COMPUTER SCIENCE TECHNICAL REPORT

USE OF CASE-BASED REASONING IN THE CONTEXT-SPECIFIC
SELECTION OF NOTATIONS FOR REQUIREMENTS
SPECIFICATION

Sara Jones, Venki Shankararaman and Carol B tton

April 1997 Report No 310

Use of Case-Based Reasoning in the Context-Specific
Selection of Notations for Requirements Specification

S. Jones, V. Shankararaman and C. Britton
Department of Computer Science
University of Hertfordshire
College Lane, Hatfield, Herts. UK
AL109AB
Tel: 01707 284370 / 284351 / 284354
Fax: 01707 284303
Email: S.Jones, V.Shankararaman, C.Britton @herts.ac.uk

Abstract

Choosing an inappropriate notation for specifying software requirements is likely to
compromise the effectiveness and efficiency with which the requirements process can
be conducted. A proper choice of notation should ideally take into account both the
characteristics of available notations and the many, and often conflicting requirements
and constraints placed on notations by the circumstances of the project. This paper
discusses the application of case-based reasoning technology to the problem of
choosing notations. Our aim is to provide a decision-support tool for managers of the
requirements process which will facilitate choices about notations by exploiting
knowledge about both project development contexts and the notations themselves.

Keywords: requirements specification, case-based reasoning, project context,

notations

1. Introduction

Fayad and Laitinen report that there is often a tendency, amongst software practitioners,
to adopt a ‘one size fits all’ attitude to the choice of development methods (Fayad and
Laitinen 97). However, it is increasingly acknowledged that methods for software
system development need to be chosen or tailored according to the needs of the specific
context in which they are to be used (see, for example, Fayad and Laitinen 97, Hidding
97, Birk 97, Henninger 97).

One example of an area in which the choice of techniques for particular projects often
reflects the experience or preferences of the development team more than an objective
consideration of possible alternatives is that of selecting methods and notations for
requirements specification (McCluskey et al 95). The impact of the choice of

representation on successful performance of many system development activities has

been recognised for some time (Green 89 and 91, McCluskey et al 95, Modugno et al
94), and it therefore seems likely that the use of an inappropriate notation for
requirements specification may compromise the effectiveness and efficiency with which

the requirements process can be conducted.

One reason why decisions about the choice of requirements notations are not made in a
more objective way may simply be that such decisions can involve a number of
extremely complex considerations. A proper choice of notation should ideally take into
account factors relating to the nature of the project under consideration, the
characteristics of available notations and the many, and often conflicting requirements

and constraints placed on notations by the circumstances of the project.

In situations such as these, where decisions need to be made on the basis of
incomplete, uncertain or apparently conflicting information and a simple, algorithmic
solution is not possible, the best support may be provided by knowledge-based
technology of some kind. This paper discusses the application of case-based reasoning
technology to the problem of choosing notations for requirements specification in a way
which takes into account a broad range of considerations about both the project of
interest and the notations under consideration.

The paper is structured as follows. Section 2 discusses some related work in the fields
of knowledge-based support for requirements engineering and method engineering.
Section 3 describes our motivation for building a tool and briefly reiliews the kinds of
knowledge on which it is based. Our approach to the application of case-based
reasoning and our prototype implementation are presented in sections 4 and 5. We end

with some discussion and directions for further work.

2. Related Work

A review of tools providing knowledge-based support for the process of requirements
engineering is presented in Bolton et al (92). Most work in this area has focused on
exploiting knowledge about the application domain in which a system is to be
developed. Some projects have investigated the provision of knowledge-based support
for analysts employing particular requirements methods (or ‘methodologies’): for
example, Kramer et al (88) describe a knowledge-based tool supporting the use of the
CORE method. Other tools such as KATE (Fickas 87), Analyst-Assist (Adhami et al
89) and the Requirements Apprentice (Rich et al 87) were influenced by studies
investigating the performance of expert requirements engineers and attempted to

support or replicate various forms of expert behaviour in applying techniques for

requirements elicitation or analysis. There has, however, been little emphasis on
exploiting knowledge about the context in which a project is to take place, or on
supporting the requirements engineer in choosing what methods or techniques might be

most appropriate for a particular problem.

