
reverse accumulation of functions

containing gradients

Bruce Christianson

School of Information Sciences� University of Hertfordshire

Hat�eld� Herts AL�� �AB� England� Europe

Numerical Optimisation Centre Technical Report ��	� May ���


presented Theory Institute Argonne National Laboratory Illinois

Abstract

We extend the technique of reverse accumulation so as to allow e�cient extraction of gradi�
ents of scalar valued functions which are themselves constructed by composing operations
which include taking derivatives of subsidiary functions� The technique described here
relies upon augmenting the computational graph� and performs well when the highest or�
der of derivative information required is at most fourth or �fth order� When higher order
is required� an approach based upon interpolation of taylor series is likely to give better
performance� and as a �rst step in this direction we introduce a transformation mapping
reverse passes through an augmented graph onto taylor valued accumulations through a
forward pass� The ideas are illustrated by application to a parameter free di�erentiable
penalty function for constrained optimization problems�

�



�� Introduction� It is well known 	see for example 
��
 that reverse accumulation can
be used to extract all components of the gradient vector rf of any scalar valued function
f for about � times the �oating point computational cost of a single evaluation of f � where
the constant � is independent both of the form of f and of the number of parameters
	independent variables
� Similarly 
op cit� if b is any constant column vector then reverse
accumulation can evaluate the entire vector 	Hf
b 	ie an arbitrary linear combination of
rows of the Hessian of f
 for about � times the �oating point computational cost of a single
evaluation of f � This technique is further extended in 
���

Here we develop these techniques to derive a simple and elegant way of extracting gradi�
ents 	and higher derivatives
 of functions such as y � �	u�rf	u

 which are constructed
by composing operations which include taking gradients of subfunctions� We show how to
obtain such information to the same level of accuracy as the function value for f � and at
a small constant multiple of the computational cost�

The ability to form gradients of this kind has many applications in constrained optim�
ization� As an example� we consider the following problem�

Minimize y � f	u
 subject to k	u
 � � where dim	k
 � dim	u


It is shown in 
�� that this is equivalent to the augmented problem�

Minimize z � �	u
 � f	u� n	u

 � ��	u
 � k	u
 �
�

�
n	u
 � n	u


where

n � �Nk� �N � N �	NN �
��� N � J	k
 so that Nij �
�ki
�uj

and �� � g �N� g � rf

In contrast with traditional penalty functions� � is di�erentiable and parameter free�
In the past� the di�culty of obtaining accurate �rst and second derivatives for functions
such as � at reasonable cost has proved a disincentive to using such penalty formulations�

�� Unfolding Reverse Accumulation� We assume for ease of exposition that
reverse accumulation is implemented in the style of 
��� by operator overloading but without
overloading assignment� Floating point program variables are redeclared as of type vary

where

type vary � record �ref node � pointer to node�

type node � record �opcode � integer� arg� � vary� arg� � vary�

forward value � real� adjoint value � real�

Evaluation of the function f produces as a side e�ect a computational graph for f � The
reverse accumulation sweep to evaluate rf begins by placing the value ��� in the adjoint
value �eld of the end node� The reverse sweep then moves backwards through the graph
incrementing the adjoint values by appropriate multiples of the operation derivatives� as
required by the chain rule� For example� the adjoint accumulation step corresponding
to the forward step v � sin u is �u � �u � �v cos u� and the adjoint accumulation steps
corresponding to the forward step w � u � v are �u � �u � �w � v� �v � �v � �w � u� At the

�



end of the reverse sweep� the adjoint value in each node is the partial derivative of the
function value in the end node with respect to the forward value in the given node� In
particular� adjoint values in the nodes pointed at by the independent variables correspond
to the components of rf �

Suppose now that we have some function �	rf	u

 and we wish to evaluate r�� This
can be done by the very same code that we have just described� by making one crucial
change� We redeclare the adjoint value �eld as

adjoint value � vary

The reverse accumulation step a � a � b � c where a and b are now of type vary is
implemented by overloading in such a way that null � a returns a and null � b returns a
null pointer�

The e�ect of this redeclaration is that the reverse sweep now creates an additional
segment of the computational graph� recording the calculation of the various operation
derivatives and adjoint values� At the end of the reverse sweep�

x	ref node	adjoint value	ref node	forward value contains the �oating point ad�
joint value 	derivative component
 corresponding to the independent variable x�

Part or all of the computational graph can be swept in this way� and similarly adjoint
values� once calculated� can be used in subsequent constructions which can then themselves
be reverse�swept� In this case� it is important to reset 	to null pointers
 the adjoint �elds
in the part of the graph to be re�swept before re�sweeping� This can be done as a side
e�ect in the course of the previous reverse sweep� Note that this reset operation does not
a�ect the node previously pointed at by the re�initialized �eld� The approach described
here has been implemented by Kubota 
���

Some pseudocode showing how to extract a directional second derivative 	such as a row
of the Hessian
 is now given to illustrate these ideas� Suppose that we wish to calculate�
for a �xed direction vector b� the components of 	Hf
b � r	b � rf
�

declare sp
 ep
 y
 x��		n�
 ybar � pointer to node�

fassume that we have set initial values for x�i�	fwdg
sp�mark graph

y�f�x�

ep�mark graph

ybar�vary��	
�

y	adj�ybar

reverse sweep�ep
sp�

fat this point x�i�	adj	fwd�	rf
ig
ep�mark graph

do for for each i from � to n

x�i�	adj	adj�vary�b�i��

x�i�	adj�null

end do

reverse sweep�ep
sp�

fat this point ybar	adj	fwd�b � rf and x�i�	adj	fwd�		Hf
b
i g

�



In this pseudocode� mark graph is a function which returns a pointer to the 	current

end of graph position� It is assumed that this pointer points at a special graph node created
to record the mark� The reverse sweep routine is assumed to reset node	adjoint value

to null upon leaving each graph node which it visits� 	Nodes corresponding to independent
variables are incremented but not visited� and so must be reset explicitly�
 The coercion
function vary takes a �oating point value and returns a pointer to a graph node which
contains that �oating point value in the forward �eld� E�ectively this creates an additional
independent variable�

The independent variable ybar is introduced purely in order to illustrate how a reference
to an �old� adjoint value can be retained in spite of the re�initializing by reverse sweep�
In implementation� it may be desirable for reverse sweep to accumulate adjoint values
for independent variables� not in the variables themselves� but in a specially constructed
sparse vector 	of pointers to nodes
 associated with the marked node pointed at by sp�

Since the Hessian is just the Jacobian of the gradient� the problem of calculating an
entire Hessian is now reduced to that of evaluating a 	sparse
 Jacobian� as considered in

���

�� Reverse��Taylor� We turn now to a consideration of strategies for evaluating the
ideal penalty function introduced in x� in such a way as to permit automatic extraction of
the gradient and higher derivatives�

The Jacobian of a vector valued function whose component calculations share the values
of intermediate variables can be extracted by following the strategy of 
�� or 
��� This
strategy� which relies upon manipulating sparse vectors of adjoint quantities� must be re�
de�ned to manipulate sparse vectors of pointers to graph nodes containing the adjoint
values� Once this has been done� the calculation of the Jacobian� including a record of
the order of node elimination and of the relevent multiplications used to do this� will
be automatically recorded in the computational graph� and thus be available for further
automatic manipulation� The sparse increment operation� used to add a multiple of one
sparse vector to another� will create a new node only for vector components which are
present in both vectors�

However� for the particular form of the penalty funtion � considered here� we do not
need to develop the full Jacobian in this way� All we require are the vectors n and ��� It
is well known that we can evaluate vectors of the form y � N �x quite simply by a single
reverse sweep of the graph which records the construction of w � k	u
 from u� This
reverse sweep starts by setting �w � x and ends with �u � y�

The fact that reverse accumulation can also be used to evaluate vectors of the form
z � Ny does not appear to be nearly so widely known� Here is some pseudocode illustrating
how to do this�

declare sp
 ep
 u��		n�
 y��		n�
 w��		m�
 x��		m�
 � pointer to node�

fassume that we have set initial values for u�i�	fwd and x�i�	fwdg
sp�mark graph

w�k�u�

fat this point w�i�	fwd�ki	u
g
ep�mark graph

�



do for each i from � to m

x�i��vary�xi�

w�i�	adj�x�i�

end do

reverse sweep�ep
sp�

fat this point u�i�	adj	fwd�	N �x
ig
sp�ep

ep�mark graph

do for for each i from � to n

y�i��u�i�	adj

y�i�	adj�y�i�

u�i�	adj�null

end do

reverse sweep�ep
sp�

fat this point x�i�	adj	fwd�	NN �x
i g

What is happening here is this� We �rst build a graph G	u � w
 which records the
calculation of w � k	u
� Next we set �w � x and reverse through G	u � w
 to calculate
y � �u � N �x� As a side e�ect� this reverse sweep builds a new segment of the graph which
we call G	x � y
� Now suppose that we set �y � c for a constant vector c and reverse
through G	x � y
 to obtain z � �x� This reverse pass builds G	c � z
� We assert that
z � Nc� since

zi �
X

j

cj
�yj
�xi

�
X

j

cj
��uj

� �wi

�
X

j

cj
�wi

�uj

�
X

j

cjNij � 	Nc
i

If the constant vector c is merely chosen to have numerical values which equal those of
the vector y � N �x� then we would evaluate z � Nc � NN �x� as required� but the graph
G	c� z
 would not fully re�ect the functional dependency of z on u and x� and so could
not itself be subjected to further automatic di�erentiation� This functional dependence
is however re�ected in the pseudocode above by setting �y � y� ie setting y�i� to be its
own adjoint� The reverse accumulation step G	y � z
 accumulates the correct multiples
of the derivatives� and the correct functional dependencies are recorded for subsequent
di�erentiation passes�

Alternatively� we can also evaluate vectors of the form z � Ny with a single forward
pass� using 	in e�ect
 a linear taylor series� We allow graph nodes to be chained together
to form the terms of a taylor series� We form the taylor series vi corresponding to the
independent variables ui� and set 	initially
 v � u � y � t where t is the 	nominal
 taylor
variable� We also declare overloaded operations to act on these taylor types� By making
a forward pass through the existing graph for k using these overloaded operations� we
augment the graph to compute the taylor values k	v
 � k	u
 �Ny � t� In other words the
�rst order taylor terms of the constraint values give 	point at
 the values for Ny which we
require� An alternative implementation approach is to place an entire taylor series inside
a single graph node� We return to discuss this issue below�

We can thus evaluate n as follows� Use the techniques just described to evaluate
z � NN �x for arbitrary x� and use an equation solver to �nd x� such that k � NN �x��

�



Then n � N �x�� Similarly �� is the solution of gN � � ��NN �� We can evaluate ��
by a simple modi�cation to the procedure for x�� since if we set y�i�	adj�y�i��g�i�

where g is the gradient of f 	calculated by another reverse sweep
 then we can evaluate
N	N ���� � g�
 directly� and feed this into the equation solver� Once the vectors n and ��
have been obtained� it is a simple matter to compute the ideal penalty function �� Note
that both �� and x� are of the same dimension as k�

This computation of � is now available in a form which is itself susceptible to automatic
di�erentiation� and the extraction of gradients� directional or full Hessians and so forth�
These can in turn be used by optimization software to �nd a local minimum point u� of ��
which will correspond to the solution of the original constrained problem� Finally we can
apply automatic di�erentiation to the components of u� so as to perform an automatic
error analysis or determine the sensitivity of the solution�

A Remark on Equation Solving� It is worth noting that we may use an iterative method
of solving the linear equations for n� Provided that we have a contractive iteration mapping
near the �xed point� we can then use the methods of 
�� to construct the adjoints e�ciently
as �xed points of an adjoint contraction� The contractive mapping which is dualised
to construct the adjoints need not have been used to obtain the solution� The initial
construction of the solution could be done by hook or by crook� using conventional �oating
point arithmetic� and followed by a single 	graph constructing
 iteration of a contractive
mapping 	such as a truncated newton step or an ABS conjugate gradient�


A Remark on Di�erentiating Taylor Series� In previous work 
��
�� there has been a
tendency to place the entire taylor series inside a single graph node in order to minimize
the amount of manipulative node handling overhead� This is possible because of the result

�� that if y � f	x
 where x and y are taylor series then �y�p�k���x�p� � �y�k���x���

provided f is made up of elementary functions� However� this result is no longer true if f
includes operations such as taking derivatives� Although a left shift of a taylor series on the
forward pass corresponds to right shift as the appropriate adjoint operation on the reverse
pass� nevertheless a left shift does not correspond to di�erentiation with respect to a taylor
variable� because of the scaling of the coe�cient constants� The use of reverse accumulation
to obtain gradients of functions containing di�erentiation operations with respect to taylor
variables would then require the explicit representation of order r� coe�cients for a taylor
series of order r� Equivalently� there is no adjoint operation corresponding to a projection
of a taylor series� The approach of this section therefore requires that the details of any
taylor series evaluation are explicitly available in the computational graph�

�� Refolding the Graph� The repeated use of reverse accumulation on a problem of
the form

f	z�rg	y�rh	x




where y� z also depend partially on x� will produce duplicate structures with the same
form form as G	h
� the graph of h� The number of copies of G	h
 is exponential in the
depth of gradient nesting� The question therefore arises� whether it might be more e�cient
to store the various coe�cients in a single 	enlarged
 copy of the graph for h� We have
shown in x� 	see also 
�� x���
�� x��
 that reversal through the reversed graph is equivalent
to developing a �rst order taylor series in a single variable forwards through the original

�



graph�
It turns out 	using similar arguments
 that nested reverse traversals amount to main�

taining precisely the completely heterogenous terms of a multivariate taylor series 	ie no
variable appearing in power two or higher�


For example if p � rx h	x
�q � rx g	y�p
 then we can evaluate q as follows� build
the graph G	h
� reverse though G	h
 to obtain the values �x � p� copy these into the base
of the graph for g� build G	g
� reverse through G	g
 to obtain �p � rp g� set x� � x � �p�t
where t is the 	�rst
 taylor variable� then make a second pass forwards and backwards
through G	h
 computing the linear taylor terms in t� The �rst order terms in t for �x� give
the value for q� These in turn are built into the base of the graph for f � and the reverse
pass through G	f
 requires a second pass forward and back through G	g
 in a direction �q

corresponding to the second taylor variable s� This in turn requires a further pass forward
and back through G	h
 evaluating the coe�cients of the terms of order s and st� The next
level of nesting would require passes for terms r� rt� rs� rst and so on 	hence the exponential
growth with nesting level�


We have already considered representing a reversal through a previously built graph
segment as an explicit computational step 	corresponding to a graph node
� This could be
extended so as to de�ne operations representing the addition of another taylor variable to
the 	forward or reverse portion of the
 graph� Combining this with the interpolated taylor
series approach 
�� holds out the prospect of some time and space savings if the total order
of di�erentiation is higher than about fourth or �fth order� and this is identi�ed as as a
promising avenue for future research�

This paper was presented at the Theory Institute on Combinatorial Challenges in Auto�
matic Di�erentiation� held at Argonne National Laboratories� Illinois� ����� May 	

��

References�


�� Christian Bischof et al� ����� Structured Second� and Higher�Order Derivatives
through Univariate Taylor Series� Optimization Methods and Software� to appear


�� Bruce Christianson� ����� Automatic Hessians by Reverse Accumulation� IMA
Journal of Numerical Analysis ��� �������


�� Bruce Christianson� ����� Reverse Accumulation and Accurate Rounding Error Es�
timates for Taylor Series Coe�cients� Optimization Methods and Software � �����


�� Bruce Christianson and Laurence Dixon� ����� Reverse Accumulation of Jacobians
and Optimal Control� Technical Report� Numerical Optimisation Centre� University
of Hertfordshire� England� Europe


�� Bruce Christianson� ����� Reverse Accumulation and Attractive Fixed Points� Tech�
nical Report� Numerical Optimisation Centre� University of Hertfordshire� England�
Europe

�




�� Bruce Christianson� ����� A Geometric Approach to Fletcher s Ideal Penalty Func�
tion� Technical Report� Numerical Optimisation Centre� University of Hertfordshire�
England� Europe


�� Andreas Griewank et al� ����� ADOL�C� A Package for Automatic Di�erentiation
of Algorithms written in C!C��� ACM Transactions on Mathematical Software to
appear


�� Andreas Griewank et al� ����� Some Bounds on the Complexity of Gradients� Jac�
obians� and Hessians� in Complexity in Numerical Optimization� ed P�M� Pardalos�
World Scienti�c


�� Koichi Kubota� ����� An Implementation of Fast Automatic Di�erentiation with
C��� Abstracts of the ���� Spring Meeting of the Operations Research Society of
Japan� ������� �in Japanese


�


