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Abstract

Recent work in sensor evolution aims at studying the
perception-action loop in a formalized information-theoretic
manner. By treating sensors as extracting information and ac-
tuators as having the capability to “imprint” information on
the environment we can view agents as creating, maintaining
and making use of various information flows. In our paper
we study the perception-action loop of agents using Shannon
information flows. We use information theory to track and re-
veal the important relationships between agents and their en-
vironment. For example, we provide an information-theoretic
characterization of stigmergy and evolve finite-state automata
as agent controllers to engage in stigmergic communication.
Our analysis of the evolved automata and the information
flow provides insight into how evolution organizes sensoric
information acquisition, implicit internal and external mem-
ory, processing and action selection.

1 Introduction
We approach the study of information flows through the
perception-action loop and the environment using classical
information theory. We believe that a formalized approach
to the perception-action loop may bring us closer to find-
ing principles underlying adaptive behavior. Such principles
could be used both for guiding the construction of systems
with desired information flows and for studying their behav-
ior. The use of information theory provides us with a univer-
sal framework which minimizes the influences of a particu-
lar implementation.

Consider an agent with sensors and actuators. Sensors
capture some information, the information gets processed,
and based on the results the actuators act upon the envi-
ronment. If sensors are seen as taking information in, it
seems also reasonable to see actuators as modifying the en-
vironment informationally. Surprisingly, it seems that little
research has been done to quantitatively treat perception-
action in terms of information – an observation also made
by Touchette and Lloyd in the context of control [15].

In [14, 15] the problem of control is quantitatively treated
in terms of Shannon information which is seen as flowing
from a controlled system into a controller and then back.
An important information-theoretic bound is obtained for

the usefulness of any sensor for control. [9] introduces an
information-theoretic view of perception and actuation and
discusses usefulness as a means to attribute agent-specific
meaning to information. This is further formalized in the
context of relevant information [12] measured in bits. Rel-
evant information “flows” from the environment via sensors
to actuators, thus connecting them.

1.1 Shannon Information Flow & Environment
One of the motivations for our study is sensory evolution [5].
Originally the idea was focused on sensors evolving to cap-
ture more useful or relevant information. However, using
sensors is often inseparable from what an agent needs to do
in its environment. It makes more sense to consider percep-
tion and action together as a single entity, a loop. Actions in
the environment can influence the sensors, creating a loop.
This is an important link which the quantitative approaches
above have not addressed directly and which this paper does
address in a quantitative manner (Fig. 1).
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Figure 1: Information flow within an agent (box) and be-
tween the agent and its environment addressed by quanti-
tative information-theoretic approaches. Solid line – prior
work. Dashed and solid – this paper.

The perception-action loop is important for understand-
ing the behavior of adapted agents. If we view sensors as
capturing Shannon information and actuators as being capa-
ble of “imprinting” information on the environment, we can
then treat agents as creating, maintaining and using various
information flows, both internal and external. The view may
be quite useful since there are strong indications that biolog-
ical agents are partly driven by the necessity of acquiring,
exchanging and also concealing information.



Treating the perception-action loop in terms of Shannon
information flows enables us to quantitatively capture cer-
tain phenomena, like “imprinting” information onto the en-
vironment, offloading and later reacquisition of information,
and active perception. An agent imprints information onto
its environment by changing the environment in different
ways depending on its internal state.

Uncovering hidden information using the perception-
action loop is demonstrated by Kirsh and Maglio in [8].
There advanced Tetris game players are shown to quickly
rotate a falling block while it still is not visible completely.
This active modification of the environment allows the play-
ers to discover the shape of the block before it actually be-
comes completely visible on the screen. Active perception
in general is seen as a powerful technique [10].

Offloading of information into the environment can be il-
lustrated by the fact that we often write notes or reminders,
which we then later look at to reacquire some information.
A good account of such information flow (not in the Shan-
non sense) between several people is given in the analysis of
how members of an airliner crew indirectly communicate us-
ing cockpit controls as a medium [7]. For example, long be-
fore landing one of the pilots calculates proper flap settings
for various speeds and then based on the results sets special
markers on the airspeed indicator. Later, during the landing
phase, the markers allow the crew to quickly and reliably
find out what flap settings to use for the momentary speed.
In a wider context, indirect communication via the environ-
ment is of high importance in distributed systems [6, 2].

