Delay Region Scheduling is an excellent method for utilising the delay
region where possible; it is always a win and completely avoids the use of a
branch predictor for the given branch. The clear disadvantage with local delay
region scheduling is that it cannot always be used. There are two situations
that result in this: well optimised code and deeply pipelined processors (where
the delay region is very large). It is our position that, as part of the combined
approach described in this paper, the local delay region is profitable.

3 Profiling

Suppose that we wish to associate a reliable static prediction with as many
branches as possible, so as to reduce accesses to the dynamic branch predictor
of a processor at runtime (in order to save power). This can be achieved to a
reasonable degree through static analysis of the assembly code of a program; it
is often clear that branches in loops will commonly be taken and internal break
points not-taken.



Fig. 2. The profiler is supplied with parameters for the program and the
traces/statistics to be logged

A more reliable method is to observe the behaviour of a given program while
undergoing execution with a sample dataset [4]. Each branch instruction can
be monitored in the form of a program trace and any relevant information ex-
tracted and used to form static predictions where possible. A profiler is any ap-
plication/system which can produce such data by observing a running program
(see Figure 2). The proceeding two sections examine the possibility of remov-
ing certain classes of branch from dynamic prediction by the use of run-time
profiling.

3.1 Biased Branches

One class of branches that can be removed from dynamic prediction, without
impacting on accuracy, are highly biased branches. A biased branch is a branch
which is commonly taken or not taken, many times in succession before possibly
changing direction briefly. The branch has a bias to one behaviour. These kinds
of branches can, in many cases, be seen to waste energy in the predictor since
their predicted behaviour will be almost constantly the same [5] [8].

The principles of spatial and temporal locality intuitively tell us that bi-
ased branches account for a large proportion of the dynamic instruction stream.
Identifying these branches in the static code and flagging them with an accu-
rate static prediction would enable them to be executed without accessing the
dynamic predictor. The profiler needs to read the static assembly code and log,
for each each branch instruction during profiling, whether it was taken or not
taken at each occurrence.

3.2 Difficult to Predict Branches (Anti Prediction)

Another class of branch instructions that would be useful to remove from dy-
namic branch predictor accesses are difficult to predict branches. In any static
program there are branches which are difficult to predict and which are inher-
ently data driven. When a prediction for a given branch is nearly always likely
to be wrong, there is little point in consuming power to produce a prediction for
it since a number of stalls will likely be incurred anyway [5] [8] [6].

Using profiling, it is possible to locate these branches at runtime using dif-
ferent data sets and by monitoring every branch. The accuracy of each dynamic
prediction is required rather than just a given branch’s behaviour. For every



branch, the profiler needs to compare the predicted behaviour of the branch
with the actual behaviour. In the case of those branch instructions where ac-
curacy of the dynamic predictor is consistently poor, it is beneficial to flag the
static branch as difficult to predict and avoid accessing the branch predictor at
all, letting the processor assume the fallthrough path. Accordingly, filling the
delay region with NOP instructions wastes significantly less power executing
instructions that are unlikely to be committed.

4 Combined Approach Using Hint Bits

The main goal of the profiling techniques discussed previously can only be re-
alised if there is a way of storing the results in the static code of a program,
which can then be used dynamically by the processor to avoid accessing the
branch prediction hardware [3].

Fig. 3. Block diagram of the proposed scheduling and hinting algorithm. The dot-
ted box indicates the new stages introduced by the algorithm into the creation of an
executable program

The combined approach works as follows:

1. Compile the program, using GCC for instance, into assembly code.
2. The Scheduler parses the assembly code and decides for which branch in-

structions the local delay region can be used (see section 2.1).
3. The Profiler assembles a temporary version of the program and executes it

using the specified data set(s). The behaviour of each branch instruction is
logged (see section 3).

4. The output from the profiling stage is used to annotate the delay scheduled
assembly code.

5. Finally, the resulting annotated assembly code is compiled and linked to
form the new executable.

The exact number of branches that can be eliminated from runtime predictor
access in the target program depends upon the tuning of the profiler and the
number of branches where the local delay region can be used.



4.1 Hint Bits

So far we have described a process of annotating branch instructions in the static
assembly code to reflect the use of the local delay region and of the profiling
results. The way this is represented in the assembly/machine code is by using
an existing method known as hint bits (though now with the new function of
power saving).

The four mutually exclusive behaviour hints in our algorithm which need to
be stored are:

1. Access the branch predictor for this instruction.
2. or Assume this branch is taken (don’t access dynamic predictor logic).
3. or Assume this branch is not taken (don’t access dynamic predictor logic).
4. or Use this branch’s local delay region (don’t access dynamic predictor logic).

The implementation of this method requires two additional bits in an in-
struction. Whether these bits are located in all of the instruction set or just
branches is discussed in the proceeding section. Another salient point is that the
information in a statically predicted taken branch replaces only the dynamic di-
rection predictor in full; the target of the assumed taken branch is still required.
Accessing the Branch Target Buffer is costly, in terms of power, and must be
avoided.