Questions relating to the choice or tailoring of methods and techniques for software
development are addressed within the method engineering community. One example of
a knowledge-based tool which aims to support software practitioners in making
decisions about what software tools and techniques to use in a new project is BORE
(Henninger 97). BORE (Building an Organisational Repository of Experiences) stores
knowledge about previous software development projects as ‘cases’ which contain
information about relevant project issues as well as resources used to address these
issues. The repository of cases may be browsed or searched using case ‘characteristics’
which are specified in terms of a controlled vocabulary. Information about the context
for a particular case is provided in the form of resource lists which enumerate relevant

tools, people, projects and development methods.

Because it is aimed at supporting the software development process as a whole, the
knowledge used in BORE is of a very general and loosely structured nature. In our
work, we focus on the process of requirements specification. This allows us to
consider in more detail questions about what knowledge can be used to support
decisions regarding the choice of requirements specification notations, and how such

knowledge might best be structured.

3. Requirements for the Tool

An investigation into the information needs of IT practitioners with respect to different
methodologies is reported by Hidding (1997). Hidding describes practitioners’
dissatisfaction with the way in which information about different methodologies is
currently presented in voluminous binders and handbooks which means that it is often
difficult to access relevant information when it is needed. Alternative ways of

presenting information are therefore needed.

Hidding distinguishes between the roles of ‘planners’ and ‘doers’ (roughly equating to
the roles of managers and analysts or programmers), saying that those with the greatest
need for information about the suitability of different methods for use in different
situations are the planners: if those planning a project make incorrect decisions about
what methods should be used, they may expose the project to unnecessary risks, and

are liable to take the blame if the project runs over time or budget, or if the system

delivered is of poor quality. We have therefore targeted our efforts at providing a

decision-support tool for IT planners, or managers of the requirements process.

Focusing on the specific case of selecting methods and notations for requirements
specification, we can identify two different types of knowledge which a requirements
manager may use in selecting notations for requirements specification. The first of these
is knowledge about the project context or situation in which a notation is to be used.
The second relates directly to the notations themselves. Each of these types of
knowledge is discussed in more detail below.

In the following paragraphs, we briefly discuss the origins of knowledge currently
being implemented in our tool and describe our initial efforts at validating this
knowledge. The process is discussed in more detail elsewhere (Jones and Britton 97).

3.1 Project Context Knowledge

Various authors have characterised particular development situations in different ways.
Potts, for example, discusses the needs of software developers who build off-the-shelf
application software (Potts 95), Sommerville and Sawyer characterise requirements
engineering for critical systems (Sommerville and Sawyer 97), McCluskey et al
consider various aspects of the development situation which affected their choice of
notation for use in a project developing a prototype decision support system for air
traffic controllers (McCluskey et al 95), and Jones and Britton have vattem'pted to
identify the distinguishing features of multimedia development projects which might
have an impact on the choice of notations for use in this area (Jones and Britton 96,
Britton et al 97, Britton and Jones 98).

Work such as that described by O'Neill et al (97) and Sutcliffe et al (97) is currently
investigating which features of a project context might influence the choice of notations
or representations at various stages of the software development process. Christel and
Kang’s report for the SEI identified a number of factors relating to the scope of a
project, the need for understanding by various parties, and the volatility of
requirements, which they suggested should influence the developer's choice of
requirements techniques and notations (Christel and Kang 92). More recently,
Sommerville and Sawyer have listed some generic guidelines for choosing models and
methods (Sommerville and Sawyer 97) and the RESPECT project has made some
general recommendations as to the stages of system development for which certain
techniques and representations are most appropriate (Maguire 97). However with each

of these authors taking a slightly different perspective on the problem, it is difficult for

the practising software developer to know on what basis the choice of modelling

notation for a particular project should be made.

