REVERSE ACCUMULATION OF FUNCTIONS
CONTAINING GRADIENTS

Bruce Christianson

School of Information Sciences, University of Hertfordshire

Hatfield, Herts AL10 9AB, England, Europe

Numerical Optimisation Centre Technical Report 278, May 1993

presented Theory Institute Argonne National Laboratory Illinois

Abstract

We extend the technique of reverse accumulation so as to allow efficient extraction of gradi-
ents of scalar valued functions which are themselves constructed by composing operations
which include taking derivatives of subsidiary functions. The technique described here
relies upon augmenting the computational graph, and performs well when the highest or-
der of derivative information required is at most fourth or fifth order. When higher order
is required, an approach based upon interpolation of taylor series is likely to give better
performance, and as a first step in this direction we introduce a transformation mapping
reverse passes through an augmented graph onto taylor valued accumulations through a
forward pass. The ideas are illustrated by application to a parameter free differentiable
penalty function for constrained optimization problems.

1. Introduction. It is well known (see for example [2]) that reverse accumulation can
be used to extract all components of the gradient vector V f of any scalar valued function
f for about 3 times the floating point computational cost of a single evaluation of f, where
the constant 3 is independent both of the form of f and of the number of parameters
(independent variables). Similarly [op cit] if b is any constant column vector then reverse
accumulation can evaluate the entire vector (H f)b (ie an arbitrary linear combination of
rows of the Hessian of f) for about 6 times the floating point computational cost of a single
evaluation of f. This technique is further extended in [1].

Here we develop these techniques to derive a simple and elegant way of extracting gradi-
ents (and higher derivatives) of functions such as y = ¢(u, V f(u)) which are constructed
by composing operations which include taking gradients of subfunctions. We show how to
obtain such information to the same level of accuracy as the function value for f, and at
a small constant multiple of the computational cost.

The ability to form gradients of this kind has many applications in constrained optim-
ization. As an example, we consider the following problem:

Minimize y = f(u) subject to k(u) = 0 where dim(k) < dim(u)
It is shown in [6] that this is equivalent to the augmented problem:

Minimize z = ¢(u) = f(u —n(u)) — A (u) - k(u) + %n(u) -n(u)

where

Ok;

— and \, =gN,g =Vf
8Uj

n= Nk N =N(NN)" N = J(k) so that N;; =

In contrast with traditional penalty functions, ¢ is differentiable and parameter free.

In the past, the difficulty of obtaining accurate first and second derivatives for functions
such as ¢ at reasonable cost has proved a disincentive to using such penalty formulations.

2. Unfolding Reverse Accumulation. We assume for ease of exposition that
reverse accumulation is implemented in the style of [2], by operator overloading but without
overloading assignment. Floating point program variables are redeclared as of type vary
where

type vary = record (ref node : pointer to node)
type node = record (opcode : integer; argl : vary; arg2 : vary;
forward value : real; adjoint_value : real)

Evaluation of the function f produces as a side effect a computational graph for f. The
reverse accumulation sweep to evaluate V f begins by placing the value 1.0 in the adjoint
value field of the end node. The reverse sweep then moves backwards through the graph
incrementing the adjoint values by appropriate multiples of the operation derivatives, as
required by the chain rule. For example, the adjoint accumulation step corresponding
to the forward step v = sinu is « = u + vcosu, and the adjoint accumulation steps
corresponding to the forward step w = w v are « = v+ w *v; v = v + w *x u. At the

2

end of the reverse sweep, the adjoint value in each node is the partial derivative of the
function value in the end node with respect to the forward value in the given node. In
particular, adjoint values in the nodes pointed at by the independent variables correspond
to the components of V f.

Suppose now that we have some function ¢(V f(u)) and we wish to evaluate V¢. This
can be done by the very same code that we have just described, by making one crucial
change. We redeclare the adjoint value field as

adjoint_value : vary

The reverse accumulation step a = a + b x ¢ where a and b are now of type vary is
implemented by overloading in such a way that null 4+ a returns a and null x b returns a
null pointer.

The effect of this redeclaration is that the reverse sweep now creates an additional
segment of the computational graph, recording the calculation of the various operation
derivatives and adjoint values. At the end of the reverse sweep,

x.ref node.adjoint_value.ref node.forward value contains the floating point ad-
joint value (derivative component) corresponding to the independent variable x.