Most embedded architectures are Reduced Instruction Set Computers [8].
Part of the benefit of this is the simplicity of the instruction format. Since most
embedded system are executing relatively small programs, many of the frequently
iterating loops (the highly biased branches, covered by the case 2 hint) will be
PC relative branches. This means that the target address for a majority of
these branches will be contained within a fixed position inside the format. This
does not require that the instruction undergo any complex predecoding, only
that it is offset from the current PC value to provide the target address. Branch
instructions that have been marked by the profiler as having a heavy bias towards
a taken path, but which do not fall into the PC relative fixed target position
category have to be ignored and left for dynamic prediction.

The general ‘hinting’ algorithm:

1. Initially, set the hint bits of all instructions to: assume not taken (and do
not access predictor).

2. Set hint bits to reflect use of the local delay region where the scheduler has
used this method.

3. From profiling results, set hint bits to reflect taken biased branches where
possible.

4. All remaining branch instructions have their hint bits set to use the dynamic
predictor.

4.2 Hardware Requirements/Modifications

The two possible implementation strategies are:



Hardware Simplicity: Annotate every instruction with two hint bits. This is
easy to implement in hardware and introduces little additional control logic.
All non branch instructions will also be eliminated from branch predictor
accesses. The disadvantages of this method are that it requires that the
processor’s clock frequency is low enough to permit an I-Cache access and
branch predictor access in series in one cycle and that there are enough
redundant bits in all instructions.

Hardware Complexity: Annotate only branch instructions with hint bits and
use a hardware mechanism similar to a Prediction Probe Detector [8] to
interpret hint bits. This has minimal effect on the instruction set. It also
means there is no restriction to series access of the I-Cache then branch
predictor. The main disadvantage is the newly introduced PPD and the
need for instructions to pass through the pipeline once before the PPD will
restrict predictor access.

Fig. 4. Diagram of required hardware modifications. The block below the I-Cache
represents a fetched example instruction (in this case a hinted taken branch).

The hardware simplicity model offers the greatest power savings and is par-
ticularly applicable for the embedded market where the clock frequency is gen-
erally relatively low, thus a series access is possible. It is for these reason we
the use the hardware simplicity model. In order to save additional power, some
minor modifications must be made to the Execution stage to stop the statically
predicted instruction from expending power writing back their results to the
predictor (since their results will never be used!).

It can be seen that after a given program has had its hint bits set, all of the
branches assigned static predictions (of taken or not taken) have now essentially
formed superblocks, with branch resolution acting as a possible exit point from
the newly formed super block. When a hint bit prediction proves to be incorrect,



it simply acts as a new source of a branch misprediction; it is left for the existing
dynamic predictor logic to resolve.

5 Conclusion and Future Work

Branch predictors in modern processors are vital for performance. Their accu-
racy is also a great source of powersaving, through the reduction of energy spent
on misspeculation [8]. However, branch predictors themselves are often compa-
rable to the size of a small cache and dissipate a non trivial amount of power.
The work outlined in this paper will help reduce the amount of power dissipated
by the predictor hardware itself, whilst not significantly affecting the prediction
accuracy. We have begun implementing these modifications in the Wattch [1]
power analysis framework (based on the SimpleScalar processor simulator). To
test the effectiveness of the modifications and algorithm, we can have chosen to
use the EEMBC benchmark suite, which provides a range of task characterisa-
tions for embedded processors.

Future investigation includes the possibility of dynamically modifying the
hinted predictions contained within instructions to reflect newly dynamically
discovered biased branches.

References

1. David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. 27th annual international
symposium on Computer architecture, 2000.

2. Colin Egan. Dynamic Branch Prediction In High Performance Super Scalar Pro-
cessors. PhD thesis, University of Hertfordshire, August 2000.

3. Colin Egan, Michael Hicks, Bruce Christianson, and Patrick Quick. Enhancing the
I-Cache to Reduce the Power Consumption of Dynamic Branch Predictors. IEEE
Digital System Design, jul 2005.

4. Michael Hicks, Colin Egan, Bruce Christianson, and Patrick Quick. HTracer: A
Dynamic Instruction Stream Research Tool. IEEE Digital System Design, jul 2005.

5. Erik Jacobsen, Erik Rotenberg, and J.E. Smith. Assigning Confidence to Condi-
tional Branch Predictions. IEEE 29th International Symposium on Microarchitec-
ture, 1996.

6. J. Karlin, D. Stefanovic, and S. Forrest. The Triton Branch Predictor, oct 2004.
7. Alain J. Martin, Mika Nystrom, and Paul L. Penzes. ET2: A Metric for Time and

Energy Efficiency of Computation. 2003.
8. D. Parikh, K. Skadron, Y. Zhang, and M. Stan. Power Aware Branch Prediction:

Characterization and Design. IEEE Transactions On Computers, 53(2), feb 2004.
9. Dharmesh Parikh, Kevin Skadron, Yan Zhang, Marco Barcella, and Mircea R.

Stan. Power Issues Related to Branch Prediction. IEEE HPCA, 2002.
10. David A. Patterson and John L. Hennessy. Computer Organization and Design:

The Hardware Software Interface. Morgan Kaufmann, second edition, 1998.