Stigmergy is usually considered as the indirect communi-
cation between agents via the environment without targeting
a specific recipient. Stigmergy has been used to explain nest
building, sorting, and foraging in social insects [13, 3, 2].

To our knowledge this work is the first information-
theoretic characterization of stigmergy. It allows us to re-
fine the understanding of stigmergic communication by in-
cluding the relationship between agents and the environment
(cf. [1]). For example, as a reminder to do something one
could go to sleep in one of several rooms. Later, using the
room one wakes up in as a cue, one could engage in different
corresponding activities. Information may thus be commu-
nicated via one’s relation with the environment.

This paper is structured as follows. Sec. 2 introduces the
relevant concepts of information theory. Sec. 3 presents the
model of the perception-action loop we are using. Sec. 4
describes our experimental approach. In Sec. 5 we evolve
an agent to stigmergically communicate with itself through
time. In Sec. 6 we evolve pairs of agents to engage in clas-
sical stigmergic communication. The work is summarized
and discussed in Sec. 7.

2 Information Theory
We denote random variables with uppercase letters, e.g., X ,
their sets of values with calligraphic letters, e.g., X , and the

values with lowercase letters, e.g., x. In this paper we deal
exclusively with discrete variables. By abuse of notation we
denote the probability that X � x as p

�
x � and the conditional

probability of X � x given that Y � y with p
�
x � y � .

The entropy of X , denoted by H
�
X � , is defined as a mea-

sure of uncertainty of the probability distribution of X :

H
�
X � : �����

x � X
p
�
x � log2 p

�
x �

The conditional entropy of X given Y , denoted H
�
X �Y � ,

is defined as uncertainty of X knowing Y weighted by the
probability of a particular realization of Y occurring:

H
�
X �Y � : �	�

y � Y
p
�
y � H � X �Y � y �

�
� �
y � Y

p
�
y � �

x � X
p
�
x � y � log2 p

�
x � y �

The mutual information between X and Y , denoted
I
�
X ;Y � , is defined as reduction in the uncertainty of X given

Y :
I
�
X ;Y � : � H

�
X ��� H

�
X �Y �

All of the above quantities are nonnegative. We always
calculate them using the binary logarithm, hence they are
measured in bits. An important property of information-
theoretic measures is that they do not depend on the par-
ticular values of the variables – the measures only depend
on the probability distributions of the values. For a detailed
introduction to information theory consult, for example, [4].

3 A Model of the Perception-Action Loop
In this section we present a model of the perception-action
loop of an agent. The constituents of the loop, which are
modeled as random variables, are sensors S, actuators A, the
memory M of the controller, and R – the rest of the world.
We need R to formally account for the effects of actuation
and the environment on the sensors.

As in [15] we interpret the perception-action loop in terms
of a communication channel-like model. In order to model
the temporal aspects we unroll the loop in time by introduc-
ing a time variable t. To account for the complete loop we
model the dynamics of arbitrary number of time steps, as
opposed to [15] where only one time step is modeled.

We model the relations between the variables as a causal
Bayesian network [11] which is a directed acyclic graph
where any node, given its parents, is conditionally indepen-
dent from any other node which is not its parent or successor
(any node directly or indirectly reachable from the node). In
our model this property results in conditional independence
from the past.

We show the pattern of relations between variables at two
consecutive time steps on Fig. 2. We assume that the pattern
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Figure 2: A temporal section of the unrolled perception-
action loop modeled a Bayesian network. The dotted lines
show how the section connects to adjacent sections. S – sen-
soric input, A – action performed, M – memory of the con-
troller, R – the rest of the world.

of relations is time-invariant and thus holds for any t. Thus,
the graph on Fig. 2 is just a section of the network.

The diagram can be read as follows: At is picked given St

and Mt . Furthermore, St is obtained from Rt .
The perception-action loop is created by information

flowing from sensors to actuators, and from actuators via
the rest of the world to future sensoric input. If these flows
extend over more than one time step, they may be mediated
by a combination of internal and external variables poten-
tially enabling complex behavior, such as filtering based on
the state of the environment or the memory.