Following Kellogg (90) we suggest that the important features of a project context
which might influence a developer’s choice of modelling notation could be considered

in terms of factors relating to:

e the intended users of the representations (stakeholders)

e the purposes for which the representations are intended to be used, and

e the environment in which the representations are to be produced and employed, and

o specific features of the system under development.

From a review of the literature, and from the experience of software developers within
the University, we have identified a number of features in each of the above areas. We
currently have 6 features relating to the intended users of the representations, 12
concerning the purposes for which the representations are intended to be used, 5 about
the environment in which the representations are to be produced, and 4 relating to the
system under development. ‘
Each feature is effectively a dimension along which projects may vary. For each
dimension, we have identified an initial set of possible values, for example
‘Extent of stakeholder involvement’
may be categorised as ‘high’, ‘medium’ or ‘low’ for a particular project, and
‘Feasibility of training stakeholders to understand a techniqﬁe’ '

may be categorised as ‘feasible’ or ‘not feasible’.

3.2 Knowledge about Notations

Work on criteria for choosing modelling notations has been carried out by authors from
both the academic and industrial communities. Farbey (93) identifies criteria such as
readability, modifiability and lack of ambiguity, as well as the ease with which a well-
presented specification can be produced, and the amount of support available. Davis
(88 and 93) suggests a list of criteria pertaining to the effectiveness of representations
and the choice of notations which includes the ideas that the notation should permit
annotation and traceability, facilitate modification, and provide a basis for automated
checking and generation of prototypes and system tests. Among the most relevant
publications from authors in industry is the STARTS guide (DTI 87), which identified
criteria for modelling notations including qualities such as rigour, suitability for

agreement with the end-user and assistance with structuring the requirements.

Once again, we have used a review of the literature, and the experience of local
developers to identify 12 important features of notations. Any notation for specifying
requirements can be rated against features such as these. For example, Davis (93)
provides a table in which 10 notations for requirements specification are numerically
rated against 11 criteria similar to those we have used, and Wieringa (96) also provides

a structured comparison of 3 different notations in terms of their coverage.

We may describe what we would ideally like from a notation for a new project by
filling out values for these features. For example, we may specify that:

‘Ease of understanding a model’
should be ‘high’, or that

‘Degree to which technique is based on maths and/or logic’
may be ‘low’ if we are not concerned with developing a mathematically rigorous
model. We may also use the same knowledge structure to record our experiences with

using a particular notation at the end of a project.
3.3 Knowledge Validation

The two types of knowledge described above have so far been validated in two ways.
First, we worked through four local projects, which had already been completed,
characterising them in terms of our proposed project features and using our
understanding of that characterisation to help identify which features of notations
should have been most relevant for selecting notations for use in each project. Two
further researchers, who are not part of our team, have also worked through a project
of their own in this way and have suggested amendments and additions to our initial

lists of features.

Secondly, we have presented our ideas to academics and practitioners in a workshop
held at STEP97, a recent conference on software engineering (Budgen et al 97). The
aim of this workshop was to promote discussion of any factors which may significantly
influence a developer’s choice of notations for requirements representation. It was
attended by 10 practitioners and 12 academics and lasted for two hours. Our ideas
about project context and notation knowledge were presented at the beginning of the
workshop, and there was then a general discussion regarding the way in which
notations are currently chosen, and way in which decisions about choice of notation
might be supported. At the end of the discussion, workshop participants were asked to
fill out a rating sheet in which they rated each feature of a project context or notation as

‘very important’, ‘quite important’, ‘not very important’ or ‘not at all important’.

Detailed information about the results of this exercise is presented in Jones et al (97).
Of the features considered at the workshop, 36 (out of a total of 41) were considered to
be either ‘very important’ or ‘quite important’ in determining what notation to use by at
least half the respondents. We therefore feel a reasonable degree of confidence in the
validity of project and notation features which have so far been identified, although we

plan to extend and modify our lists as we gain further experience.

4 Application of Case-Based Reasoning (CBR)
4.1 Introduction to CBR

Case-Based Reasoning is modelled on the human approach to problem solving. Upon
being presented with a new problem, a human will attempt to use their knowledge of
the solutions to previously encountered similar problems (or parts thereof) to arrive at a
proposed solution to the new problem: for example, lawyers use old cases as
precedents to justify arguments in new cases - hence the well known phrase
"Precedence is 9/10 of the law". In general, human competency at solving problems in
a given domain increases as a function of the number of previously encountered (and
remembered!) problems and their solutions, whether successful or otherwise (Kolodner
93).

CBR does not require a domain model, rather it requires a large number of previously
solved cases. Thus CBR, while perhaps not removing the well known ‘knowledge
elicitation bottleneck’ problem in the development of classic knowledge-based systems
(KBS), certainly eases it. Elicitation simply becomes the task of gathering case
histories which would normally be more effectively undertaken by the users (i.e.
practitioners in the problem domain) rather than by the system implementers. Ideally, a
CBR system should not only store information about successful cases, but also use
failed solutions to avoid pitfalls. The large number of cases required may be managed
by applying database management techniques. A CBR system is thus more easily

maintained than a KBS and can also learn by acquiring new knowledge as cases.

The critical element in implementing a CBR system is identifying significant features
that can be used to describe a case - a much easier task than creating a domain model. A
case is a piece of knowledge representing an experience in a particular context.
Typically a case comprises the problem statement, including contextual information
(e.g. invariant and pre-conditions), the solution to the problem, and/or the outcome of

applying the solution (e.g. post-conditions).These are usually represented as a set of

feature-value pairs. Cases can be implemented using frames, objects, predicates,
semantic nets and rules. Frame and object representations (which are very similar

anyway) are most often used in current CBR systems.

4.2 Rationale for using CBR

The following points form our rationale for using CBR for the problem of selecting
notations for requirements specification:

e The domain of notation selection is currently ill defined: it is difficult to develop
theories or rules which can accurately identify appropriate notations for requirements

specification based on project features.

e On completion of every project it is possible to record the experience, both good and
bad, of using particular notations for the project as a case. Over a period of time it is
possible to accumulate a large number of cases, which can then be used to suggest

appropriate notations based on previous project experiences.

e In most instances it is very difficult to identify precisely one optimum notation for a
project. The CBR approach overcomes this problem by suggesting a set of possible
notations and ranking them in the order of suitability to the particular project.

4.3 Application of CBR

A tool for requirements managers wanting advice on what notations to use on a new
project would ideally allow users to simply specify details of their new project in order
to obtain a recommendation as to what notation or notations might be most useful.
Knowledge about requirements notations and their applicability under different
circumstances is not yet sufficiently developed that such a system could be
implemented. However, with case-based reasoning, we are able to provide users with
information about projects similar to their own as well as the notations which were used
on those projects and the advantages and disadvantages to those notations which

developers observed during the course of the project.

In our system, a case consists of a set of feature-value pairs defining a project context,
a further set of feature-value pairs defining a notation used in that context, the name of
the notation and a free text description of the experience of developers using the
notation in the project described. An example of a completed case relating to a project
called MAISIE is shown in figure 1. ‘

PROJECT FEATURES

Stakeholders:
Extent of stakeholder involvement in the requirements process high
Stakeholder's understanding of software systems medium

Intended purpose of models:
As a vehicle for communication and negotiation between the developer and | yes
other stakeholders
As a vehicle for communication between members of the development team | yes

Environment:

Stability of the requirements medium
Likelihood of conflicts / inconsistencies high
System:

Extent to which the system is safety-critical low
Extent to which the system is security-critical low

NOTATION FEATURES = _ ;
Ease of producing a model medium
Ease of understanding a model high

NOTATION USED: -

Name: Storyboards

Description: Storyboards were used to script interactions in the four main sections of the
system which included an on-line quiz, an interactive story and a multimedia educational
component. They were extremely useful in discussing possible scenarios with teachers and
school nurses who were not familiar with the full capabilities of multimedia systems.
However, aspects of the system such as the dialogue structure for the interactive story had to
be specified separately as the storyboards did not provide enough detail to be able to
implement these directly.

Figure 1: Extracts from one of the cases for the MAISIE project

At the beginning of a new project, a user can fill out the ‘project features’ part of the
template, by assigning relevant values to project features of interest, and can then ask
the system to find the best match (or matches) to the new project from within the case
base. The user can also differentially weight features if the match is to be influenced
more by the values of some features than others. By examining the cases identified by
the system, the user can gain a good understanding of what notations have been used in
similar projects in the past, and what are likely to be the benefits and problems

associated with a range of options. An experienced requirements manager, who, at the

beginning of a new project, already has a feel for the kind of notations which might be
appropriate, can also fill out the ‘notation features’ section of the template. The system
can then use both project and notation features in finding a match from the case base,
and can present the user with a smaller, and better matched sample of information about

past projects.

In order that the system can ‘learn’ with increasing experience, users are asked to enter
new cases into the case base at the end of every project. Separate cases are currently
used for every notation used: for example, as the MAISIE project used the two separate
notations of storyboards and state transition diagrams, two separate cases were entered
into the case base. The ‘project features’ components of each case were the same, but
the ‘notation features’ components recorded the ease with which models were
produced, understood etc within the MAISIE project, as well as any informal

comments from the developers about the pros and cons of each.

The two separate processes of using the case base to retrieve relevant information, and
updating the case base at the end of a project, are shown in figure 2.

CASE INPUT
New project case AND
AR, S
INDEXING

Project and notation feature values and weights .
[Comsrome | —EEEE

AND

Most suitable notation RETRIEVAL ENGINE

~< PROJECT CASE BASE

Figure 2: Creating and using the case base

Our approach has the advantage that it provides support for both experienced and less
experienced project managers. It also provides an easy route to learning from
experience. As more projects are completed, cases relating to those projects can quite
easily be added to the system, and we may, over the course of time, build up an

increasingly accurate picture of:

e overall ratings for notational features (are data flow diagrams, in general, easier to

modify than state transition diagrams?)

e links between particular project features and the need for notations with particular

properties (are relationships such as those identified in section 4.2 correct?), and

10

o effective approaches to matching new projects with those in the case base (are some
project features of greater significance than others in determining what notations

will be most appropriate?)

The following section briefly discusses the way in which we are implementing a

prototype based on these ideas.

5. Prototype Implementation

A prototype tool is currently being implemented. The prototype being developed is an
extension of an existing CBR tool called CAROL (Case Assisted Reuse of Object
Libraries). The following is a brief description of the main components of the system.
For more details on CAROL, the reader may refer to Shankararaman et al (96) and
Maguire et al (95).

5.1 Case-Base Creation

The Case-Base Creation module allows a user to input new cases in order to build up
the case base on completion of a project. This is done by setting values for the various
project and notation features which define a completed project. New cases are
appropriately indexed and then stored in the case base.

5.2 Specification

The Specification function provides users of the system with an input template for
specifying features relating to a new project. Users can define values for some or all of
the project and/or notation features in order to find a suitable notation. The input

template is basically an interface between users and the case representation structure.

5.3 Retrieval

Retrieval matches the user’s specification of project features either against all, or user
specified parts of, the case-base. A list of matched case names is returned, together
with their overall similarity score and 'goodness' of fit with the new project details,
according to a default, or user defined, 'goodness' criterion. A group of options and
settings are available, including the ‘retrieval settings’ and ‘attribute weightings’
facilities, which allow the user to change the search strategy by pre-selecting parts of
the case-base or emphasising the importance of one or more features. This allows the
user to narrow or broaden the search space, depending on whether a quick search
(requiring some user knowledge about the domain of the desired project) is wanted, or
whether users want the system to find as many semantic relations between cases as

possible.

11

6. Discussion

In this paper, we have identified the need for decision-support tools which can assist
the requirements manager in identifying notations for requirements specification
appropriate to the needs of a particular project. We have identified two different kinds
of knowledge on which such a tool may draw, and have described our initial work on
eliciting and validating knowledge of these kinds. Since the task of notation selection is
still rather ill defined and our knowledge is still incomplete and relatively uncertain, the
most suitable form of knowledge-based technology for developing a support tool was
felt to be that of case based reasoning. We have described our approach to the
application of case-based reasoning technology in the domain of notation selection, and

have introduced a prototype tool which implements our approach.

As discussed by Mylopoulos et al (97), Al can make an important contribution to
software engineering, simply by providing knowledge representation techniques as a
framework for capturing and recording knowledge. This knowledge may then usefully
be exploited by human practitioners, even if it is not incorporated into a full-blown
knowledge-based system. Moreover, the act of eliciting and representing previously

unrecorded knowledge is in itself useful.

Our experience to date has certainly been useful in these respects, as in considering the
possible application of case-based technology and assessing alternative designs for our
tool, we have increased our understanding of the task of notation selectioh. In addition,
as discussed in section 4.3, one of the benefits of our proposed design is that it
provides a basis for learning more about the domain of interest. As we accumulate
greater numbers of project cases from a range of organisations, we will be able to build
up an increasingly accurate picture of knowledge relating to the task of notation
selection. This, in turn, will allow us to refine our tool and investigate the use of further

knowledge-based techniques to increase its efficiency.

References

Adhami, E., Pyburn, R. and Champion, R., “A Knowledge-based approach to
requirements engineering”, in Software Engineering Environments: Research and
Practice, K. Bennett (ed), chap.12, Ellis Horwood, 1989.

Birk, A. “Modelling the Application Domains of Software Engineering Technologies”,
Fraunhofer (IESE) Technical report no. 014.97/E, 1997.

12

Bolton, D. Jones, S. Till, D. Furber, D. and Green, S., “Knowledge-Based Support
for Requirements Engineering”, in International Journal of Software Engineering and

Knowledge Engineering, 2(2), 1992.

Britton, C., Jones, S., Myers,M. and Sharif,M. "A survey of current practice in
multimedia system development" Journal of Information and Software Technology, 39,
1997.

Britton, C. and Jones, S. "Using project characterisation in selecting notations for
modelling requirements", to be presented at IEEE Engineering Computer-Based
Systems, Jerusalem, 1998.

Budgen, D. , Hoffnagle, G. and Trienekens, J. (Eds.) Proc. of the Eighth International
Workshop on Software Technology and Engineering Practice, IEEE C. S. Press 1997

Christel, N. and Kang, K. "Issues in Requirements Elicitation", Technical Report
CMUY/SEI-92-TR-12, Software Engineering Institute, 1992

Davis, A. "A Comparison of techniques for the specification of external system
behaviour” Communications of the ACM, Volume 31, Number 9, September 1988

Davis, A.M. "Software Requirements. Objects, Functions and States" Prentice Hall

International, 1993

Department for Trade and Industry and National Computing Centre "The STARTS
Guide", Second edition, volume 1, NCC Publications, 1987

Farbey, B. "Software quality metrics: considerations about requirements and
requirement specifications" in Software Engineering: A European Perspective, R.

Thayer and A. McGetterick (Eds.), IEEE C.S.Press, 1993

Fayad, M. and Laitinen, M., “Process Assessment Considered Wasteful”,
Communications of the ACM, 40(11), 1997.

Fickas, S. “Automating the Analysis Process”, in Proc. of the 4th International
Workshop on Software Specification and Design, IEEE C. S. Press, 1987.