Part or all of the computational graph can be swept in this way, and similarly adjoint
values, once calculated, can be used in subsequent constructions which can then themselves
be reverse-swept. In this case, it is important to reset (to null pointers) the adjoint fields
in the part of the graph to be re-swept before re-sweeping. This can be done as a side
effect in the course of the previous reverse sweep. Note that this reset operation does not
affect the node previously pointed at by the re-initialized field. The approach described
here has been implemented by Kubota [9].

Some pseudocode showing how to extract a directional second derivative (such as a row
of the Hessian) is now given to illustrate these ideas. Suppose that we wish to calculate,
for a fixed direction vector b, the components of (Hf)b =V(b-Vf).

declare sp, ep, y, x[1..n], ybar : pointer to node;
{assume that we have set initial values for x[i].fwd}
sp=mark_graph
y=f (x)
ep=mark_graph
ybar=vary(1.0)
y.adj=ybar
reverse_sweep(ep,sp)
{at this point x[il.adj.fwd=(Vf);}
ep=mark_graph
do for for each i from 1 to n
x[i].adj.adj=vary(b[i])
x[i].adj=null
end do
reverse_sweep(ep,sp)
{at this point ybar.adj.fwd=b -V [and x[il.adj.fwd=((Hf)b); }

In this pseudocode, mark_graph is a function which returns a pointer to the (current)
end of graph position. It is assumed that this pointer points at a special graph node created
to record the mark. The reverse_sweep routine is assumed to reset node.adjoint_value
to null upon leaving each graph node which it visits. (Nodes corresponding to independent
variables are incremented but not visited, and so must be reset explicitly.) The coercion
function vary takes a floating point value and returns a pointer to a graph node which
contains that floating point value in the forward field. Effectively this creates an additional
independent variable.

The independent variable ybar is introduced purely in order to illustrate how a reference
to an “old” adjoint value can be retained in spite of the re-initializing by reverse_sweep.
In implementation, it may be desirable for reverse_sweep to accumulate adjoint values
for independent variables, not in the variables themselves, but in a specially constructed
sparse vector (of pointers to nodes) associated with the marked node pointed at by sp.

Since the Hessian is just the Jacobian of the gradient, the problem of calculating an
entire Hessian is now reduced to that of evaluating a (sparse) Jacobian, as considered in
4].

3. Reverse’=Taylor. We turn now to a consideration of strategies for evaluating the
ideal penalty function introduced in §1 in such a way as to permit automatic extraction of
the gradient and higher derivatives.

The Jacobian of a vector valued function whose component calculations share the values
of intermediate variables can be extracted by following the strategy of [4] or [8]. This
strategy, which relies upon manipulating sparse vectors of adjoint quantities, must be re-
defined to manipulate sparse vectors of pointers to graph nodes containing the adjoint
values. Once this has been done, the calculation of the Jacobian, including a record of
the order of node elimination and of the relevent multiplications used to do this, will
be automatically recorded in the computational graph, and thus be available for further
automatic manipulation. The sparse increment operation, used to add a multiple of one
sparse vector to another, will create a new node only for vector components which are
present in both vectors.

However, for the particular form of the penalty funtion ¢ considered here, we do not
need to develop the full Jacobian in this way. All we require are the vectors n and \,. It
is well known that we can evaluate vectors of the form y = N'x quite simply by a single
reverse sweep of the graph which records the construction of w = k(u) from u. This
reverse sweep starts by setting w = x and ends with t =y.

The fact that reverse accumulation can also be used to evaluate vectors of the form
z = Ny does not appear to be nearly so widely known. Here is some pseudocode illustrating
how to do this.

declare sp, ep, ull..n], y[i1..n], w[l..m], x[1..m], : pointer to node;
{assume that we have set initial values for u[i].fwd and x[i].fwd}
sp=mark_graph

w=k (u)

{at this point w[i].fwd=k;(u)}

ep=mark_graph

do for each i from 1 to m
x[il=vary(z;)
wlil .adj=x[i]
end do
reverse_sweep(ep,sp)
{at this point ul[i].adj.fwd=(N'x);}
sp=ep
ep=mark_graph
do for for each i from 1 to n
y[il=uli].adj
y[il.adj=y[i]
uli] .adj=null
end do
reverse_sweep(ep,sp)
{at this point x[i].adj.fwd=(NN'x); }

What is happening here is this. We first build a graph G(u — w) which records the
calculation of w = k(u). Next we set W = x and reverse through G(u — w) to calculate
y =1 = N'x. As a side effect, this reverse sweep builds a new segment of the graph which
we call G(z — y). Now suppose that we set y = ¢ for a constant vector ¢ and reverse
through G(z — y) to obtain z = X. This reverse pass builds G(¢ — z). We assert that
z = Nc, since

8yj 611]' awl
2 = zj:c]axi = zj:cjau_}i = zj:c] o %:CJNZJ = (Nc);

If the constant vector c is merely chosen to have numerical values which equal those of
the vector y = N'x, then we would evaluate z = Nc = NN'x, as required, but the graph
G(c — z) would not fully reflect the functional dependency of z on u and z, and so could
not itself be subjected to further automatic differentiation. This functional dependence
is however reflected in the pseudocode above by setting ¥ = y, ie setting y[i] to be its
own adjoint. The reverse accumulation step G(y — z) accumulates the correct multiples
of the derivatives, and the correct functional dependencies are recorded for subsequent
differentiation passes.

Alternatively, we can also evaluate vectors of the form z = Ny with a single forward
pass, using (in effect) a linear taylor series. We allow graph nodes to be chained together
to form the terms of a taylor series. We form the taylor series v; corresponding to the
independent variables u;, and set (initially) v = u +y -t where ¢ is the (nominal) taylor
variable. We also declare overloaded operations to act on these taylor types. By making
a forward pass through the existing graph for k using these overloaded operations, we
augment the graph to compute the taylor values k(v) = k(u) + Ny - ¢. In other words the
first order taylor terms of the constraint values give (point at) the values for Ny which we
require. An alternative implementation approach is to place an entire taylor series inside
a single graph node. We return to discuss this issue below.

We can thus evaluate n as follows. Use the techniques just described to evaluate
z = NN'x for arbitrary x, and use an equation solver to find x, such that k = NN'x,.

5

Then n = N’'x,. Similarly)\, is the solution of gN' = A\,NN’. We can evaluate \,
by a simple modification to the procedure for x,, since if we set y[i].adj=y[i]-g[il]
where g is the gradient of f (calculated by another reverse sweep) then we can evaluate
N(N'XN, —g') directly, and feed this into the equation solver. Once the vectors n and A,
have been obtained, it is a simple matter to compute the ideal penalty function ¢. Note
that both * and x* are of the same dimension as k.

This computation of ¢ is now available in a form which is itself susceptible to automatic
differentiation, and the extraction of gradients, directional or full Hessians and so forth.
These can in turn be used by optimization software to find a local minimum point u, of ¢,
which will correspond to the solution of the original constrained problem. Finally we can
apply automatic differentiation to the components of u, so as to perform an automatic
error analysis or determine the sensitivity of the solution.

A Remark on Equation Solving. 1t is worth noting that we may use an iterative method
of solving the linear equations for n. Provided that we have a contractive iteration mapping
near the fixed point, we can then use the methods of [5] to construct the adjoints efficiently
as fixed points of an adjoint contraction. The contractive mapping which is dualised
to construct the adjoints need not have been used to obtain the solution. The initial
construction of the solution could be done by hook or by crook, using conventional floating
point arithmetic, and followed by a single (graph constructing) iteration of a contractive
mapping (such as a truncated newton step or an ABS conjugate gradient.)

A Remark on Differentiating Taylor Series. In previous work [3][7] there has been a
tendency to place the entire taylor series inside a single graph node in order to minimize
the amount of manipulative node handling overhead. This is possible because of the result
[3] that if y = f(z) where x and y are taylor series then 9y®*%)/9z®) = 9y*) /9
provided f is made up of elementary functions. However, this result is no longer true if f
includes operations such as taking derivatives. Although a left shift of a taylor series on the
forward pass corresponds to right shift as the appropriate adjoint operation on the reverse
pass, nevertheless a left shift does not correspond to differentiation with respect to a taylor
variable, because of the scaling of the coefficient constants. The use of reverse accumulation
to obtain gradients of functions containing differentiation operations with respect to taylor
variables would then require the explicit representation of order r? coefficients for a taylor
series of order r. Equivalently, there is no adjoint operation corresponding to a projection
of a taylor series. The approach of this section therefore requires that the details of any
taylor series evaluation are explicitly available in the computational graph.