4 Experimental Approach
We study simple stigmergic scenarios and track information
flows through the environment and the perception-action
loop. We measure the flows using information-theoretic
tools. We evolve agent controllers to maximize various in-
formation flows passing via the environment.

4.1 The Testbed

We base our experiments on a model which despite its sim-
plicity captures important features of systems employing
gradient sensors.

The environment consists of a two-dimensional grid of
infinite size. A source is located at the center of the grid.
The source emits a signal, the strength P of which in any
cell of the grid is P

�
d � � d � 2 (P

�
0 � � 2), where d is the

distance to the source. The exact relation is not important
for our experiments – it is only important that the decrease
is strictly monotonic with distance.

An agent is situated in a single cell at a time. The agent
has a gradient sensor. The gradient points to the cell with
highest signal strength among the four adjacent cells (north,
east, south, west). If there are several cells with highest sig-
nal strength, the gradient randomly points to one of these
with equal probability (see Fig. 3). The agent also has an
actuator – at each time step the agent performs one of the
four available actions: move north, east, south or west.

Following the model of perception-action loop presented
in Sec. 3 and its notation, we denote the sensoric input
(the gradient) with the random variable S with values in set
S � �

sN � sE � sS � sW � ; the action with the random variable A

� � � � � � �
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Figure 3: Sensoric input S vs. the position R. In cells with
only one arrow the input is constant. In cells with multiple
arrows it is randomly chosen from the listed options. The
source is located at the center of the grid.

with values in set A � �
aN � aE � aS � aW � ; the internal state or

the memory of the agent’s controller with the random vari-
able M with values in M � �

1 � 2 �����	��� N � , where N is the
number of states; the two-dimensional position of the agent
with the random variable R with values in


 2. S, A, M, and
R completely describe the state of the world at any instant.

According to the model in Sec. 3 At and Mt � 1 depend
directly only on

�
St � Mt � . The agent’s controller can thus be

seen as implementing the mapping:
�
St � Mt ��� �

At � Mt � 1 � .
We assume that the mapping is time-invariant.

The mapping can be implemented by a finite-state au-
tomaton operating with input set S , output set A , and state
set M . Here we use deterministic automata hence allow-
ing only for deterministic mappings. However, without any
loss of generality our approach can be used with stochastic
mappings implemented by nondeterministic finite-state au-
tomata. Determinism of the controller is an experimental
choice, not a limitation of the model.

To summarize, the world is an infinite two-dimensional
grid. A symmetric signal field is created around a source
located at the center of the grid. The strength of the field
decreases strictly monotonically with distance. The environ-
ment is static. An agent moves on the grid, one cell at a time,
in one of the four adjacent cells (north, east, south, west).
The agent has a nondeterministic sensor which can distin-
guish between four directions of the local signal gradient.
The agent is controlled by a controller, which is modeled as
a deterministic finite-state automaton taking current sensoric
input and producing an action. All the controller has access
to is its own memory and the momentary sensoric input.

4.2 Information Flow

In the experiments presented in this paper we use a special
case of information flow. We “inject” information indepen-
dent of the past and present state of the system into a variable
X (e.g., M0) by making its distribution independent and en-
tropic. The information flow from X to any variable Y in the
system is then I

�
X ;Y � . This gives us a characterization of

stigmergy if X is from one agent and Y is from another.



In general, it is possible to measure information flow
without injecting independent information. However, this
is out of scope of this paper.

4.3 Measuring Information Flows

We use Monte Carlo simulations for estimating the informa-
tion flows. Accordingly, to spot and avoid undersampling,
for each of the possible initial states of the system we pro-
duce 32, 256, or more samples depending on the particular
quantities measured. We then increase the number of sam-
ples by at least a factor of 16 to check whether the quantities
of interest remain stable.

4.4 Evolution

We use evolution as a search in the space of controllers. A
minimal setup is used. This is to emphasize that nothing
in our general approach is specific to the particular model
or the search tool employed. To evaluate the fitness of a
controller, it is allowed to control the agent in the particu-
lar setup of the experiment. The fitness is expressed as the
information flow specific to the experiment.

We initialize the population with five randomly generated
controllers. In every generation five best controllers are se-
lected into the next generation and also produce five off-
spring each. Thus the size of the population is between 5
and 30.