Green, T.R.G. "Cognitive Dimensions of Notations" in People and Computers (HCI
89) Sutcliffe and McCaulay (Eds.) C.U.P, 1989

13

Green, T.R.G. (1991) “Describing Information Artifacts with Cognitive Dimensions
and Structure Maps” in People and Computers VI, Proceedings of the HCI’91
Conference, Diaper, D. and Hammond, N. (Eds.), August 1991

Henninger, S. “Case-Based Knowledge Management Tools for Software
Development”, in Automated Software Engineering, 4(3), July 1997.

Hidding, G., “Reinventing Methodology: Who Reads it and Why?”, Communications
of the ACM, 40(11), 1997.

Jones,S. and Britton,C. "Early Elicitation and Definition of Requirements for an
Interactive Multimedia Information System" Proc. of ICRE96, the Second International
Conference on Requirements Engineering, [EEE Computer Society Press, 1996.

Jones, S., Britton, C. and Lam, W. “Towards A Framework for Selecting Notations
for Modelling Requirements” Department of Computer Science, University of
Hertfordshire Technical Report, 1997.

Kellog, W. "Qualitative Artifact Analysis", in Human Computer Interaction:
INTERACT90 Diaper, D., Gilmore D., Cockton, G. and Shackell, B. (Eds.) Elsevier
Science Publishers, BV (North Holland) 1990.

Kolodner, J. “Case-based Reasoning”, Morgan Kaufman, 1993.

Kramer, J., Ng, K., Potts, C. and Whitehead, K., “Tool Support for Requirements
Analysis”, Software Engineering Journal, May 1988.

Macaulay, L.A. "Requirements for Requirements Engineering Techniques",
Proceedings of ICRE96, the Second International Conference on Requirements

Engineering, IEEE Computer Society Press, 1996

Maguire, M. "RESPECT User Requirements Framework Handbook" Version 2.2,
HUSAT Research Institute, April 1997.

Maguire, P. Shankararaman, V., Szegfue, R. and Morss, L., “Application of Case-

Based Reasoning to Software Reuse” in Lecture Notes in Atrtificial Intelligence:

Progress in Case Based Reasoning, I. Watson (ed), Springer Verlag, 1995.

14

McCluskey, T.L., Porteous, J.M., Naik, Y, Taylor, C.N. and Jones, S. (1995)
A Requirements Capture Method and its use in an Air traffic Control Application.
Software practice and Experience, Vol 25 (1)

Modugno, F., Green T.R.G. and Myers B.A. (1994) "Visual programming in a Visual
Domain: A Case Study of Cognitive Dimensions" in People and Computers IX,
Proceedings of HCI'94, Glasgow, August 1994

Mylopoulos, J., Borgida, A. and Yu, E., “Representing Software Engineering
Knowledge”, Automated Software Engineering”, 4 (3), 1997.

O'Neill, E., Johnson, P. and Johnson, H. "Representations in co-operative software
development: an initial framework", Proc. of the Intl. Workshop on Representations in
Software Development, July 1997, Queen Mary and Westfield College, University of

London

Potts, C. "Invented Requirements and Imagined Customers: Requirements Engineering
for Off-the-Shelf Software", in Proceedings of RE95, the Second IEEE International
Symposium on Requirements Engineering, IEEE C. S. Press, 1995.

Rich, C., Waters, R. and Reubenstein, H., “Toward a Requirements Apprentice”, in
Proc. of the 4th Intl Workshop on Software Specification and Design, IEEE C. S.
Press, 1987.

Shankararaman, V. and Maguire, P., “Case-Based Reasoning for Software Reuse”, in
Knowledge Based Computer Systems - Research and Applications, K. Anjaneylu, M.
Sasikumar and S. Ramani (eds), Narosa Publishing House, London, 1996.

Sommerville, I. and Sawyer, P. "Requirements engineering: a good practice guide",
Wiley, 1997

Sutcliffe, A.G., Maiden N.A.M. and Bright, B. "An Evaluation Framework for
Representations in Requirements Engineering”, Proc. Intl. Workshop on
Representations in Software Development, July 1997, Queen Mary and Westfield

College, University of London

Wieringa, R., “Requirements Engineering”, Wiley, 1996.

15