4. Refolding the Graph. The repeated use of reverse accumulation on a problem of
the form

f(z,Vg(y, Vh(x)))

where y,z also depend partially on x, will produce duplicate structures with the same
form form as G(h), the graph of h. The number of copies of G(h) is exponential in the
depth of gradient nesting. The question therefore arises, whether it might be more efficient
to store the various coefficients in a single (enlarged) copy of the graph for h. We have
shown in §3 (see also [2, §5],[3, §6]) that reversal through the reversed graph is equivalent
to developing a first order taylor series in a single variable forwards through the original

graph.

It turns out (using similar arguments) that nested reverse traversals amount to main-
taining precisely the completely heterogenous terms of a multivariate taylor series (ie no
variable appearing in power two or higher.)

For example if p = V, h(x),q = V, ¢g(y,p) then we can evaluate q as follows: build
the graph G(h), reverse though G(h) to obtain the values X = p, copy these into the base
of the graph for ¢, build G(g), reverse through G(g) to obtain p =V, g, set x; =x+ p.t
where ¢ is the (first) taylor variable, then make a second pass forwards and backwards
through G(h) computing the linear taylor terms in ¢. The first order terms in ¢ for X; give
the value for q. These in turn are built into the base of the graph for f, and the reverse
pass through G(f) requires a second pass forward and back through G(g) in a direction g
corresponding to the second taylor variable s. This in turn requires a further pass forward
and back through G(h) evaluating the coefficients of the terms of order s and st. The next
level of nesting would require passes for terms r, v, rs, rst and so on (hence the exponential
growth with nesting level.)

We have already considered representing a reversal through a previously built graph
segment as an explicit computational step (corresponding to a graph node). This could be
extended so as to define operations representing the addition of another taylor variable to
the (forward or reverse portion of the) graph. Combining this with the interpolated taylor
series approach [1] holds out the prospect of some time and space savings if the total order
of differentiation is higher than about fourth or fifth order, and this is identified as as a
promising avenue for future research.

This paper was presented at the Theory Institute on Combinatorial Challenges in Auto-
matic Differentiation, held at Argonne National Laboratories, Illinois, 24-27 May 1993.

References.

[1] Christian Bischof et al, 1992, Structured Second- and Higher-Order Derivatives
through Univariate Taylor Series, Optimization Methods and Software, to appear

[2] Bruce Christianson, 1992, Automatic Hessians by Reverse Accumulation, IMA
Journal of Numerical Analysis 12, 135-150

[3] Bruce Christianson, 1992, Reverse Accumulation and Accurate Rounding Error Es-
timates for Taylor Series Coefficients, Optimization Methods and Software 1 81-94

[4] Bruce Christianson and Laurence Dixon, 1992, Reverse Accumulation of Jacobians
and Optimal Control, Technical Report, Numerical Optimisation Centre, University
of Hertfordshire, England, Europe

[5] Bruce Christianson, 1992, Reverse Accumulation and Attractive Fixed Points, Tech-
nical Report, Numerical Optimisation Centre, University of Hertfordshire, England,
Europe

(6]

[9]

Bruce Christianson, 1993, A Geometric Approach to Fletcher’s Ideal Penalty Func-
tion, Technical Report, Numerical Optimisation Centre, University of Hertfordshire,
England, Europe

Andreas Griewank et al, 1991, ADOL-C: A Package for Automatic Differentiation
of Algorithms written in C/C++, ACM Transactions on Mathematical Software to
appear

Andreas Griewank et al, 1993, Some Bounds on the Complexity of Gradients, Jac-
obians, and Hessians, in Complexity in Numerical Optimization, ed P.M. Pardalos,
World Scientific

Koichi Kubota, 1989, An Implementation of Fast Automatic Differentiation with
C++, Abstracts of the 1989 Spring Meeting of the Operations Research Society of
Japan, 175-176 (in Japanese)