An offspring is produced from its parent by mutation. To
speed up the search and make it more efficient we have in-
corporated ideas from simulated annealing and tabu search:
(1) the number of mutations performed is uniformly dis-
tributed between 1 and 1 �

�
G mod 20 � , where G is the gen-

eration; and (2) we do not add offspring controllers which
have been evaluated before or are already present in the pop-
ulation. On our problems these adjustments do improve the
efficiency of the search. Additionally, we perform at least
five separate evolutionary runs to sample different solutions.

The transition matrix of a controller is represented by a
mapping S � M  A � M . This mapping can represent
any finite-state automaton. We limit our search to determin-
istic automata only, hence the mapping can be represented
as an array of length � S ��� �M � with each element containing
a value between 1 and �A ��� �M � corresponding to the action
to perform and the next state to go into. A mutation is per-
formed by setting a randomly chosen element of the array to
a randomly chosen value in the range.

5 Stigmergy for One
Here we study a special case of stigmergy where an agent
has to pass information to itself through the environment
over a fixed number of time steps. We initialize the agent
with information, let the agent run for a while, then erase its
memory and let the agent reacquire the lost information.1

1The source code of experiments is available on request.
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Figure 4: Fitness of best evolved controllers. Solid line
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Figure 5: Information flows constructed by the best evolved
4-state (left) and 8-state (right) controller. Solid line –
I
�
M0;Mt � , dotted – I

�
M0;Rt � , dashed – I

�
M0;Mt � Rt � .

The agent starts at the center of the grid. We inject
log2 �M � bits of information into its controller’s internal
state M0 by making its probability distribution uniform. At
time step 15 we erase the controller’s memory by setting it
into state 1. We then measure how much of the information
“injected” into M0 is contained in M30. In terms of infor-
mation flow we want to find a controller which maximizes
the information flow from M0 to M30. As we erase M15, at
time step 15 the flow can pass only via the environment. The
amount of flow is measured as I

�
M0;M30 � .

5.1 Results and Discussion
We have evolved separate populations of controllers with 2
to 13 states for 1000 generations. Evolution does indeed find
controllers capable of self-stigmergy (Fig. 4).

To analyze the behavior of evolved controllers we track
how the injected information “diffuses” through the mem-
ory and the position of the agent by measuring I

�
M0;Mt � ,

I
�
M0;Rt � , and I

�
M0;Mt � Rt � (Fig. 5).

The environment used in this experiment is static. The
agent offloads information into its own position R, that is
into own relation with the environment. This phenomenon
can be explained by the fact that the environment, as per-
ceived by the controller, is dynamic. The evolved controllers
employ this to offload and reacquire information.

6 Stigmergy for Two
In this section we study a classical case of stigmergy where
one agent (the sender) indirectly communicates with another
agent (the receiver) by changing the environment.
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Figure 6: Fitness of best evolved controllers. Left: initial po-
sition of the sender is distributed over 11 � 11 cells, Right:
the sender always starts at the source. Dashed line – theoret-
ical upper bound log2 �M � .

To enable the environment to be modified we introduce
a pushable box. We denote the position of the box with a
random variable B with values in


 2. When an agent hits
the box it is moved one cell in the direction the agent last
moved. For example, if the agent hits the box having moved
north, the box is moved north one cell. There is no special
sensor for the box. To facilitate the perception of the box
with minimal changes to the model, we make the box emit a
signal same way as the source does. Signals from the source
and from the box are summed. Therefore, the gradient field
depends on the position of the box and in principle enables
an agent to capture some information about the position of
the box using the gradient sensor.

The sender starts with its initial position R0 distributed
uniformly over a square of 11 � 11 cells centered at the
source. We inject log2 �M � bits of information into its con-
troller’s internal state M0. At time step 15 we remove the
sender and introduce the receiver by placing it at the source.
The receiver’s controller is set to state 1. At time step 30
we measure how much of the information about the sender’s
memory M0 is contained in the receiver’s memory M30. As
the receiver’s initial state and position are independent of
those of the sender, the information flow from the sender’s
memory into the recipient’s memory at time step 15 can pass
only via the position of the box B15.

We use evolution to find pairs of controllers maximizing
the flow I

�
M0;M30 � . Instead of individual controllers the

evolutionary algorithm operates on sender-receiver pairs.

6.1 Results and Discussion

We have evolved pairs of controllers with 2 to 11 states for
1000 generations. At most 1 bit of information is stigmer-
gically communicated (Fig. 6, left). More information gets
communicated if we perform the same experiment but with
the sender always starting at the source (Fig. 6, right).

The information flow from the sender’s memory M0 to the
receiver’s memory M30 at time step 15 goes exclusively via
the position of the box B15. Thus the amount of information
about M0 in B15 is the maximum the receiver could in prin-
ciple recover. The flow through the memory (I

�
M0;Mt � ) and

the position of the box (I
�
M0 � Bt � ) is shown on Fig. 7.
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Figure 7: Information flows constructed by the best evolved
6-state (left) and 8-state (right) controller pairs. Solid line –
I
�
M0;Mt � , dashed – I
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Figure 8: Implicit representations of states in M0 by box
position B15 as used by most controllers. Each frame shows
a mapping from an initial state onto B15. Intensity of cells
reflects the probability of finding the box there: white – zero,
black – highest.

Occasionally the receiver reacquires some information
about the sender’s initial position R0. The corresponding
information flow from R0 into memory Mt is visualized on
Fig. 7. This finding parallels the fact that one’s activity usu-
ally leaves traces which might be perceived and exploited by
others, potentially resulting in a race between strategies for
leaving fewer traces and for discovering them.

To understand how the injected information is represented
in the position of the box B15 we visualize the mapping
M0 � B15 (Fig. 8). It turns out that virtually all evolved
controllers use the same representation with minor differ-
ences: depending on M0 the box either remains in the center
of the grid, or is pushed away in one of the four straight lines
heading north, east, west or south.

7 Conclusions
We have presented an information-theoretic approach to
quantifying information flows in agent-environment inter-
actions. In addition to quantification, the approach allows
us to “inject” a piece of information into the system and
then track how the information diffuses. An advantage of
the information-theoretic quantities is that they ignore rep-
resentation and deal only with the underlying information.
This creates a versatile, powerful and flexible view where
information is treated as a measurable commodity.

To show the approach in action we have evolved agent
controllers for stigmergic behavior. We have character-
ized stigmergy as the offloading and reacquisition of Shan-
non information in the relationship between agents and the
environment. Stigmergy thus naturally lends itself to be-
ing treated in terms of Shannon information flow between
agents. As a testbed we have used a two-dimensional grid



world where agents have access to a gradient sensor only.
The agents are controlled by finite-state automata controllers
with limited amount of memory. Although the model is very
simple we believe it pertains to a range of Artificial Life
models, especially those concerned with stigmergy.

In the first experiment an agent was provided with infor-
mation which it had to offload from and later reacquire back
into its memory, resulting in a kind of self-stigmergy. At
first sight a surprising finding is that the agent was able to
perform this task without modifying the environment in the
common sense. The environment was static and the agent
offloaded information into its own position in the environ-
ment. In other words, the information was offloaded into the
relation between the agent and the environment.

In the second experiment one agent (the sender) was pro-
vided with information to stigmergically communicate to
another agent (the receiver) by modifying the environment.
Interestingly, in addition to the required information the
sender offloaded some extra information about itself, some
of which was later occasionally acquired by the recipient.
This parallels the fact that one’s activity usually leaves traces
which might be perceived and exploited by others, poten-
tially resulting in a race between strategies for leaving fewer
traces and for discovering them.

The sender could only communicate indirectly by push-
ing a box. The communicated information was thus stored
in the position of the box. Neither the sender nor the receiver
had explicit sensors for the position or the proximity of the
box. The agents did not evolve any “concept” of the box to
stigmergically communicate either, rather they managed to
create a suitable information flow by interacting with the en-
vironment.2 This emphasizes the fact that the information-
theoretic approach enables us to avoid imposing our own
biases or assumptions on the agents and thus potentially al-
lows more efficient solutions to be found.

We use the information-theoretic approach based on
tracking information flows in order to understand stigmergy
and ultimately more general phenomena in a quantitative
manner. There is strong evidence that interactions of biolog-
ical agents are partly due to the need for acquiring, exchang-
ing and concealing information. Therefore it is important
that the approach enables us to measure and also construct
various information flows without much bias, without im-
posing our own models on the interactions. We believe this
may provide novel insights into adaptive systems.
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